www.dbebooks.com - Free Books & magazines

OXFORD

OXFORD TEXTS IN LOGIC 1

A First Course in Logic

An Introduction to Model Theory,
Proof Theory, Computability,
and Complexity

SHAWN HEDMAN

A First Course in Logic

This page intentionally left blank

A First Course in Logic

An introduction to model theory, proof theory,
computability, and complexity

SHAWN HEDMAN
Department of Mathematics, Florida Southern College

OXFORD

UNIVERSITY PRESS

UNIVERSITY PRESS

Great Clarendon Street, Oxford OX2 6DP

Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford New York

Auckland Cape Town Dar es Salaam Hong Kong Karachi

Kuala Lumpur Madrid Melbourne Mexico City Nairobi

New Delhi Shanghai Taipei Toronto

With offices in

Argentina Austria Brazil Chile Czech Republic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
South Korea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

© Oxford University Press 2004

The moral rights of the author have been asserted
Database right Oxford University Press (maker)

First published 2004
Reprinted (with corrections) 2006

All rights reserved. No part of this publication may be reproduced,

stored in a retrieval system, or transmitted, in any form or by any means,
without the prior permission in writing of Oxford University Press,

or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction

outside the scope of the above should be sent to the Rights Department,
Oxford University Press, at the address above

You must not circulate this book in any other binding or cover

and you must impose the same condition on any acquirer

A catalogue record for this title is available from the British Library
Library of Congress Cataloging in Publication Data

Data available

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India

Printed in Great Britain
on acid-free paper by
Biddles Ltd., King’s Lynn, Norfolk

ISBN 0-19-852980-5 (Hbk)
ISBN 0-19-852981-3 (Pbk)

1098765432

To Julia

This page intentionally left blank

Acknowledgments

Florida Southern College provided a most pleasant and hospitable setting for the
writing of this book. Thanks to all of my friends and colleagues at the college. In
particular, I thank colleague David Rose and student Biljana Cokovic for reading
portions of the manuscript and offering helpful feedback. I thank my colleague
Mike Way for much needed technological assistance. This book began as lecture
notes for a course I taught at the University of Maryland. I thank my students
and colleagues in Maryland for their encouragement in beginning this project.

The manuscript was prepared using the MikTex Latex system with a GNU
Emacs editor. For the few diagrams that were not produced using Latex, the
Gimp was used (the GNU Image Manipulation Program). I would like to thank
the producers of this software for making it freely available.

I cannot adequately acknowledge all those who have shaped the subject
and my understanding of the subject contained within these pages. For the
many names of logicians and mathematicians mentioned in the book, I fear
there are many deserving names that I have left out. My apologies to those I have
slighted in this respect. Many people, through books and personal interaction,
have influenced my presentation of the subject. The books are included in the
bibliography. Of my teachers, two merit special mention. I thank John Baldwin
and David Marker at the University of Illinois at Chicago from whom I learned
so much not so long ago. It is my hope that this book should lead readers to
their outstanding books on Stability Theory and Model Theory.

Most importantly, I must acknowledge my wife Julia and our young children
Max and Sabrina. From Sabrina’s perspective, this book has been a life-long
project. To Julia and Max, it may have seemed like a lifetime. It is to Julia that
I owe the greatest debt of gratitude. Without Julia’s enduring patience, effort,
and support, this book certainly would not exist.

This page intentionally left blank

Contents

1.1
1.2
1.3
1.4
1.5

1.6
1.7
1.8

1.9

2.1
2.2
2.3
24

2.5
2.6

2.7

Propositional logic

What is propositional logic?

Validity, satisfiability, and contradiction
Consequence and equivalence

Formal proofs

Proof by induction

1.5.1 Mathematical induction

1.5.2 Induction on the complexity of formulas
Normal forms

Horn formulas

Resolution

1.8.1 Clauses

1.8.2 Resolvents

1.8.3 Completeness of resolution
Completeness and compactness

Structures and first-order logic

The language of first-order logic
The syntax of first-order logic
Semantics and structures
Examples of structures

2.4.1 Graphs

2.4.2 Relational databases
2.4.3 Linear orders

2.4.4 Number systems

The size of a structure
Relations between structures
2.6.1 Embeddings

2.6.2 Substructures

2.6.3 Diagrams

Theories and models

© - =

12
22
23
25
27
32
37
37
38
40
44

53

53
o4
o7
66
66
69
70
72
73
79
80
83
86
89

Contents

Proof theory

3.1
3.2

3.3

3.4

3.5
3.6

Formal proofs

Normal forms

3.2.1 Conjunctive prenex normal form
3.2.2 Skolem normal form
Herbrand theory

3.3.1 Herbrand structures
3.3.2 Dealing with equality
3.3.3 The Herbrand method
Resolution for first-order logic
3.4.1 Unification

3.4.2 Resolution
SLD-resolution

Prolog

Properties of first-order logic

4.1
4.2

4.3
4.4
4.5

4.6
4.7

The countable case

Cardinal knowledge

4.2.1 Ordinal numbers

4.2.2 Cardinal arithmetic

4.2.3 Continuum hypotheses
Four theorems of first-order logic
Amalgamation of structures
Preservation of formulas

4.5.1 Supermodels and submodels
4.5.2 Unions of chains
Amalgamation of vocabularies

The expressive power of first-order logic

First-order theories

5.1
5.2
5.3

5.4
5.5

5.6
5.7

Completeness and decidability
Categoricity

Countably categorical theories
5.3.1 Dense linear orders

5.3.2 Ryll-Nardzewski et al.
The Random graph and 0-1 laws
Quantifier elimination

5.5.1 Finite relational vocabularies
5.5.2 The general case
Model-completeness

Minimal theories

99

100
109
109
111
113
113
116
118
120
121
124
128
137

147

147
152
153
156
161
163
170
174
175
179
183
189

198

199
205
211
211
214
216
221
222
228
233
239

5.8
5.9

Contents

Fields and vector spaces
Some algebraic geometry

Models of countable theories

6.1
6.2
6.3

6.4

6.5
6.6
6.7

Types

Isolated types

Small models of small theories
6.3.1 Atomic models

6.3.2 Homogeneity

6.3.3 Prime models

Big models of small theories

6.4.1 Countable saturated models
6.4.2 Monster models

Theories with many types

The number of nonisomorphic models
A touch of stability

Computability and complexity

7.1

7.2
7.3
7.4
7.5
7.6

7.7

7.8

Computable functions and Church’s thesis
7.1.1 Primitive recursive functions
7.1.2 The Ackermann function

7.1.3 Recursive functions

Computable sets and relations
Computing machines

Codes

Semi-decidable decision problems
Undecidable decision problems

7.6.1 Nonrecursive sets

7.6.2 The arithmetic hierarchy
Decidable decision problems

7.7.1 Examples

7.7.2 Time and space

7.7.3 Nondeterministic polynomial-time
NP-completeness

The incompleteness theorems

8.1
8.2
8.3
8.4
8.5
8.6

Axioms for first-order number theory

The expressive power of first-order number theory

Godel’s First Incompleteness theorem
Godel codes

Godel’s Second Incompleteness theorem
Goodstein sequences

xi

247
257

267

267
271
275
276
277
279
280
281
285
286
289
290

299

301
302
307
309
312
316
320
327
332
332
335
337
338
344
347
348

357

358
362
370
374
380
383

xii Contents

9 Beyond first-order logic
9.1 Second-order logic
9.2 Infinitary logics
9.3 Fixed-point logics
9.4 Lindstrém’s theorem

10 Finite model theory

10.1 Finite-variable logics

10.2 Classical failures

10.3 Descriptive complexity

10.4 Logic and the P = NP problem

Bibliography

Index

388

388
392
395
400

408

408
412
417
423

426
428

Preliminaries

What is a logic?

A logic is a language equipped with rules for deducing the truth of one sentence
from that of another. Unlike natural languages such as English, Finnish, and
Cantonese, a logic is an artificial language having a precisely defined syntax. One
purpose for such artificial languages is to avoid the ambiguities and paradoxes
that arise in natural languages. Consider the following English sentence.

Let n be the smallest natural number that cannot be defined in fewer than
20 words.

Since this sentence itself contains fewer than 20 words, it is paradoxical. A logic
avoids such pitfalls and streamlines the reasoning process. The above sentence
cannot be expressed in the logics we study. This demonstrates the fundamental
tradeoff in using logics as opposed to natural languages: to gain precision we
necessarily sacrifice expressive power.

In this book, we consider classical logics: primarily first-order logic but
also propositional logic, second-order logic and variations of these three logics.
Each logic has a notion of atomic formula. Every sentence and formula can be
constructed from atomic formulas following precise rules. One way that the three
logics differ is that, as we proceed from propositional logic to first-order logic
to second-order logic, there is an increasing number of rules that allow us to
construct increasingly complex formulas from atomic formulas. We are able to
express more concepts in each successive logic.

We begin our study with propositional logic in Chapter 1. In the present
section, we provide background and prerequisites for our study.

What is logic?

Logic is defined as the study of the principles of reasoning. The study of logics
(as defined above) is the part of this study known as symbolic logic. Symbolic
logic is a branch of mathematics. Like other areas of mathematics, symbolic logic
flourished during the past century. A century ago, the primary aim of symbolic
logic was to provide a foundation for mathematics. Today, foundational studies
are just one part of symbolic logic. We do not discuss foundational issues in this

xiv Preliminaries

book, but rather focus on other areas such as model theory, proof theory, and
computability theory. Our goal is to introduce the fundamentals and prepare the
reader for further study in any of these related areas of symbolic logic. Symbolic
logic views mathematics and computer science from a unique perspective and
supplies distinct tools and techniques for the solution of certain problems. We
highlight many of the landmark results in logic achieved during the past century.

Symbolic logic is exclusively the subject of this book. Henceforth, when we
refer to “logic” we always mean “symbolic logic.”

Time complexity

Logic and computer science share a symbiotic relationship. Computers provide
a concrete setting for the implementation of logic. Logic provides language and
methods for the study of theoretical computer science. The subject of complex-
ity theory demonstrates this relationship well. Complexity theory is the branch
of theoretical computer science that classifies problems according to how difficult
they are to solve. For example, consider the following problem:

The Sum 10 Problem: Given a finite set of integers, does some subset
add up to 10?7

This is an example of a decision problem. Given input as specified (in this
case, a finite set of integers) a decision problem asks a question to be answered
¢ no.” Suppose, for example, that we are given the following set

[43

with a “yes” or
as input:

{—26,-16,—12, —8, —4, —2,7,8,27}.

The problem is to decide whether or not this set contains a subset of numbers
that add up to 10. One way to resolve this problem is to check every subset.
Since 10 is not in our set, such a subset must contain more than one number.
We can check to see if the sum of any two numbers is 10. We can then check
to see if the sum of any three numbers is 10, and so forth. This method will
eventually provide the correct answer to the question, but it is not efficient. We
have 29 = 512 subsets to check. In general, if the input contains n integers, then
there are 2™ subsets to check. If the input set is large, then this is not feasible. If
the set contains 23 numbers, then there are more than 8 million subsets to check.
Although this is a lot of subsets, this is a relatively simple task for a computer. If,
however, there are more than, say, 100 numbers in the input set, then, even for
the fastest computer, the time required to check each subset exceeds the lifespan
of earth.

Preliminaries XV

Time complexity is concerned with the amount of time it takes to answer
a problem. To answer a decision problem, one must produce an algorithm that,
given any suitable input, will result in the correct answer of “yes” or “no.” An
algorithm is a step-by-step procedure. The “amount of time” is measured by how
many steps it takes to reach the answer. Of course, the bigger the input, the
longer it will take to reach a conclusion. An algorithm is said to be polynomial-
time if there is some number k so that, given any input of size n, the algorithm
reaches its conclusion in fewer than n* steps. The class of all decision problems
that can be solved by a polynomial-time algorithm is denoted by P. We said
that complexity theory classifies problems according to how difficult they are to
solve. The complexity class P contains problems that are relatively easy to solve.

To answer the Sum 10 Problem, we gave the following algorithm: check
every subset. If some subset adds up to 10, then output “yes.” Otherwise, output
“no.” This algorithm is not polynomial-time. Given input of size n, it takes at
least 2" steps for the algorithm to reach a conclusion and, for any k, 2" > n*
for sufficiently large m. So this decision problem is not necessarily in P. It is
in another complexity class known as NP (nondeterministic polynomial-time).
Essentially, a decision problem is in NP if a “yes” answer can be obtained in
polynomial-time by guessing. For example, suppose we somehow guess that the
subset {—26,—4,—2,7,8,27} sums up to 10. It is easy to check that this guess
is indeed correct. So we quickly obtain the correct output of “yes.”

So the Sum 10 Problem is in NP. It is not known whether it is in P. The
algorithm we gave is not polynomial-time, but perhaps there exists a better
algorithm for this problem. In fact, maybe every problem in NP is in P. The
question of whether P = NP is not only one of the big questions of complexity
theory, it is one of the most famous unanswered questions of mathematics. The
Clay Institute of Mathematics has chosen this as one of its seven Millennium
Problems. The Clay Institute has put a bounty of one million dollars on the
solution for each of these problems.

What does this have to do with logic? Complexity theory will be a recurring
theme throughout this book. From the outset, we will see decision problems that
naturally arise in the study of logic. For example, we may want to know whether
or not a given sentence of propositional logic is sometimes true (likewise, we may
ask if the sentence is always true or never true). This decision problem, which
we shall call the Satisfiability Problem, is in NP. It is not known whether it is
in P. In Chapter 7, we show that the Satisfiability Problem is NP-complete.
This means that if this problem is in P, then so is every problem in NP. So if
we can find a polynomial time algorithm for determining whether or not a given
sentence of propositional logic is sometimes true, or if we can show that no such
algorithm exists, then we will resolve the P = NP problem.

xvi Preliminaries

In Chapter 10, we turn this relationship between complexity and logic on its
head. We show that, in a certain setting (namely, graph theory) the complexity
classes of P and NP (and others) can be defined as logics. For example, Fagin’s
Theorem states that (for graphs) NP contains precisely those decision problems
that can be expressed in second-order existential logic. So the P = NP problem
and related questions can be rephrased as questions of whether or not two logics
are equivalent.

From the point of view of a mathematician, this makes the P = NP problem
more precise. Our above definitions of P and NP may seem hazy. After all,
our definition of these complexity classes depends on the notion of a “step” of
an algorithm. Although we could (and will) precisely define what constitutes
a “step,” we utterly avoid this issue by defining these classes as logics. From
the point of view of a computer scientist, on the other hand, the relationship
between logics and complexity classes justifies the study of logics. The fact that
the familiar complexity classes arise from these logics is evidence that these logics
are natural objects to study.

Clearly, we are getting ahead of ourselves. Fagin’s Theorem is not men-
tioned until the final chapter. In fact, no prior knowledge of complexity theory is
assumed in this book. Some prior knowledge of algorithms may be helpful, but
is not required. We do assume that the reader is familiar with sets, relations,
and functions. Before beginning our study, we briefly review these topics.

Sets and structures

We assume that the reader is familiar with the fundamental notion of a set. We
use standard set notation:

x € A means x is an element of set A,

x ¢ A means x is not an element of A,

() denotes the unique set containing no elements,

A C B means every element of set A is also an element of set B,
AU B denotes the union of sets A and B,

AN B denotes the intersection of sets A and B, and

A x B denotes the Cartesian product of sets A and B.

Recall that the union AU B of A and B is the set of elements that are in A or
B (including those in both A and B), whereas the intersection AN B is the set
of only those elements that are in both A and B. The Cartesian product A x B
of A and B is the set of ordered pairs (a,b) with a € A and b € B. We simply
write A2 for A x A. Likewise, for n > 2, A" denotes the Cartesian product of
A"~1 and A. This is the set of n-tuples (aj,as,...,a,) with each a; € A. For
convenience, Al (the set of 1-tuples) is an alternative notation for A itself.

Preliminaries xvii

Example 1 Let A = {«, (3,7} and let B = {3,9,¢}. Then

AUB ={a,pB,v,0,¢€},

ANB={p},

Ax B={(a,B),(a,0),(a,e€),(8,8),(8,6), (B,€), (v, 8), (7,6), (v, €) },
and B2 = {(5,), (8,6, (5,), (5, 8), (3,6), (5,), (e, 3), (e, 6), (e,)}

Two sets are equal if and only if they contain the same elements. Put another
way, A = B if and only if both A C B and B C A. In particular, the order and
repetition of elements within a set do not matter. For example,

A:{a7ﬂ7v}:{v7ﬂ?a}:{/87/B7Q77}:{’Y7a’ﬁ’53a}'

Note that A C B includes the possibility that A = B. We say that A is a proper
subset of Bif AC B and A # B and A # 0.

A set is essentially a database that has no structure. For an example of a
database, suppose that we have a phone book listing 1000 names in alphabetical
order along with addresses and phone numbers. Let 7" be the set containing these
names, addresses, and phone numbers. As a set, T is a collection of 3000 elements
having no particular order or other relationships. As a database, our phone book
is more than merely a set with 3000 entries. The database is a structure: a set
together with certain relations.

Definition 2 Let A be a set. A relation R on A is a subset of A™ (for some
natural number n). If n = 1,2, or 3, then the relation R is called unary, binary,
or ternary respectively. If n is bigger than 3, then we refer to R as an n-ary
relation. The number n is called the arity of R.

As a database, our phone book has several relations. There are three types
of entries in T": names, numbers, and addresses. Each of these forms a subset of
T, and so can be viewed as a unary relation on 7. Let N be the set of names in
T, P be the set of phone numbers in T, and A be the set of addresses in T'. Since
a “relation” typically occurs between two or more objects, the phrase “unary
relation” is somewhat of an oxymoron. We continue to use this terminology, but
point out that a “unary relation” should be viewed as a predicate or an adjective
describing elements of the set.

We assume that each name in the phone book corresponds to exactly one
phone number and one address. This describes another relation between the
elements of T'. Let R be the ternary relation consisting of all 3-tuples (z,y, 2)
of elements in 72 such that is a name having phone number y and address z.
Yet another relation is the order of the names. The phone book, unlike the set
T, is in alphabetical order. Let the symbol < represent this order. If = and y

xviil Preliminaries

are elements of N (that is, if they are names in T'), then & < y means that x
precedes y alphabetically. This order is a binary relation on T'. It can be viewed
as the subset of T2 consisting of all ordered pairs (x,y) with = < y.

Structures play a primary role in the study of first-order logic (and other
logics). They provide a context for determining whether a given sentence of the
logic is true or false. First-order structures are formally introduced in Chapter 2.
In the previous paragraphs, we have seen our first example of a structure: a
phone book. Let D denote the database we have defined. We have

D= (T|N,P,A,<,R).

The above notation expresses that D is the structure having set T and the five
relations N, P, A, <, and Ron T.

Although a phone book may not seem relevant to mathematics, the objects
of mathematical inquiry often can be viewed as structures such as D. Number
systems provide familiar examples of infinite structures studied in mathematics.
Consider the following sets:

N denotes the set of natural numbers: N = {1,2,3, ...},

Z denotes the set of integers: Z = {...,—-3,-2,-1,0,1,2,3,...}, and

Q denotes the set of rational numbers: Q = {a/b|a,b € Z}.

R denotes the set of real numbers: R is the set of all decimal expansions of
the form z.ajasasz--- where z and each a; are integers and 0 < a; < 9.

C denotes the set of complex numbers: C = {a+bi|a,b € R} where i = \/—1.

Note that N, Z, Q, R, and C each represents a set. These number sys-
tems, however, are more than sets. They have much structure. The structure
includes relations (such as < for less than) and functions (such as + for addi-
tion). Depending on what our interests are, we may consider these sets with any
number of various functions and relations.

The interplay between mathematical structures and formal languages is
the subject of model theory. First-order logic, containing various relations and
functions, is the primary language of model theory. We study model theory in
Chapters 4-6. As we shall see, the perspective of model theory sheds new light
on familiar structures such as the real and complex numbers.

Functions

The notation f : A — B expresses that f is a function from set A to a subset of
set B. This means that, given any a € A as input, f yields at most one output
f(a) € B. Tt is possible that, given a € A, f yields no output. In this case we say
that f(a) is undefined. The set of all a € A for which f does produce an output is

Preliminaries xix

called the domain of f. The range of f is the set of all b € B such that b = f(a)
for some a € A. If the range of f is all of B, then the function is said to be onto B.

The graph of f: A — B is the subset of A X B consisting of all ordered
pairs (a,b) with f(a) = b. If A happens to be B™ for some n € N, then we say
that f is a function on B and n is the arity of f. In this case, the graph of f
is an (n + 1)-ary relation on B. The inverse graph of f: A — B is obtained by
reversing each ordered pair in the graph of f. That is, (b,a) is in the inverse
graph of f if and only if (a,b) is in the graph of f. The inverse graph does not
necessarily determine a function. If it does determine a function f~': B — A
(defined by f~1(b) = a if and only if (b, a) is in the inverse graph of f) then f~1
is called the inverse function of f and f is said to be one-to-one.

The concept of a function should be quite familiar to anyone who has com-
pleted a course in calculus. As an example, consider the function from R to R
defined by h(z) = 322 + 1. This function is defined by a rule. Put into words,
this rule states that, given input x, h squares x, then multiplies it by 3, and then
adds 1. This rule allows us to compute h(0) = 1, h(3) = 28, h(72) = 15553, and
so forth. In addition to this rule, we must be given two sets. In this example, the
real numbers serve as both sets. So h is a unary function on the real numbers.
The domain of h is all of R since, given any x in R, 322 4+ 1 is also in R. The
function h is not one-to-one since h(x) and h(—z) both equal the same number
for any x. Nor is h onto R since, given x € R, h(z) = 322 + 1 cannot be less
than 1.

Other examples of functions are provided by various buttons on any calcu-
lator. Scientific calculators have buttons [z2], [log z], [sinz], and so forth. When
you put a number into the calculator and then push one of these buttons, the
calculator outputs at most one number. This is exactly what is meant by a “func-
tion.” The key phrase is “at most one.” As a nonexample, consider the square
root. Given input 4, there are two outputs: 2 and —2. This is not a function. If
we restrict the output to the positive square root (as most calculators do), then
we do have a function. It is possible to get less than one output: you may get
an ERROR message (say you input —35 and then push the button). The
domain of a function is the set of inputs for which an ERROR does not occur.
We can imagine a calculator that has a button [h] for the function A& defined in
the previous paragraph. When you input 2 and then push [h], the output is 13.
This is what |h] does: it squares 2, multiplies it by 3, and adds 1. Indeed, if we
have a programmable calculator we could easily make it compute h at the push
of a button.

Intuitively, any function behaves like a calculator button. However, this
analogy must not be taken literally. Although calculators provide many examples
of familiar functions, most functions cannot be programmed into a calculator.

XX Preliminaries

Definition 3 A function f is computable if there exists a computer program
that, given input x,

e outputs f(z) if z is in the domain of f, and

e yields no output if x is not in the domain of f.

As we will see in Section 2.5, most functions are not computable. However,
it is hard to effectively demonstrate a function that is not computable. How
can we uniquely describe a particular function without providing a means for
its computation? As we will see, logic provides many examples. Computability
theory is a subject of Chapter 7. Odd as it may seem, computability theory
studies things that cannot be done by a computer. This subject arose from
Godel’s proof of his famous Incompleteness theorems. Proved in 1931, Godel’s
theorems rank among the great mathematical achievements of the past century.
They imply that there is no computer algorithm to determine whether or not a
given statement of arithmetic is true or false. Again, we are getting way ahead
of ourselves. We will come to Godel’s theorems (as well as Fagin’s theorem) and
state them precisely in due time. Let us now end our preliminary ramblings and
begin our study of logic.

1 Propositional logic

1.1 What is propositional logic?

In propositional logic, atomic formulas are propositions. Any assertion will do.
For example,

A = “Aristotle is dead,”
B = “Barcelona is on the Seine,” and

C = “Courtney Love is tall”

are atomic formulas. Atomic formulas are the building blocks used to construct
sentences. In any logic, a sentence is regarded as a particular type of formula.
In propositional logic, there is no distinction between these two terms. We use
“formula” and “sentence” interchangeably.

In propositional logic, as with all logics we study, each sentence is either
true or false. A truth value of 1 or 0 is assigned to the sentence accordingly. In
the above example, we may assign truth value 1 to formula A and truth value
0 to formula B. If we take proposition C literally, then its truth is debatable.
Perhaps it would make more sense to allow truth values between 0 and 1. We
could assign 0.75 to statement C if Miss Love is taller than 75% of American
women. Fuzzy logic allows such truth values, but the classical logics we study
do not.

In fact, the content of the propositions is not relevant to propositional logic.
Henceforth, atomic formulas are denoted only by the capital letters A, B, C,. ..
(possibly with subscripts) without referring to what these propositions actually
say. The veracity of these formulas does not concern us. Propositional logic is not
the study of truth, but of the relationship between the truth of one statement
and that of another.

The language of propositional logic contains words for “not,” “and,” “or,
“implies,” and “if and only if.” These words are represented by symbols:

7

- for “not,” A for “and,” Vv for “or,”
— for “implies,” and < for “if and only if.”
As is always the case when translating one language into another, this corres-

pondence is not exact. Unlike their English counterparts, these symbols represent
concepts that are precise and invariable. The meaning of an English word, on the

2 Propositional logic

other hand, always depends on the context. For example, A represents a concept
that is similar but not identical to “and.” For atomic formulas A and B, AA B
always means the same as B A A. This is not always true of the word “and.” The
sentence

She became violently sick and she went to the doctor.
does not have the same meaning as
She went to the doctor and she became violently sick.

Likewise Vv differs from “or.” Conversationally, the use of “A or B” often pre-
cludes the possibility of both A and B. In propositional logic AV B always means
either A or B or both A and B.

We must precisely define the symbols —, A, V, —, and <. We are confronted
with the conundrum of how to define the first word of a language (having recourse
to no other words!). For this reason, we take the symbols — and A as primitives.
We define the other symbols in terms of these two symbols. Although we do not
define = and A in terms of the other symbols, we do describe the semantics of
these symbols in an unambiguous manner.

Before describing the semantics of the language, we discuss the syntax.
Whereas the semantics regards the meaning, or interpretation, of sentences in
the language, the syntax regards the grammar of the language. The syntax of
propositional logic tells us which strings of symbols are permissible as formulas.
Naturally, any atomic formula is a formula. We also have the following two rules.

(R1) If F is a formula, then —F is a formula.
(R2) If F and G are formulas, then (F' A G) is a formula.

Definition 1.1 The formula —F is the negation of F’
and the formula (F' A G) is the conjunction of F and G.

Definition 1.2 A finite string of symbols is a formula of propositional logic if
and only if it is built up from atomic formulas by repeated application of rules
(R1) and (R2).

Example 1.3 —(—=(A A B) A =C) is a formula and ((A—=A)B(C— is not.

Note that we have restricted the definition of formula to the primitive
symbols = and A. If we were describing the syntax of propositional logic to
a computer, then this definition of formula would suffice. However, to make for-
mulas more palatable to humans, we include the other symbols (V, —, and <)
to be defined later. We may regard formulas involving these symbols as abbre-
viations for more complicated formulas involving only — and A. The inclusion of
these symbols make the formulas easier (for us humans) to read.

Propositional logic 3

Also toward the aim of readability, we employ certain conventions. The use
of these abbreviations and conventions alters our notion of “formula” somewhat.
One of these conventions is the following;:

(C1) If F or (F) is a formula, then we view F and (F) as the same formula.

That is, we may drop the outermost parentheses. This extends our definition of
formula. Technically, by the above definition, A A B is not a formula. However,
using convention (C1), we do not distinguish A A B from the formula (A4 A B).

The use of convention (C1) leads to some ambiguities that we presently
address. Suppose that, in (R1), F' denotes A A B (which, by (C1) is a formula).
Then —F does not represent the formula =AA B. Rather, —=F' denotes the formula
—(A A B). As we shall see, A A B and —(A A B) do not mean the same thing.
Likewise, F' A G denotes the formula (F) A (G).

The use of (C1) also requires care in defining the notion of “subformula.”
A subformula of a formula F (viewed as a string of symbols) is a substring of
F that is itself a formula. However, because of (C1), not every such substring
is a subformula. So we do not want to take this property as the definition of
“subformula.” Instead, we define “subformula” as follows.

Definition 1.4 The following rules define the subformulas of a formula.

Any formula is a subformula of itself.
Any subformula of F' is also a subformula of —F.
Any subformula of F or G is also a subformula of (F' A G).

Example 1.5 Let A and B be atomic and let F' be the formula =(—A A =B).

The formula A A =B occurs as a substring of F', but it is not a subformula
of F. There is no way to build the formula F' from the formula A A—-B. The
subformulas of F' are A, B, A, =B, (mAA—B), and =(=A A —B).

Having described the syntax of propositional logic, we now describe the
semantics. That is, we say how to interpret the formulas. Not only must we
describe the semantics for the symbols “A” and “—,” but we must also say how
to interpret formulas in which these symbols occur together. For this we state the
order of operations. It is the role of parentheses to dictate which subformulas are
to be considered first when interpreting a formula. If no parentheses are present,
then we use the following rule:

— has priority over A.

For example, the formula —(A A B) means “not both A and B.” The parentheses
tell us that the “A” in this formula has priority over “-.” The formula -A A B,

4 Propositional logic

on the other hand, has a different interpretation. In the absence of parentheses,
we use the rule that — has priority over A. So this formula means “both not
A and B.”

The semantics of propositional logic is defined by this rule along with
Tables 1.1 and 1.2.

These are examples of truth tables. Each row of these tables assigns truth
values to atomic formulas and gives resulting truth values for more complex
formulas. For example, the third row of Table 1.1 tells us that if A is true and B
is false, then (A A B) is false. We see that (A A B) has truth value 1 only if both
A and B have truth value 1, corresponding to our notion of “and.” Likewise,
Table 1.2 tells us that —A has the opposite truth value of A, corresponding to
our notion of negation.

Using these two truth tables, we can find truth tables for any formula. This
is because every formula is built from atomic formulas via rules (R1) and (R2).
Suppose, for example, we want to find a truth table for the formula —=(—=A A =B).
Given truth values for A and B, we can use Table 1.2 to find the truth values
of =A and —B. Given truth values for =A and =B, we can then use Table 1.1
to find the truth value of (—A A —B). Finally, we can refer again to Table 1.2 to
find the truth value of (- A A —B). The resulting truth table for this formula is
shown in Table 1.3.

Note that the formulas listed across the top of Table 1.3 are precisely the sub-
formulas from Example 1.5. From this table we see that the formula =(—A A =B)
has truth value 1 if and only if A or B has truth value 1. This formula corres-
ponds to the notion of “or” discussed earlier. The symbol V is used to denote
this useful notion.

Table 1.1 Truth table for AA B

A B (AN B)
0 0 0
0 1 0
1 0 0
1 1 1

Table 1.2 Truth table for —=A

Propositional logic 5

Table 1.3 Truth table for (AV B)

A|B|~A|-B|(~AA-B) | ~(=AA-B)

= o= O O
S = O =
= = = O

0 1 1
1 1 0
0 0 0
1 0 0
Table 1.4 Truth table for (A — B)

A B -A (B \% ﬁA) (A — B)

0
0
1
1

= O = =

1
1
0
1

[= el

0
1
0
1

Definition 1.6 The symbol V is defined as follows: for any formulas F' and G,
(F Vv G) is an abbreviation for =(=F A =G). The formula (F V G) is called the
disjunction of F' and G.

Two other abbreviations that are convenient are the following.

Definition 1.7 The symbols — and < are defined as follows:

(F — @) abbreviates (G V —F), and
(F < @) abbreviates ((F — G) A (G — F)).

We previously remarked that the symbol — corresponds to the English word
“implies” and the symbol « corresponds to the phrase “if and only if.” Again,
these correspondences are merely mnemonic devices for the semantics of the
symbols. For example (A < B) is true if A and B have the same truth values
and is otherwise false. So < behaves exactly like the phrase “if and only if.” The
relationship between — and “implies” is a bit tenuous. Consider the truth table
for (A — B) (Table 1.4).

We see that (A — B) is true unless A is true and B is false. In particular,
(A — B) is true whenever A is false. Thus, in logic, a false statement implies
anything. This differs from the colloquial use of the word “implies.” We would
not say “Barcelona is on the Seine implies Aristotle is dead” or, even more
egregious, “Barcelona is on the Seine implies Barcelona is not on the Seine.”
However, (A — B) and (A — —A) are true statements of propositional logic
whenever A is false.

6 Propositional logic

Having introduced new symbols, we must determine the order of operation
for these symbols. When evaluating the truth value of a formula, we must know
the order in which to proceed. Rather than ranking all of the symbols in a
hierarchy, we state just one rule:

- has priority over A, V, —, and «.

Beyond this, the parentheses dictate the order in which to proceed.

Example 1.8 Consider the formula ((—A — B)AC)V—(AAD). Call this formula
F'. Suppose we know that the truth values for A, B, C, and D are 1, 0, 1, and
0, respectively. To evaluate the truth value for F' we begin with the subformula
—A (using Table 1.2) since — has priority. We next evaluate the subformula
(mA — B) (Table 1.4) which is in the innermost set of parentheses. We next
evaluate the truth values for ((w4 — B) AC) and (A A D) (Table 1.1). We then
find the truth values for (A A D) (Table 1.2) and, finally, for F' (Table 1.3). We
obtain the following truth values.

A|B|C|D|-A|(~A—B)|(~—A—B)AC)|(AAD) | ~(AAD) | F
tjojtjojo| 1 | 1 o0 | 1 |1

This is just one row of a truth table for this formula. We could choose other
truth values for A, B, C, and D other than 1, 0, 1, and 0. Since there are two
possible values for each of these four atomic formulas, there are 2* = 16 ways
to assign truth values to A, B, C, and D. So the full table has 16 rows. The
completion of this table is left as Exercise 1.3(d).

The role of parentheses is not only to determine the order of operations,
but also to make formulas more readable. Toward this aim, we omit parentheses
when they are not necessary. We have already discussed convention (C1) that
allows us to drop the outermost parentheses from the formula (F'). We also use
the following convention:

(C2) For any formulas F', G, and H,
we view F' A G A H as the same formula as (F'AG) AN H
and F'V GV H as the same formula as (FVG)V H.

Since the formulas (FF A G) A H and F' A (G A H) have the same truth
tables, there is no ambiguity in dropping the parentheses and simply writing
FANGAH. In contrast, FF A GV H is ambiguous and is not permitted as a
formula of propositional logic. The formulas (FAG)V H and F' A (G V H) do
not have the same truth tables.

We have now completely defined propositional logic.

Propositional logic 7

In summary, propositional logic, like any logic, is a language. Its dictionary
contains the words —, A, V, —, and <. (The symbols “(” and “)” are used only as
punctuation.) The words V, —, and < are defined in terms of = and A. The words
— and A are considered primitive and are listed in our hypothetical dictionary
without definition. The dictionary also contains infinitely many atomic formulas
that are merely listed as capital letters (with subscripts, perhaps). The grammar
of this language consists of the rules (R1) and (R2) along with conventions (C1)
and (C2) regarding parentheses.

Propositional logic, like any logic, also has rules for deduction. These rules
follow from the semantics of the logic. The semantics of propositional logic are
summarized by Tables 1.1 and 1.2 and the definitions of the symbols V, —, and
<. The semantics and the rules for deduction that follow from the semantics
are implicit in the words “not,” “and,” “or,” “implies,” and “if and only if”
(although this correspondence is not exact). For example, if (A A B) is true
(truth value 1), then we can deduce that both A and B are true. And if A — B
and A both have truth value 1, then it follows that B also has truth value 1. We
discuss these and other rules for deduction in Section 1.5.

1.2 Validity, satisfiability, and contradiction

Let S = {A41,..., Ay} be a set of atomic formulas. Let F(S) be the set of all
formulas that can be built from the atomic formulas in S.

Definition 1.9 An assignment of S is a function A : S — {0, 1}.

That is, an assignment of S assigns truth values to each atomic formula in
S. An assignment A of § naturally extends to all of F(S). Given any formula F’
in F(S), an assignment 4 of S corresponds to a unique row of the truth table
for F'. We define A(F') to be the truth value of F' in this row.

An assignment A of S also extends to certain formulas not in F(S). Suppose
F, is a formula that is not in F(S). Let Sy be the set of atomic subformulas of
Fpy. If every extension of A to S U Sy has the same value for Fy, then we define
A(Fp) to be this value.

Example 1.10 Let A and B be atomic formulas. Let A be the assignment of
{A, B} defined by A(A) =1 and A(B) = 0. Then

A(A A B) =0,

A(AV B) =1,
A(AN(CV-C))=1,and
A(BV (C A-C))

8 Propositional logic

The reason A(A A (C'V —C)) =1 is that A(A) = 1 and, no matter what truth
value we assign to C, (C'V—C) has truth value 1. Likewise A(B V (C A =C)) =0
because both B and (C A =C) have truth value 0, regardless of the truth
value of C.

Let A be an assignment of S and let F' be a formula. If A(F) = 1, then we
say F' holds under assignment 4. Equivalently, we say A models F. We write
A |= F to denote this concept.

Definition 1.11 A formula is valid if it holds under every assignment. We use
= F to denote this. A valid formula is called a tautology.

Example 1.12 The formula (C VvV —~C') from the previous example is a tautology.
Definition 1.13 A formula is satisfiable if it holds under some assignment.

Definition 1.14 A formula is unsatisfiable if it holds under no assignment. An
unsatisfiable formula is called a contradiction.

Example 1.15 The formula (C' A =C) is a contradiction.

Suppose that we want to determine whether or not a given formula is valid.
This is an example of a decision problem. A decision problem is any problem
that, given certain input, asks a question to be answered with a “yes” or a “no.”
Given formula F' as input, we may ask “Is F' valid?” We refer to this as the
validity problem. Likewise, we may ask “Is F' satisfiable?,” and refer to this the
satisfiability problem. For propositional logic, truth tables provide a systematic
approach for resolving such decision problems. If all of the truth values for F' are
1s, then F' is valid. If some truth value is 1, then F' is satisfiable. Otherwise, if
no truth values are 1s, F' is unsatisfiable.

Example 1.16 Consider the formula (AA(A — B)) — B. To determine whether
this formula is satisfiable, we compute the following truth table.

A|B|A->B|AANA—>B)| (AN(A—B)) > B

= o= O O
= o = O

0
0
0
1

— O =
_= = =

We see that (A A (A — B)) — B has truth value 1 under any assignment. So
not only is this formula satisfiable, it is valid.

Propositional logic 9

Example 1.17 Consider now the formula ((A — B) — A) A =A. Suppose we
want to determine whether this formula is satisfiable or not. Again we compute
a truth table.

A|B|(A—-B)| ((A—-B)—A) | "A| ((A—>B)—=A)A-A

= = o O

0 0
0 0
1 0
1 0

= o = O
= O = =
o O = o=

This formula is unsatisfiable. It is a contradiction.

Theoretically, we can determine whether any formula F' is valid, satisfiable
or unsatisfiable by looking at a truth table. Unfortunately, this is not always
an efficient method. If F' contains n atomic formulas, then there are 2™ rows
to compute in the truth table for F. So if F' happens to have, say, 23 atomic
formulas, then computing a truth table is not feasible. One of our aims in this
chapter is to find alternative methods for resolving the validity and satisfiability
problems that avoid truth tables. More generally, our aim is to contrive various
ways of determining whether or not a given formula is a consequence of a given
set of formulas. This is a central problem of any logic.

1.3 Consequence and equivalence

We now introduce the fundamental notion of consequence. First, we define what
it means for one formula to be a consequence of another. Later in this section,
we similarly define what it means for a formula to be a consequence of a set of
formulas.

Definition 1.18 Formula G is a consequence of formula F' if for every assignment
A, if AE F then A = G. We denote this by F' = G.

Note that the symbol | is used in a variety of ways. There is always a
formula to the right of this symbol. When we write __ = F, the interpretation
of “=” depends on how we fill in the blank. The blank may either be filled
with an assignment 4, a formula G, or not filled with the empty set. The three
corresponding interpretations for |= are as follows:

e A | F means that A(F) = 1. We read this as “A models F.”

e G = F means every assignment that models G also models F'. That is, F
is a consequence of G.

10 Propositional logic

e | F means every assignment models F. That is, F' is a tautology.

So although = has multiple interpretations, in context it is not ambiguous.

The notion of consequence is closely related to the notion of “implies” dis-
cussed in Section 1.1. A formula G is a consequence of a formula F' if and only
if “F implies G” is always true. We restate this as the following proposition.

Proposition 1.19 For any formulas F' and G, G is a consequence of F' if and
only if ' — G is a tautology.

Proof We show that FF — G is not a tautology if and only if G is not a
consequence of F.

By the definition of “tautology,” F — G is not a tautology if and only if
there exists an assignment 4 such that A = —(F — G).

By the definition of “—,” A E —(F — G) if and only if A = =(=F V G).

By the semantics of propositional logic, A = —=(=F V G) if and only if both
AE F and A E -G.

Finally, by the definition of “consequence,” there exists an assignment .4
such that A = F and A = —G if and only if G is not a consequence of F. [

Suppose we want to determine whether or not formula G is a consequence
of a formula F'. We refer to this as the consequence problem. By Proposition 1.19
this can be rephrased as a validity problem (since G is a consequence of F' if
and only if G — F is valid). Such problems can be resolved by computing a
truth table. If the truth values for FF — G are all 1s, then G is a consequence
of F. Otherwise, it is not. In particular, if F' is a contradiction, then G is a
consequence of F regardless of G.

Example 1.20 Let F' and G be formulas. Each of the following can easily be
verified by computing a truth table.

(FAG)EF
FE(FVG)
(FA-F)EG
Definition 1.21 If both G is a consequence of F' and F is a consequence of G,

then we say F and G are equivalent. We denote this by F' = G.

It follows from Proposition 1.19 that two formulas F' and G are equivalent
if and only if F' < G is a tautology. So we can determine whether two formulas
F and G are equivalent by computing a truth table. Each of the equivalences in
the following examples can easily be verified in this manner.

Example 1.22 For all formulas F and G, (FAG) = (GAF) and (FVG) = (GVF).

Propositional logic 11

Example 1.23 For any formula F' and any tautology T, (F AT) = F and
(FVT)=T.

Example 1.24 For any formula F' and any contradiction L, (FA 1) = L
and (FV 1) =F.

Example 1.25 (Distributivity rules) The following two equivalences exhibit the
distributivity rules for A and V. For all formulas F', G, and H,

(FAGVH)=(FAG)V(FAH)) and
(FV(GANH))=((FVG)AN(FVH)).
Example 1.26 (DeMorgan’s rules) For all formulas F' and G
~(FAG)=(-FV-G), and
—(FVG)=(-FA-G).

The equivalences in the previous examples are basic. Note that we refer
to some of these equivalences as “rules.” Each of these holds true for arbitrary
formulas. From these basic equivalences, more elaborate equivalences can be
created.

Example 1.27 Using the equivalences in the previous examples, we show that
(CAD)YVA)AN((CAD)VB)AN(EV—-E)=(AAB)V(CAD). Let L denote the
formula on the left in this equivalence. Note that (F V —F) is a tautology. By
Example 1.23, L is equivalent to ((C AD)V A)A((C AD)V B). According to the
second distributivity rule in Example 1.25, this is equivalent to (CAD)V (AA B)
(viewing (C A D) as the formula F' in that rule).

By Example 1.22, this is equivalent to (AAB)V (C'AD) which is the formula
on the right in our equivalence.

Using the basic rules in Examples 1.22-1.26, we were able to verify that
(CAD)VA)YAN(CAD)VB)AN(EV-E)=(AANB)V(CAD). This is itself
a rule, holding for any formulas A, B, C, D, and E. Alternatively, we could
have verified this equivalence by computing a truth table. Such a truth table
would have had 2° = 32 rows. The previously established rules provided a more
efficient method of verification.

Likewise, we could state “rules for consequence” that would allow us to
show that one formula is a consequence of another without having to com-
pute truth tables. In the next section, we exploit this idea and introduce the
notion of formal proof. Formal proofs allow us to “derive” formulas from sets
of formulas. The following definition extends the notion of consequence to this
setting.

12 Propositional logic

Definition 1.28 Let F = {F}, F5, F3,...} be a set of formulas.

For any assignment A, we say A models F, denoted A = F if A E F; for
each formula F; in F.

We say a formula G is a consequence of F, and write F = G, if A = F
implies A = G for every assignment A.

Suppose that we want to determine whether a formula G is a consequence
of a set of formulas F. If F is finite, then we could consider the conjunction A F
of all formulas in F and compute a truth table for A F — G. This method would
certainly produce an answer. However, if the set F is large, then computing such
a truth table is neither an efficient, nor a pleasant, thing to do. If F is infinite,
then this method does not work at all. Another approach is to derive G from F.
Consider the following example.

Example 1.29 Let F be the following set of formulas
{A,(A—=B),(B—C),(C—D),(D—E),(E—F),(F—G)}

Suppose each of the seven formulas in F is true. Then, in particular, A and
A — B are true. It follows that B must also be true. Likewise, since B and
B — C are true, then C' must also be true, and so forth. If each formula in F
is true, then A, B, C, D, E, F, and G are true. Each of these formulas is a
consequence of F. We do not need a truth table to see this.

Let A F be the conjunction of all formulas in F. That is,

NF=ANA—B)A(B—C)A(C—D)A(D— E)A(E — F)A(F - G).

The truth table for A F — G comprises 128 rows. Without computing a single
row, we can see that each row will have truth value 1. The formula A F — G is
a tautology and, equivalently, GG is a consequence of F.

In the previous example, we repeatedly used the fact that if X and X — Y
are both true, then Y is also true. That is, we used the fact that Y is a con-
sequence of X A (X — Y). This follows from the truth table we computed
in Example 1.16. Rather than compute another truth table (having 128 rows),
we used a truth table we have already computed (having only four rows) to
deduce that G is a consequence of F. We derived G from F using a previously
validated rule.

1.4 Formal proofs

A logic, by definition, has rules for deducing the truth of one sentence from
that of another. These rules yield a system of formal proof. In this section, we
describe such a proof system for propositional logic.

Propositional logic 13

A proof system consists of a set of basic rules for derivations. These rules
allow us to deduce formulas from sets of formulas. It may take several steps
to derive a given formula G from a set of formulas F, where each “step” is an
application of one of the basic rules. The list of these steps forms a formal proof
of G from F.

Of particular interest is the relationship between the notion of formal proof
and the notion of consequence. We want a proof system that is sound. That is,
we want the following property to hold.

(Soundness) If a formula G can be derived from a set of formulas F,
then G is a consequence of F.

If a proof system is sound, then it provides an alternative to truth tables
for determining whether a formula G is a consequence of a set of formulas F. In
this section, we present a proof system and prove that it is sound. We use this
proof system in several examples. The proof system we introduce is intended to
be user-friendly. To construct a proof deriving G from F, one may consider the
question: why is G a consequence of F7 The object is then to translate one’s
reasoning into a formal proof. Although this process is necessarily pedantic, the
large yet coherent set of basic rules we provide is intended to aid the translation
of thought into formal proof.

The aim of a formal proof system is to make the thought process infallible.
Ideally, the proof system could replace the thought process. Instead of thinking,
we could blindly follow a set of rules. If two people disagree about whether G
truly is a consequence of F, there would be no need for debate. Both parties
could perform a computation to see whether or not G is indeed a consequence of
F. The reason that “not thinking” is ideal is that we could program a computer
to perform this task. In Section 1.8, we introduce another proof system known
as resolution. Resolution is a pared down proof system that takes the think-
ing out of formal proofs. Whereas resolution is intended for the mechanization
of proofs, the proof system we describe in the present section is intended for
human use.

We now list the basic rules for our proof system. The veracity of many of
these rules is self-evident. For example, if F' and G can be derived from F, then
F A G can also be derived from F. We call this rule “A-Introduction.” We use
the following notation: we write F + G to abbreviate “G can be derived from
JF.” Using this notation, A-Introduction is written as:

if F+ F and F+ G then I+ (F AG).

Table 1.5 lists this and other basic rules for derivations.

14 Propositional logic

Table 1.5 Basic rules for derivations

Premise Conclusion Name

Gisin F FrEG Assumption
FrEGand FCF F'+G Monotonicity
FrEG F -G Double negation
FHF, FEG FE(FAG) A-Introduction
FE(FAG) FrF A-Elimination
FE(FAG) FH(GAF) A-Symmetry
FEF FH(FVG) V-Introduction
Fr (FVG),

FU{F}+-H,FU{G}r-H FW+H V-Elimination
FH(FVG) FH(GVF) V-Symmetry
FU{F}+G FH(F—G) —-Introduction
FH(F—-G),FrF FEG —-Elimination
FrF FrE(F) (,)-Introduction
FrE(F) FrF (,)-Elimination
FE(FAG)ANH) F+(FANGAH) A-Parentheses rule
FH(FVG)VH) Fr+(FVGVH) V-Parentheses rule

Table 1.6 More rules for derivations

Rules Name
FF (FVQ)if and only if F F =(=F A =G) V-Definition
F+(F — G) if and only if F F (=F V G) —-Definition

F + (F < G) if and only if both F + (FF — G) and F + (G — F) «-Definition

There are a lot of rules. Note the organization of the list. It begins with
a couple of rules that are quite intuitive: Assumption and Monotonicity. There
follow a few similarly named rules for various symbols of propositional logic. The
four rules that conclude the list reflect conventions (C1) and (C2). In addition
to the rules in Table 1.5, we have the rules in Table 1.6 regarding the definitions
of V, —, and <.

Our list of rules is both too big and too small. It is too big in the sense
that some of these rules are redundant. For example, since V can be expressed
in terms of = and A, V-Symmetry follows from A-Symmetry (see Exercise 1.13).
We could pare these redundant rules from our list. In fact, we really need only

Propositional logic 15

three rules! These rules must be phrased within the proper context and are the
topic of Section 1.8. Our present concern is not economy, but utility. These rules
allow us to derive formulas from other formulas. The more rules at our disposal,
the better. In this sense, the above list is too small. As we shall see, there is no
end to the rules that can be derived from those stated above.

Having listed these rules for derivations, we now define “formal proof.”

Definition 1.30 A formal proof in propositional logic is a finite sequence of
statements of the form “X F Y7 (where X is a set of formulas and Y is a
formula) each of which follows from the previous statements by one of the rules
in Table 1.5 or Table 1.6. We say that G can be derived from F if there is a
formal proof concluding with the statement F - G.

A formal proof can always be put into two-column form. The best way to
describe formal proofs is to give an example.

Example 1.31 Let H = {(—wAV B),(-AV C),(AV-D)}.
We derive the formula D — (AA B A C) from H.

Statement Justification
1. HU{D}+ D Assumption
2. HU{D}+ (AvV D) Assumption
3. HU{D}F (=D V A) V-Symmetry applied to 2
4. HU{D}+ (D — A) —-Definition applied to 3
5. HU{D}+ A —-Elimination applied to 4 and 1
6. HU{D}+ (~AV B) Assumption
7. HU{D}F (A — B) —-Definition applied to 6
8. HU{D}+ B —-Elimination applied to 7 and 5
9. HU{D} F (mAVC) Assumption
10. HU{D} (A —C) —-Definition applied to 9
11. HU{D} F C —-Elimination applied to 10 and 5
12. HU{D} + (AA B) A-Introduction applied to 5 and 8

13. HU{D} + ((AAB)AC) A-Introduction applied to 12 and 11
14. HU{D}F (AANBAC) A-Parenthesis rule applied to 13

15. HE (D — (AANBAQ)) —-Introduction applied to 14

16. H-D — (AABACQC) (,)-Elimination

At first glance, the above proof looks like a complicated way of demonstrat-
ing a fact that is not so complicated. However, reading the proof line-by-line we
see that each line asserts a simple truth that is easy to verify. Proofs can be made

16 Propositional logic

more succinct by using additional rules. For example, note that in the previous
proof we repeatedly introduced the symbol — only to eliminate it. Instead, we
could have separately proved the following rule.

Premise: F - (-FVG), F- F

Conclusion: F + G

Statement Justification

1. FFF Premise

2. F+(=FVG) Premise

3. F+F(F - G) —-Definition applied to 2

4. F+G —-Elimination applied to 3 and 1

The proof in Example 1.31 essentially repeats the above argument three times.
We can treat this four-line proof as a subroutine. Had we established this rule
prior to Example 1.31, we could have referred to it three times to make the proof
more concise. For lack of a better name, we christen this rule V-Modus Ponens.
“Modus ponens” is a standard name for the rule we call —-Elimination. As the
archaic name suggests, this rule has been around for a while. It is found in what
can be considered the origin of formal proofs: Euclid’s Flements. The next five
examples establish some other rules that facilitate the construction of proofs.

Example 1.32 (Tautology rule) This rule states that, for any formula G,
(-G V G) can be derived from any set of formulas.

Premise: None

Conclusion: F = (=G V G)

Statement Justification

1. FU{G} G Assumption
2. F+ (G —- G) —-Introduction applied to 1
3. FF (-G V G) —-Definition applied to 2

Example 1.33 (Contradiction rule) This rule states that any formula G can be
derived from the contradiction F' A —F.

Premise: F = (F A —F)
Conclusion: F - G

Propositional logic 17

Statement Justification

1. F+ (FA—-F) Premise

2. FE (=FAF) A-Symmetry applied to 1

3. Fk~=F A-Elimination applied to 2

4. F+ (nF Vv G) V-Introduction applied to 3

5. F+FF A-Elimination applied to 1

6. FFG V-Modus Ponens applied to 4 and 5

Example 1.34 (Contrapositive) This is the rule of logic that states that if p
implies ¢, then —¢ implies —p.

Premise: FU{F}+ G

Conclusion: F U {-G} F —F

Statement Justification

1. FU{F}F G Premise

2. FU{F} +F -G Double negation applied to 1

3. FF (F ——-G) —-Introduction applied to 2

4. F+ (-F VvV -~G) —-Definition applied to 3

5. FF (==GV =F) V-Symmetry applied to 4

6. FF (-G — —F) —-Definition applied to 5

7. FU{=G} F (-G — —~F) Monotonicity applied to 6

8. FU{-G} F -G Assumption

9. FU{-G} F —F —-Elimination applied to 6 and 8

Example 1.35 (Proof by cases) This rule provides a useful way to structure a
proof.

Premise: FU{F}+ G, FU{-F} G

Conclusion: F G

Statement Justification

1. FU{F} G Assumption

2. FU{=F}+F G Assumption

3. FF (=FV F) Tautology rule

4. FHG V-Elimination applied to 3, 2, and 1

18 Propositional logic

Example 1.36 (Proof by contradiction) Another way to structure a proof is by
contradiction. As the following proof indicates, proof by contradiction is (in this
context) essentially the contrapositive of proof by cases.

Premise: FU{F}F G, FU{F} F -G

Conclusion: F + —=F

Statement Justification

1. FU{F}+G Premise

2. FU{-G}+ —-F Contrapositive applied to 1

3. FU{F}F -G Premise

4. FU{-—-G} F =F Contrapositive applied to 3

5. FkF-F Proof by cases applied to 2 and 4

These are now established rules that may henceforth be used to justify state-
ments in proofs. By “established” we mean that these rules are true, provided
that the rules in Table 1.5 are true. We must prove that this is the case. We
must prove that our proof system is sound: that if G can be derived from F,
then G is in fact a consequence of F.

Theorem 1.37 (Soundness) If F - G, then F = G.

Proof If 7+ G, then there is a formal proof concluding with F + G. Each line
of the proof contains a statement of the form X Y which is justified by one of
the rules in Tables 1.5 or 1.6. We want to show that for each line of the proof,
if Y FY, then X =Y. This can be accomplished by verifying each rule in the
tables one-by-one. We demonstrate this by verifying three rules: Assumption,
A-Elimination, and —-Introduction. The verification of the remaining rules are
left as an exercise.

We begin with the first rule of Table 1.5: Assumption. The conclusion of
this rule is that F - G. We must show, under the premise of this rule, that
F E G. But this is clear since the premise states that G is in F (if A models F
then A must model G).

Refer next to A-Elimination. This rule states that if F F (F A G), then
F + F. We must show that if 7 |= (F AG), then F |= F. That is, we must show
that F is a consequence of (F'A G). This is verified by the following truth table.

F|G|(FAG) | (FAG)— F)

= = O O

0 0
1 0
0 0
1 1

_ = =

Propositional logic 19

Now consider —-Introduction. This rule states that if FU{F'} - G then F
(F — @G). To verify this, we must show that if FU{F} |= G then F = (F — G).
Assuming that 7 U {F} = G, we want to show that, for any assignment A, if
AE F, then A= (F — G).

So suppose that A = F and A(F) is defined. If A(F) = 0, then A
(F' — @) regardless of the value of A(G). If, on the other hand, A(F) = 1,
then A = F U {F}. By our assumption, A = G. In any case, we see that
A = (F — G). Since A was an arbitrary assignment modeling F, we conclude
that F = (F — G) as was required.

Essentially, we must verify that each rule is true when F is replaced by .
For most of the rules, like A-Elimination, this can be accomplished by computing
a small truth table. For the last four rules of Table 1.5, there is really nothing
to prove. These four rules hold by conventions (C1) and (C2). Also, each rule
in Table 1.6 is sound by virtue of the definitions of vV, —, and <. We leave the
verification of the remaining rules in Table 1.5 as Exercise 1.22. [

Formal proofs provide a method for showing that a formula is a consequence
of other formulas. The following Corollaries state that formal proofs can also
show that a formula is valid or unsatisfiable.

Corollary 1.38 If G can be derived from the empty set, then G is a tautology.

Proof If (| = G, then, by Monotonicity, F + G for every set of formulas F. By
Theorem 1.37, F |= G for every set of formulas F. It follows that A |= G for any
assignment A and G is a tautology. O

Corollary 1.39 If =G can be derived from the empty set, then G is a contradiction.
Proof This is immediate from the previous Corollary and the definition of
“contradiction.” [J

Example 1.40 The following formal proof shows that ((A — B)V A) is a tautology.

Statement Justification

1. {-A} F-A Assumption

2. {-A}+ (mAV B) V-Introduction applied to 1

3. {-A}+(A— B) —-Definition applied to 2

4. {-A}+ ((A— B)Vv A) V-Introduction applied to 3

5 {A}F A Assumption

6. {A}F (AV (A — B)) V-Introduction applied to 5

7. {A}F ((A— B)V A) V-Symmetry applied to 6

8.0+ ((A— B)VA) Proof by cases applied to 4 and 7

Formal proofs can also show that two formulas are equivalent.

20 Propositional logic

Definition 1.41 Formulas F' and G are provably equivalent if both {F} F G and
{G} R F.

Corollary 1.42 If F' and G are provably equivalent, then they are equivalent.
Proof This follows immediately from Theorem 1.37. [

Consider now the converses of Theorem 1.37 and its Corollaries. The-
orem 1.37 states that if G can be derived from F, then G is a consequence
of F. Is the opposite true? Can we derive from F every consequence of F? Can
every tautology be given a formal proof as in Example 1.407 If two formulas are
equivalent, does this mean we can prove that they are equivalent? We claim that
the answer to each of these questions is “yes.” We claim that every rule that is
true in propositional logic, all infinitely many of them, can be derived from the
rules in Tables 1.5 and 1.6. This is not obvious.

Example 1.43 It may seem that our list of rules is incomplete. For example,
the formulas F' and ——F are clearly equivalent. So if we can derive the formula
——F from a set of formulas F, then we should also be able to derive F' from
F. However this is not one of our rules. Double negation states that if 7 - F,
then 7 F ——F. We now show that the converse of Double negation, although
not stated as a rule, can be derived from our rules.

Premise: F F =—F

Conclusion: F + F

Statement Justification

1. FF—=F Premise

2. FU{-F}F —-=F Monotonicity applied to 1

3. FU{-F}F —F Assumption

4. FU{-F}F (-F A—=F) A-Introduction applied to 3 and 2

5. FU{-F}FF Contradiction rule (1.33) applied to 4
6. FF{F}+F Assumption

7 FEFF Proof by cases applied to 5 and 6

So not only are F' and ——F equivalent formulas, we can formally prove
that they are equivalent formulas. We claim that each of the equivalences in the
previous section are actually provably equivalent. In particular, we show that the
Distributivity rules from Example 1.25 and DeMorgan’s rules from Example 1.26
can be given formal derivations.

Proposition 1.44 (DeMorgan’s rules) The equivalent pairs of formulas in
Example 1.26 are each provably equivalent.

Propositional logic 21

Proof We prove this for the second of DeMorgan’s rules. We demonstrate formal
proofs for each of the following:

(~(FV @)} F (-F A -G), and
((~FFA-G)} F =(FVG).

Statement Justification

1. {=(=FA-G)}F (FVQ) V-Introduction

2. {~(FVG)} F—-=(=-FAN—-G) Contrapositive

3. {-(FV@)}t (=FA-G) Double negation
Statement Justification
1. {-FA-G)}U{(FVG)}E(FVG) Assumption
2. {(-FA-G)}U{(FVG)}F (-FA-G) Assumption
3ACFA-G)YU{(FVG)}HF-F A-Elimination applied to 2
4. {(-FA-G)}U{(FVG)}FG V-Elimination applied to 1 and 3
5 {(nFA-G)}U{(FVG@}F (-GA~-F) A-Symmetry applied to 2
6. {~FA-G)}U{(FVG}H+ -G A-Elimination applied to 5
7. {(-FA-G)} F~(FVG) Proof by contradiction

applied to 4 and 6

We have demonstrated that ~(F'VG) and (-F'A—G) are provably equivalent.
The verification of DeMorgan’s first rule is left as Exercise 1.23. O

Proposition 1.45 (A-Distributivity) For any formulas F'; G, and H, the formulas
(FA(GV H))and ((FAG)V (F A H)) are provably equivalent.

Proof To prove this, we must derive each formula from the other. Instead of
providing formal proofs, we outline the derivations and leave the details to the
reader. First we show that (F A G)V (F A H) can be derived from F A (GV H).

Premise: F+ FA(GV H).
Conclusion: F = (FAG)V (FANH)

We sketch a formal proof using Proof by cases. Assuming the premise, we
show that (F AG)V (F A H) can be derived from both FU{G} and F U {-G}.

From the premise, we see that F U {G} F F. It follows that (F' A G) can
be derived from F U {G}. We then obtain F U{G} F (FAG)V (F A H) by
V-Introduction.

22 Propositional logic

Next we show that FU{-G} F (FAG)V (F A H). From the premise we see
that both F' and (G V H) can be derived from FU{=G}. Since, FU{-G} F =G,
we obtain FU{-G} F H from (GV H) by V-Modus Ponens. It follows that F U
{=G} F (FAH). Finally, we get FU{-G} - (FAG)V(FAH) by V-Introduction.

We must also show that the converse holds.

Premise: F - (FAG)V (FAH)
Conclusion: F = F A (GV H)

We prove this by twice applying V-Elimination. Since (GV H) can be derived
from both (FAG) and (F'AH), we obtain F - (GV H) by applying V-Elimination
to the premise. We obtain F F F' in the same manner. The conclusion then
follows by A-Introduction.

These arguments can be arranged as formal two-column proofs. We leave
this as Exercise 1.24. [

Proposition 1.46 (V-Distributivity) For any formulas F, G, and H, the formulas
(FV(GANH))and ((FVG)A(FV H)) are provably equivalent.

Proof Exercise 1.25. [O

Of course, we do not need formal proofs to verify these equivalences. We
could use truth tables. In the case of the Distributivity rules and DeMorgan’s
rules, truth tables provide a more efficient method of verification than formal
proofs. For now, the importance of Propositions 1.44, 1.45, and 1.46 is that they
lend credence to our earlier claim that we can formally prove anything that is
true in propositional logic. Later, these propositions will help us prove this claim.

At the outset of this section, we said we would be interested in the rela-
tionship between the notion of formal proof and the notion of consequence. We
proved in Theorem 1.37 that if G can be formally proved from F' then G is a
consequence of F. We stated, without proof, that the opposite of this is also
true: if 7 |= G then F F G. So the symbol [introduced in the previous sec-
tion and the symbol F introduced in the present section mean the same thing
in propositional logic. This is the Completeness theorem for propositional logic,
the proof of which will be given at the conclusion of this chapter.

1.5 Proof by induction

There are two types of proofs that must be distinguished. We have discussed
and given several examples of formal proofs. This type of proof arises from
the rules of the logic. Such proofs are said to take place within the logic, and
we refer to them as internal proofs. Formal proofs have a limited scope. They
can prove only sentences that can be written in the logic. In contrast, we may
want to prove something about the logic itself. We may want to prove, say,

Propositional logic 23

that every sentence in the logic has a certain property. Such statements that
refer to the logic itself generally can neither be stated nor proved within the
logic. We give external proofs for such statements. External proofs are some-
times called meta-mathematical. However, this terminology belies the fact that
external proofs are often more mathematical in nature than formal proofs.
Induction is a method of external proof that is used repeatedly in this book.
Suppose that we want to prove that some property holds for every formula of
propositional logic. For example, in the next section we show that each formula of
propositional logic is equivalent to some formula in conjunctive normal form. We
will define “conjunctive normal form” later. Our present concern is the question
of how can we prove such a thing for all formulas. We need a systematic way to
check each and every formula F'. We do this by induction on the complexity of
F'. Induction on the complexity of F' is analogous to mathematical induction.

1.5.1 Mathematical induction. Recall that mathematical induction is a
method of proof that allows us to prove something for all natural numbers. For
example, suppose we want to prove that for all natural numbers n, the number
11™ — 4™ is divisible by 7. Using mathematical induction, we can do this in two
steps. First, we show that the statement is true for n = 1. This is easy. Second,
we show that if the statement holds for n = m for some m, then it also holds for
n = m+1. This is the inductive step. In our example, we can do this by observing
that 11+ —gm+l — 11m+L _11.4m £ 7.4™ = 11(11™ —4™) 4+ 7-4™. It follows
that if 11™ — 4™ is divisible by 7, then so is 11™*1 — 4™%! This completes the
proof. It’s like the domino effect. It is true for n = 1, and so, by the second step
of the proof, it must also be true for n = 2, and therefore n = 3, and n = 4, and
so forth. We conclude that for every natural number n, 11" — 4™ is divisible by 7.
An example of mathematical induction that is more relevant to proposi-
tional logic is provided by the proof of Proposition 1.47. This proposition is a
generalization of DeMorgan’s rules. First, we introduce some notation.

Notation 1 Let Fi,..., F, be formulas. We write

/\ F; to abbreviate F; A Fy A ... A F,, and
i=1

\/ F; to abbreviate Fy V Fo V...V F,.
i=1

Proposition 1.47 Let {F},..., F,} be a finite set of formulas. Then both

(A= (o (V) = (A)

Proof We show that —~(A;_, F;) = (\V/;—, —F;) by induction on n.

24 Propositional logic

First, suppose n = 1. We need to show that —|(/\§:1 F) = (V! 1 F;). By

=

the definitions of “A” and “\/,” this is the same as —(F}) = (—F}), which is true
by convention (C1).
Our induction hypothesis is that, for some m > 1 and any formulas

Fi,..., F,,, we have
(i) (1)
i=1 i=1

(37)-(3)

By the definition of A we have

(Ar)= (A)

By DeMorgan’s rule we get

o (i)))

By our induction hypothesis,

We want to show that

(1) Substituting this into (1) yields

(i) (5))

Finally, by the definition of \/ we arrive at
m—+1 m+1
_1< /\ l@) = \/ ﬁf%.
i=1 i=1

We have shown that —(/\;7;;1 F) = (\/Z:{l —F;) as was required. We conclude
that ~(A;_, Fi) = (Vi, ~F;) for any n.

The second equivalence of the proposition follows from the first. Since
(VI =F) = ~(AM Fi) holds for any formulas F;, it holds when each F;

is replaced by —Fj:
n+1 n+1
i=1 i=1

Propositional logic 25

Since these two formulas are equivalent, their negations are also equivalent:

n+1 n+1
i=1 i=1
Now —(Vi_, F;) = (A\!_, —F;) by double negation. [

Likewise, we can generalize the distributivity rules as follows.

Proposition 1.48 Let {Fy,...,F,} and {G1,...,Gy,} be finite sets of formulas.
The following equivalences hold:

(Ar)e (Aa)) = (A (Awve
<_n/1) \? = _n/1 J_\Z(Fmaj)

Proof Exercise 1.27. [

There is one unjustified step in the proof of Proposition 1.47. In the step
labeled with (), we essentially said that if G’ = G, then (GV F) = (G’ V F).
Although this substitution makes intuitive sense, we have not yet established
this as a rule we may use. We validate this step in Theorem 1.49. We prove
this theorem by induction on the complexity of formulas. We now describe this
method of proof.

1.5.2 Induction on the complexity of formulas. Suppose we want to show
that property P holds for every formula F. We can do this by induction on
the complexity of F follows. First we show that every atomic formula possesses
property P. This corresponds to verifying case n = 1 in mathematical induction.
The atomic case is our induction basis. We then assume that property P holds
for formulas G and H. This is our induction hypothesis. Our aim is to show that
property P necessarily holds for -G, GAH, GV H, G — H, and G < H. If we
succeed at this, then we can rightly conclude that P holds for all formulas. This
completes the proof.

Theorem 1.49 (Substitution theorem) Suppose F' = G. Let H be a formula
that contains F' as a subformula. Let H’ be the formula obtained by replacing
some occurrence of F' in H with G. Then H = H'.
Proof We prove this by induction on the complexity of H.

First suppose H is atomic. Then the only subformula of H is H itself. So
F = H. It follows that H' = G and, since F' = G, we have H = H'.

26 Propositional logic

Our induction hypothesis is that the conclusion of the theorem holds for
formulas H; and Hs each of which contains an occurrence of F' as a subformula.
That is, H; = H| and Hy = H} whenever H| and H) are formulas obtained
from H; and H, by replacing an occurrence of F' with G.

Suppose H = —H;. Then H' = —H]. Since H; = Hj, we have -H; = —Hj.
It follows that H = H' as was required.

Suppose H is one of the following formulas: H1 A Ho, H1V Hy, Hy — Hs, or
H, < H,. Since F' is a subformula of H, F' is a subformula of H7, a subformula
of Ha, or is H itself. If F'= H, then we have H = F = G = H' as in the atomic
case. So we may assume that the occurrence of F' that is to be replaced by G
occurs either in Hy or Hy. With no loss of generality, we may assume that it
occurs in Hj.

If H= H; A Hy then H' = H{ A Hs. In this case we have:

Hi A Hsy is true if and only if

both H; and Hy are true if and only if

both H{ and Hj are true (since Hy = Hy) if and only if
Hi A Hy is true.

That is, Hy A Hy = H{ A\ Hs. Since H = Hy A\ Ho, we have H = H'.

If H = HyV Hy, then H = H; V Hsy. By the definition of V, we have
H = —(—Hy A —Hs) and H' = —(=Hj A Hs). Tt follows from the previous cases
(corresponding to — and A) that H = H'.

If H= Hy — H,, then H' = H{ — H,. By the definition of —, H = (=H; V
H, and H' = (—H; V Hs). It follows from the previous cases (corresponding to
—and V) that H = H'.

If H = Hy < H,, then H = H| < Hs. By the definition of «~, H =
(Hy — Ho) A (H2 — Hy) and H' = (H] — Hs) A (Hs — Hyp). Tt follows from
the previous cases (corresponding to A and —) that H = H'.

We conclude that for any formula H that contains F' as a subformula,
H=H. O

[—td

In fact, this theorem remains true when is replaced by “provably

equivalent.”

Theorem 1.50 Suppose that F' and G are provably equivalent. Let H be a
formula that contains F' as a subformula. Let H’ be the formula obtained by
replacing some occurrence of F' in H with G. Then H and H' are provably
equivalent.

Proof The proof is similar to the proof of Theorem 1.49. Proceed by induction
on the complexity of H. The induction hypothesis is that both

Propositional logic 27

H, and Hj are provably equivalent, and
H, and H} are provably equivalent

where H{ and H/, are formulas obtained from H; and Hj by replacing an occur-
rence of F' with G. We want to verify in each of the five cases that H and
H' are provably equivalent. To do this, we refer to the rules in Tables 1.5
and 1.6 (whereas in the proof of Theorem 1.49 we referred to the semantics
of propositional logic). We leave the details of this proof as Exercise 1.28. [

The word “induction” indicates that we are reasoning from a particular case
to the general case. Proofs by induction involve two steps and conclude that some
statement holds in general for all natural numbers or for all formulas. These
two steps are called the “base step” and the “induction step.” In mathematical
induction, the base step is the step where we show that the statement is true for
n = 1. If we are using induction on the complexity of formulas, then the base
step is the step where we verify the statement holds for all atomic formulas.

The induction step for mathematical induction is the step where we show
that, if the statement is true for n = m, then it is also true for n = m + 1. The
induction step for induction on the complexity of formulas comprises five cases
corresponding to -, A, V, —, and <. Note that, in the proof of Theorem 1.49, the
cases corresponding to V, —, and < followed quickly from the cases regarding
= and A. This is because V, —, and <> were defined in terms of — and A. This
suggests an alternative form for the induction step which we now describe.

Suppose we want to show that some property P holds for all formulas of
propositional logic. To do this by induction on the complexity of formulas, we
first show that P holds for all atomic formulas (the base step). For the induction
step, instead of verifying the five cases as above, we can sometimes do just three
cases. First we show that P is preserved under equivalence. That is, we show
that if F = G and G possess property P, then so does F. If this is true, then we
only need to consider the cases corresponding to — and A. This suffices because
every formula of propositional logic is equivalent to a formula that uses only —
and A (and neither V, —, nor «). We demonstrate this version of the induction
step in the next section where we prove that every formula in propositional logic
is equivalent to a formula that is in conjunctive normal form.

1.6 Normal forms
In Example 1.27 we showed that the formula ((C' A D)V A) A ((C A D)V B) A
(EV —E) is equivalent to the formula (A A B) V (C A D) which is a disjunction

of two conjunctions. In this section we show that there is nothing special about
((CAD)VA)A((CAD)V B)A(EV-E). Every formula of propositional logic

28 Propositional logic

is equivalent to a formula that is a disjunction of conjunctions. We begin with
some definitions.

Definition 1.51 A literal is an atomic formula or the negation of an atomic
formula, and we refer to these as being positive or negative, respectively.

Example 1.52 If A is an atomic formula, then A is a positive literal and —A is
a negative literal.

Definition 1.53 A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals. That is,

where each L; ; is either atomic or a negated atomic formula.

Definition 1.54 A formula F' is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals. That is,

n m
where each L; ; is either atomic or a negated atomic formula .

Example 1.55

(AVB)AN(CV D)A(=AV-BV-D)isin CNF,
(FAANB)VCV(BAN-CAD,)isin DNF, and
(AVB)A((AANC)V (BAD)) is neither CNF nor DNF.

Lemma 1.56 Let F' be a formula in CNF and G be a formula in DNF. Then = F
is equivalent to a formula in DNF and -G is equivalent to a formula in CNF.

Proof If F is in CNF, then F' is the formula

A \/ Lij
i=1 =
for some literals L; ;. The negation of this formula

N
=1 i

Propositional logic 29

is equivalent to

n m

V=1V L
=1

i=1 j=
by Proposition 1.47. Likewise, by the same proposition, this is equivalent to

n m

VAL

i=1 \j=1

This formula is in DNF and is equivalent to —F'.

Similarly, using Proposition 1.47 twice, we can prove that =G is equivalent to a
formula in CNF. [

Theorem 1.57 Every formula F' is equivalent to some formula F; in CNF and
some formula F5 in DNF.

Proof We prove this by induction on the complexity of F.

First suppose F' is atomic. Then F' is already both CNF and DNF. So we
can take I} = Iy = F.

Our induction hypothesis is that the conclusion of the theorem holds for
formulas G and H. That is, we suppose there exist formulas H; and G; in CNF
and Hs and G5 in DNF such that H = H; = Hy and G = G = G,.

The property of being equivalent to formulas in CNF and DNF is clearly
preserved under equivalence. If F* = @, then, by our induction hypothesis, we
can just take F} = G1 and Fy = Gs. It therefore suffices to verify only two more
cases corresponding to = and A.

Suppose first that F' has the form =G. Then F = -G, = —G». Since G is in
CNF, -G is equivalent to a formula G3 in DNF by Lemma 1.56. Likewise, -G4
is equivalent to a formula G4 in CNF. So we can take F} = G4 and F; = G3.

Now suppose F' has the form G A H. Then F = G; A H; by substitution
(Theorem 1.49). Since G; and H; are both in CNF, so is their conjunction.

It remains to be shown that F' = G A H is equivalent to a formula in DNF.
Again using Theorem 1.49, F = G2 A Hs. Since each of these formulas is in DNF,
they can be written as follows:

G2 :\/Mi and Hg :\/Nj
i J

where each M; and N; is a conjunction of literals. We then have

F= (\/M) A \j/Nj

30 Propositional logic

Using the second equivalence of Proposition 1.48, we have

F= \/ \/(Mi/\Nj)

J
which is a disjunction of conjunctions of literals as was required. [

Given a formula F', the previous theorem guarantees the existence of a
formula in DNF that is equivalent to F'. Suppose we want to find such a formula.
One way to do this is to compute a truth table for F'. For example, suppose F'
has the following truth table.

A|B | F
0011
0]1]0
1101
1]1]0

Then F is true under assignment A if and only if A corresponds to row 1 or 3 of
the table. This leads to a formula in DNF. F' is true if and only if either A and
B are both false (row 1) OR A is true and B is false (row 3). So F' is equivalent
to (wAA-B)V (AA-B), which is in DNF.

Likewise, by considering the rows in which F' is false, we can find an equival-
ent formula in CNF. F'is true if and only if we are not in row 2 AND we are not in
row 4. That is, F'is true if and only if A or =B holds (NOT row 2) AND = A or =B
holds (NOT row 4). So F' is equivalent to (AV—-B)A(=AV—-B) whichisin CNF.

This actually provides an alternative proof of Theorem 1.57. Given any
formula F', we can use a truth table to find equivalent formulas in CNF and
DNF. An alternative way to find a formula in CNF equivalent to F' is provided
by the following algorithm. This algorithm is often, but not always, more efficient
than computing a truth table.

CNF Algorithm

Step 1: Replace all subformulas of the form F — G with (=F V G) and all
subformulas of the form F < G with (—-F V G) A (-G V F). When there are no
occurrences of — or <, proceed to Step 2.

Propositional logic 31

Step 2: Get rid of all double negations and apply DeMorgan’s rules
wherever possible. That is, replace all subformulas of the form

-G with G,
-(G A H) with (-G V -H), and
-(GV H) with (-G A —H).
When there are no subformulas having these forms, proceed to Step 3.

Step 3: Apply the distributivity rule for V wherever possible. That is,
replace all subformulas of the form

(GV (HAK)) or (HAK)VG) with (GV H) A (GV K)).

If we rid our formula of these subformulas, then we are left with a formula
in CNF. If we change Step 3 to distributivity for A, then we would get a formula
in DNF.

Example 1.58 We demonstrate the CNF algorithm with
F=(AVB)— (-BAA).
In Step 1, we get rid of —, rewriting the formula as
-(AV B)V (-BAA).
In Step 2, we apply DeMorgan’s rule to obtain
(mFAAN-B)V(-BAA)

Proceeding to Step 3, we see that the formula in Step 2 is in DNF. In particular
it has the form (GV (H A K)) (taking G = (-AA—B)). By distributivity, we get

(FAAN-B)V-B)A((mAAN-B)V A).
We still have two V’s that need to be distributed:
(mAV-B)A(=BVaB)A(mAV A) A (B V A).

Now there are no subformulas of the form (GV (HAK)) or (HAK)VG) and so
we are done with Step 3. We see that we have a formula in CNF as was promised.
This formula is not written in the best form. Since (A V A) is a tautology, the
above formula is equivalent to (-wAV —B) A (=B) A (—B V A) which is equivalent
to (AV —B) A (-AV —B). Note that this is the same formula we obtained from
the truth table following the proof of Theorem 1.57.

Inspecting the CNF algorithm, we see that Theorem 1.57 can be
strengthened. This theorem states that for any formula F' there exist formu-
las F} in CNF and F5 in DNF that are equivalent to F. We now claim that Fj

32 Propositional logic

and Fy are provably equivalent to F'. To see this, consider the algorithm step-
by-step. In each step we replace certain subformulas with equivalent formulas.
In each case we can formally prove the equivalence. For convenience, we use the
notation F' - G to abbreviate “F and G are provably equivalent.”

Step 1:

F — G —F (=F v G) by — -Definition
F o G4 (-FVG)A(—-GV F)by < -Definition and — -Definition.

Step 2:

—=—=G -+ G by Double negation and Example 1.43.
-(G A H) A (-G V —H) by Proposition 1.44 (DeMorgan’s rules).
-(GV H) 4F (-G A =H) by Proposition 1.44 (DeMorgan’s rules).

Step 3:

(GV(HAK))4- ((GV H)A(GV K)) by Proposition 1.46(V-Distributivity).
(HANK)VG) 4 ((GV H)A(GV K)) by V-Symmetry and Proposition 1.46.

By Theorem 1.50, the result Fj of this algorithm is provably equivalent to F'.
Likewise, F» and F' are provably equivalent. We record this strengthening of
Theorem 1.57 as follows.

Proposition 1.59 For every formula F' there exist formulas F} in CNF and Fy
in DNF such that F', F}, and F5 are provably equivalent.

1.7 Horn formulas

A Horn formula is a particularly nice type of formula in CNF. There is a quick
method for determining whether or not a Horn formula is satisfiable. We discuss
both this method and what is meant by “quick.”

Definition 1.60 A formula F is a Horn formula if it is in CNF and every
disjunction contains at most one positive literal.

Clearly, the conjunction of two Horn formulas is again a Horn formula. This
is not true for disjunctions.

Example 1.61 The formula AA (mAV -BV C)A(-BVD)A(-CV-D)isa
Horn formula. The formula A V B is not a Horn formula.

Propositional logic 33

A basic Horn formula is a Horn formula that does not use A. For example,
(mAV-BV (), A, and (-BV —D) are basic Horn formulas. Every Horn formula
is a conjunction of basic Horn formulas.

There are three types of basic Horn formulas: those that contain no positive
literal (such as (—=B V —D)), those that contain no negative literals (such as
A), and those that contain both a positive literal and negative literals (such as
(mA vV =BV ()). If a basic Horn formula contains both positive and negative
literals, then it can be written as an implication involving only positive literals.
For example, (mA VvV =B V C) is equivalent to (A A B) — C. If a basic Horn
formula contains no positive literal, then it can be written as an implication
involving a contradiction. For example, if L is a contradiction, then (-B V
—D) is equivalent to (B A D) —_L . Otherwise, if a basic Horn formula contains
no negative literals, then it is an atomic formula. We can again write this as an
implication if we wish. The atomic formula A is equivalent to T' — A, where T is
a tautology. In this way every basic Horn formula can be written as an implication
and every Horn formula can be written as a conjunction of implications.

Example 1.62 The Horn formula in Example 1.61 can be written as follows:
(T—-A)N(AAB)—=C)N(B—D)A((CAD)—1).

Suppose we are given a Horn formula H and want to decide whether or
not it is satisfiable. We refer to this decision problem as the Horn satisfiability
problem. Unlike the other decision problems we have seen, there is an efficient
algorithm for resolving the Horn satisfiability problem. There are three steps
in this algorithm corresponding to the three types of basic Horn formulas. We
assume that the Horn formula has been given as a conjunction of implications.

The Horn algorithm

Given a Horn formula H written as a conjunction of implications, list the atomic
formulas occuring in H.

Step 1: Mark each atomic formula A in the list that is in a subformula of
the form (T — A).

Step 2: If there is a subformula of the form (A1 AAaA---AA,,) — C where
each A; has been marked and C' has not been marked, then mark C. Repeat this
step until there are no subformulas of this form and then proceed to step 3.

Step 3: Consider the subformulas of the form (A; A AsA...AA,,) — L. If
there exists such a subformula where each A; has been marked, then conclude
“No, H is not satisfiable.” Otherwise, conclude “Yes, H is satisfiable.”

34 Propositional logic

Example 1.63 We demonstrate the Horn algorithm. Let H be the formula
(T — A)AN(C —D)A(AANB)—C)A((CAD)—1L)AN(T — B).

The atomic subformulas of H are A, B, C, and D.

In Step 1 of the algorithm, since H has subformulas (T' — A) and (T' — B)
we mark both A and B.

In Step 2, since H has subformula (A A B) — C, we mark C. Now that C
has been marked, we must also mark D because of the subformula (C — D).

In Step 3, since H has subformula (C A D) —_L, the algorithm concludes
“No, H is not satisfiable.”

Note that for the Horn formula in Example 1.62, the Horn algorithm yields
a different conclusion.

We want to show that, for any given Horn formula, the Horn algorithm
works quickly. First we show that it works.

Proposition 1.64 The Horn algorithm concludes “Yes, H is satisfiable” if and
only if H is satisfiable.

Proof Let § = {C1,C5,...,C,} be the set of atomic formulas occuring in H.
After concluding the algorithm, some of these atomic formulas have been marked.

Suppose H is satisfiable. Then there exists an assignment A of S such that
A | H. For each basic Horn subformula B of H, A(B) = 1. If B has the form
(T — C;), then A(C;) = 1. If B has the form (Cy ACo A--- ACy,) — D where
each A(C;) = 1, then A(D) also equals 1. Tt follows that A(C;) =1 for each C;
that has been marked.

Suppose for a contradiction that the algorithm concludes “No, H is not
satisfiable.” This only happens if there exists a subformula B of the form (A; A
As A -+ AN Ay) —L where each A; has been marked. Since each A; has been
marked, A(A;) = 1 for each A;. By the semantics of — (Table 1.4), we have
A(B) = 0 which is a contradiction. So if H is satisfiable, then the algorithm
concludes “Yes, H is satisfiable.”

Conversely, suppose that the algorithm concludes “Yes, H is satisfiable.” Let
Ao be the assignment of S defined by Ag(C;) = 1 if and only if C; is marked.
We claim that Ay = H. It suffices to show that Ag models each basic Horn
subformula of H.

Let B be a basic Horn formula that is a subformula of H. If B has the
form (T — A), then A is marked in Step 1 of the algorithm and so Ag(B) = 1.
Otherwise B has the form (41 A A2 A--- AN A,) — G where G is either an
atomic formula or a contradiction L. If Ag(A4;) = 0 for some 4, then Ay(B) = 1.
So assume that A4y models each A;. Then each A; has been marked. Since the
algorithm concluded “Yes,” GG is not L. So G is an atomic formula. Since each

Propositional logic 35

A; is marked, G is also marked (Step 2 of the algorithm). Since Ay(G) = 1, we
have Ag(B) =1. O

So the Horn algorithm works. Given any Horn formula H, the algorithm
correctly determines whether or not H is satisfiable. We now consider the fol-
lowing question. How many steps does it take the Horn algorithm to reach a
conclusion? The answer depends on the length of the input H. Suppose that the
formula H is a string of n symbols, where n is some large natural number. We
claim that the Horn algorithm concludes in fewer than n? steps.

To verify this claim, we count the number of steps in the Horn algorithm.
But what exactly is meant by a “step?” Looking at the algorithm, we see that
there are three steps named Step 1, Step 2, and Step 3. This is not what is
meant. We may have to repeat Step 2 more than once in which case it will take
more than three steps to reach a “yes” or “no” answer. We precisely define what
constitutes a “step of an algorithm” in Chapter 7. For the time being, let us
count the number of times we must read the input H.

First we read the formula H symbol-by-symbol from left to right and list all
of its atomic subformulas. Since H contains n symbols, there are at most n atomic
formulas in our list. Then, in Step 1, we read through H again, this time looking
for any occurences of the tautology T'. We mark the appropriate atomic formulas.
In Step 2, we are in search of subformulas of the form (A; AAsA---AA,y,) — C
where each A; has been marked. If we find such a subformula where C' has not
been marked, then we mark C. Having marked a new atomic formula, we may
have created new subformulas of the form (A; A Ay A--- A A,,) — C where
each A; has been marked. Each time we mark a formula in Step 2, we must go
back and read H again. Since we can mark at most n atomic formulas, we must
repeat Step 2 no more than n times. Finally, in Step 3, we must read H one
more time (looking for L), to reach the conclusion. In all, we must read H at
most 1+ 1+4n -+ 1=n+ 3 times to arrive at a conclusion. Since n? > n + 3 for
n > 2, this verifies our claim.

Definition 1.65 An algorithm is polynomial-time if there exists a polynomial
p(zx) such that given input of size n, the algorithm halts in fewer than p(n) steps.

The class of all decision problems that can be resolved by some polynomial-
time algorithm is denoted by P.

If an algorithm is not polynomial-time, then by any measure, it is not quick.
The previous discussion shows that the Horn algorithm is polynomial-time and
so the Horn satisfiability problem is in P. In contrast, consider the following
decision problems.

Validity problem: Given formula F, is F' valid?

Satisfiability problem: Given formula F', is F satisfiable?

36 Propositional logic

Consequence problem: Given formulas F' and G, is G a consequence of F'?
Equivalence problem: Given formulas F' and G, are F' and G equivalent?

In some sense, these four problems are really the same. Any algorithm that
works for one of these problems also works for all of these problems. If we had
an algorithm for the Validity problem, for example, then we could use it to
resolve the Satisfiability problem since F' is satisfiable if and only if —=F is not
valid. Similarly, any algorithm for the Satisfiability problem can be used for the
Consequence problem since G is a consequence of F if and only if =(F — G)
is not satisfiable. Clearly, any algorithm for the Consequence problem can be
used (twice) to resolve the Equivalence problem. Finally, given an algorithm
that decides the Equivalence problem, we can check whether F' is equivalent to a
known tautology T to resolve the Validity problem. In particular, if one of these
four problems is in P then all four are.

Truth tables provide an algorithm for solving each of these problems. For
the Satisfiability problem, we first compute a truth table for F' and then check
to see if its truth value is ever one. This algorithm certainly works, but how
many steps does it take? Computing the truth table is not just one step. Again,
we count how many times we are required to read the input F. If F' has n
atomic formulas, then the truth table for F' has 2" rows. We must refer to F' to
compute each of these rows. So we must read the input at least 2" times. This is
exponential and not a polynomial. Given any polynomial p(x), 2" is larger than
p(n) for sufficiently big values of n. So this algorithm is not polynomial-time.

It is not known whether the Satisfiability problem (and the other three
decision problems) is in P. We do not know of a polynomial-time algorithm
for satisfiability, but this does not mean one does not exist. If someone could
find such an algorithm, or prove that no such algorithm exists, then it would
answer one of the most famous unsolved questions of mathematics: the P = NP
question. We will define NP and discuss this problem in Chapter 7. For now,
we merely point out that we do not present an efficient algorithm for the
Satisfiability problem and such an algorithm probably does not exist.

We do, however, present an algorithm that is an alternative to truth tables
for the Satisfiability problem. Formal proofs avoid truth tables, but do not always
resolve this decision problem. Given a formula F', we can use formal proofs to
show that F is unsatisfiable (by demonstrating that () = —F'), but we cannot
show that F' is satisfiable. Likewise, formal proofs can establish that a formula
is valid or that one formula is a consequence of another, but they cannot show a
formula to be not valid or not a consequence of another. If we find a formal proof
for {F'} F G then we can rightly conclude “yes, G is a consequence of F.” But if
(is not a consequence of F', then we will forever search in vain for a proof and
never reach a conclusion. In the next section we present resolution, a refinement
of formal proofs that does provide an algorithm (although not polynomial-time)
for these decision problems.

Propositional logic 37

1.8 Resolution

Resolution is a system of formal proof that involves a minimal number of rules.
One of the rules is a variation of the cut rule. This rule states that from the
formulas (F' — G) and (G — H), we can deduce the formula (F — H). Another
rule is a variation of the Substitution rule stated as follows.

Let H be a formula that contains F' as a subformula. If G = F', then we
can deduce H’ form H where H' is the formula obtained by replacing some
occurrence of F' in H with G.

That is, we consider Theorem 1.49 as a rule for deduction. This is really many
rules in one, so we are kind of cheating to get few rules. In particular, for any
pair of equivalent formulas F' and G, we can deduce G from F. It may seem
that this defeats one of our purposes: the Equivalence problem. However, the
Substitution rule can be relaxed somewhat. The main purpose of this rule is to
put the formulas into CNF. The crux of resolution is that, once the formulas
are in CNF, we need only two rules to deduce everything. This will provide an
algorithm for the Equivalence problem and the other decision problems from the
previous section. It also brings us one step closer to proving the Completeness
theorem for propositional logic.

1.8.1 Clauses. Suppose F' is a formula in CNF. Then F is a conjunction of
disjunctions of literals. We refer to a disjunction of literals as a clause. For
convenience, we write each clause as a set. We regard

LV ILyV---V L, as the set {L1, La,...,L,}.

Any formula that is a disjunction of literals uniquely determines such a set.
However, the set does not uniquely determine the formula. Recall that two sets
are equal if and only if they contain the same elements. Order and repetition do
not matter. For example, the formulas (L1 V L), (L2 V L1), and (L1 V Lo V Lo)
each give rise to the same set {L1, Lo}. Although these formulas are not identical,
they are equivalent.

Proposition 1.66 Let C' and D be clauses. If C' and D are the same when viewed
as sets, then C = D.

Proof Let S be the set of literals occuring in C. Both C' and D are equivalent
to the disjunction of the literals in S. O

If F is in CNF, then F is a conjunction of clauses and we can write F
as a set of sets. We regard F as the set {C1,...,C,} where the C;s are the
clauses occuring in F (written as sets). For example, we regard the formula

38 Propositional logic

(AV BV -C)AN(CV D)A-ANA(—BV D), as the following set of four clauses
{{A, B, _'C}v {Cv D}v {—|A}, {_‘Bv _'D}}

Proposition 1.67 Let F' and G be two formulas in CNF. If F' and G are the
same when viewed as sets, then F' = G.

Proof Let C be the set of clauses occuring in F. Both F' and G are equival-
ent to the conjunction of the clauses in C. This proposition then follows from
Proposition 1.66. [

Throughout this section, we regard any formula in CNF as both a formula
and as a set of clauses. If F' and G are formulas in CNF, then their conjunction
may be written either as the formula F' A G or as the set F'U G. By the previ-
ous proposition, there is no ambiguity in regarding F as both set and formula.
However, we stress that viewing formulas as sets only makes sense for formulas
in CNF. In particular, there is no nice set theoretic counterpart for disjunction
or negation. The formulas F'V G and —F are not in CNF and cannot be viewed
as sets of clauses.

1.8.2 Resolvents Given a formula in CNF, resolution repeatedly uses two rules
to determine whether or not the formula is satisfiable. One of these rules states
that any clause of F' can be deduced from F'. The other rule involves the resolvent
of two clauses. We now define this notion.

Definition 1.68 Let C; and C5 be two clauses. Suppose that A € C; and
—A € Cy for some atomic formula A. Then the clause R = (C; — {A}) U (Cy —
{—A}) is a resolvent of Cy and Cs.

We represent this situation graphically by the following diagram:

Cl C12

AN /
R

Example 1.69 Let C; = {Al, _‘A27A3} and Cy = {A27 _|A3,A4}. Since A3 ey
and —A3 € Cy we can find a resolvent.

{A1,-As, As} {As, A3, Ay}

AN /
{A1, Ay, Ay, Ay}

Propositional logic 39

Example 1.70 The resolvent of two clauses is not necessarily unique. In the
previous example, since —Ay € Cy and Ay € Cy, we also have

{A1,-Az, Az} {A2, A3, Ay}

AN /
{Ala A27 _'A3a A4}

We now list the three rules for deduction used in resolution.

e Let G be any formula. Let F' be the CNF formula resulting from the CNF
algorithm when applied to G. Then F' can be deduced from G.

e Let F' be a formula in CNF. Any clause of F' can be deduced from F'.

e Let F' be a formula in CNF. Any resolvent of two clauses of F' can be deduced
from F.

Remarkably, these three rules suffice for propositional logic. Resolution is com-
plete. Prior to proving this fact, we must verify that these rules are sound. We
show something stronger. We show that each of these rules can be derived using
formal proofs. In the first rule, F' can be derived from G by Proposition 1.59.
If C' is a clause of F, then we can derive C' from F using A-Symmetry and
A-Elimination.

It remains to be shown that R can be derived from F' where R is a resolvent
of two clauses of F'. Note the similarity between this and the Cut rule. Let C}
and Cs be as in Example 1.69. Then C is equivalent to (—A; AAs) — Az and Cy
is equivalent to Az — (Az V Ay). The Cut rule states that from these formulas
we can derive the formula (—mA; A A2) — (A2 V Ay). This formula is equivalent
to the resolvent obtained in Example 1.69.

Proposition 1.71 Let (7 and Cs be clauses and let R be a resolvent of C; and
02. Then {01,02} FR.

Proof Since C; and C5 have a resolvent, there must exist an atomic for-
mula A such that A is in one of these clauses and —A is in the other. With
no loss of generality, we may assume that A is in C; and —A is in Cs.
So C; is equivalent to (A V F) for some clause F' and Cy is equivalent to
(mA V G) for some clause G. The formula (F'V G) is a resolvent of C; and
Cs5. We may assume that R is this resolvent. We provide a formal proof for

(C1,C5)} F R,

Premise: F - (AV F) and F - (-AV G)
Conclusion: F = (F Vv G).

40 Propositional logic

Statement Justification
1. FF(AVF) Premise
2. FU{-A}F(AVF) Monotonicity applied to 1
3. FU{-A}F-A Assumption
4. FU{-A}+F V-Elimination applied to 2 and 3
5. FU{-A}F (FVG) V-Introduction applied to 4
6. FF(-mAVQG) Premise
7. FU{-—A}F (-AV G) Monotonicity applied to 1
8. FU{—-—A}F-—A Assumption
9. FU{—-—A} -G V-Elimination applied to 7 and 8

10. FU{-—A}F (GVF) V-Introduction applied to 9
11. FU{-—A}F (FVG) V-Symmetry applied to 10
12. FH(FVG) Proof by cases applied to 5 and 11

So anything that can be proved using resolution can be given a formal
proof. It then follows from Theorem 1.37 that resolution is sound. In par-
ticular, if R is the resolvent of two clauses of a formula F in CNF, then
R is a consequence of F. Ostensibly, resolution is a fragment of our formal
proof system. As we now show, resolution is just as powerful as formal
proofs.

1.8.3 Completeness of resolution. We show that resolution can be used to
determine whether or not any given formula is satisfiable. We may assume
that the formula is in CNF. Given any formula F in CNF, let Res’(F) =
{C|C is a clause of F}. For each n > 0, let Res"(F) = Res" '(F) U {R|R
is a resolvent of two clauses of Res" 1(F)}. Since Res?(F) = F is a
finite set, there are only finitely many clauses that can be derived from F
using resolvents. In fact, there are only finitely many clauses that use the
same atomic formulas as F. So, eventually, we will find some m so that
Res™(F) = Res™t1(F). Let Res*(F) denote such Res™(F). This is the set
of all clauses that can be derived from F' using resolvents. Viewing it as a for-
mula, Res*(F) is the conjunction of all consequences of F' that can be derived
by resolvents.

Proposition 1.72 Let F be a formula in CNF. If) € Res*(F), then F is
unsatisfiable.

Propositional logic 41

Proof If) € Res*(F), then () € Res™(F) for some n. Since () ¢ Res®(F) (0 is not
a clause) there must be some m such () ¢ Res™(F) and () € Res™*1(F) in which
case () is the resolvent of two clauses of Res™(F). But @) can only be obtained
as the resolvent of {A} and {—A} for atomic A. Both {A} and {—A} must be in
Res™(F). By the previous proposition, both A and —A are consequences of F'.
It follows that A A —A is a consequence of F' and F' is unsatisfiable. [

Example 1.73 Let F be the formula
{{A7 B7 _'O}a {_‘A}v {Aa Ba O}a {Aa _‘B}}

We show that F' is unsatisfiable using resolution.

Let C1, Cs, C3, and C4 denote the four clauses of F' in the order given
above.

Cl CS
AN /
{A7B} 04
/

Cs {A}

AN

0

We see that {4, B} € Res(F), {A} € Res*(F), and) € Res(F). By
Proposition 1.72, F' is unsatisfiable. We can arrange this as a two-column proof
as follows.

Consequence of F' Justification

Ch Clause of F'

Csy Clause of F'

{A, B} Resolvent of C1 and Cz

Cy Clause in F'

{A} Resolvent of {A, B} and C4
Cs Clause in F'

0 Resolvent of {A} and Cs

We now consider the converse of Proposition 1.72. Let F' be a formula in
CNF. If F is unsatisfiable, then must () be in Res*(F)? We show that the answer
is “yes.” Resolution is all we need to show unsatisfiability. This is not immedi-
ately apparent. After all, for the “Justification” column of these proofs, we have
only two options. Either a clause is given, or it is a resolvent of two previously

42 Propositional logic

derived clauses. It may seem that this method of proof is too restrictive. We
prove that it is not.

Proposition 1.74 Let F be a formula in CNF. If F' is unsatisfiable, then () €
Res*(F).

Proof Let F = {C},...,Ck}. We assume that none of the C;s is a tautology
(otherwise we just throw away these clauses and show that §) can be derived from
what remains). We will prove this proposition by induction on the number n of
atomic formulas that occur in F.

Let n = 1. Let A be the only atomic formula occurring in F'. Then there are
only three possible clauses in F. Each C; is either {A}, {-A}, or {A,—A}. The
last clause is a tautology, and so, by our previous assumption, it is not a clause
of F. So the only clauses in F' are {A} and {—A}. There are three possibilities,
F = {{A}}, F = {{-4}}, or F = {{A},{—A}}. The first two of these are
satisfiable. So F must be {{A}, {—A}}. Clearly, 0 € Res*(F').

Now suppose F' has atomic subformulas Ay, ..., A,11. Suppose further that
() € Res*(G) for any unsatisfiable formula G that uses only the atomic formulas
Ay, A

We define some new formulas.

Let Fyy be the conjunction of all C; in F that do not contain —A,, 1.
Let F} be the conjunction of all C; in F' that do not contain A, 1.
These are CNF formulas. We claim that, viewing these as sets,

FyUF, =F.

For suppose that there is some clause C; of F' that is not in Fy U Fy. Then C;
must contain both A, and —=A,,+1. But then C; is a tautology, contrary to our
previous assumption. So Fy U Fy and F contain the same clauses.

Let Fy = {CI — {AW_H}‘CI € FO,}'

Let I} :{Ci*{_‘An-q—lHCiEFl}- B

That is, Fy is formed by throwing A, 11 out of each clause of Fj in which it
occurs. Likewise, F} is obtained by throwing —A,, ;1 out of each clause of Fl.

We claim that if we replace A, 11 in F' with a contradiction, then the result-
ing formula is equivalent to Fy. And if we replace A, 1 in F' with a tautology,
then the resulting formula is equivalent to F;. We give an example to illustrate
this, but leave the verification of this fact to the reader.

Example 1.75 Suppose n = 2 so that A, is As.
Let I ~: {{Al, A3}, {AQ}, {"Al, _|A2, Ag}, {_‘AQ, _\A3}}
ThenNFo = {{Al, Ad}, {AQ}, {“Al, —|A2, Ag}}
and F1 = {{AQ}, {ﬁAQ, ﬁAg}}.
So Fo = {{A1}, {A2}, {~A1, 42 }}

Propositional logic 43

and Fl = {{AQ}, {_\AQ}}

Now F is the formula (A1 V A3) A (AQ) A ("Al V _‘AQ vV Ag) A (_‘A2 V _‘Ag).
If we know Ag has truth value 0, then this becomes

(A1 VO) A (A2) A (mA1 V=43V 0) A (1) which is equivalent to Fp.

If we know that A3 has truth value 1, then F' reduces to

(1) A (A2) A (1) A (A2 Vv 0) which is equivalent to Fy.

Since A, 1 must either have truth value 0 or 1, it follows that F' = FyV Fy.
Since F' is unsatisfiable, Fy and F) are each unsatisfiable. The formulas Fj
and Fj only use the atomic formulas Aq,..., A,. By our induction hypothesis,
() € Res*(Fp) and) € Res*(Fy). (Note that () can easily be derived from both
Fy and Fi in our example.)

Now Fj was formed from F} by throwing A,,;1 out of each clause. Since we
can derive) from Fy, we can derive either () or {A, 11} from Fy (by reinstating
{An+41} in each clause of Fy). Likewise we can derive either () or {=A+1} from
Fy. If we can derive {An+1} form Fy and {—A,,4+1} from Fy, then we can derive
0 from Fy U Fy. Since F = Fy U Fy, we conclude that) € Res* (F). O

This yields an algorithm for the Satisfiability problem. Given any formula
G, we first find a formula F in CNF that is equivalent to G (using the CNF
algorithm). We then compute the finite set Res*(F). If) € Res*(F'), then the
algorithm concludes “No, G is not satisfiable.” Otherwise, it concludes “Yes,
G is satisfiable.” By Propositions 1.72 and 1.74, this algorithm works. This
algorithm is not necessarily quick. As we previously mentioned, there is no known
polynomial-time algorithm for this decision problem. However, in certain
instances, this algorithm can reach a quick conclusion. If F' is unsatisfiable,
then we do not necessarily have to compute all of Res*(F). As soon as () makes
an appearance, we know that it is not satisfiable. If F' is satisfiable, on the other
hand, then truth tables can reach a quick conclusion. We only need to compute
the truth table until we find a truth value of 1.

We summarize the main results of this section in the following theorem.
This theorem is a finite version of the Completeness theorem for propositional
logic.

Theorem 1.76 Let F' and G be formulas of propositional logic. Let H be the
CNF formula obtained by applying the CNF algorithm to the formula F A =G.
The following are equivalent:

1. FEG

2. {F}+G

3. 0 € Res*(H)

Proof (2) implies (1) by Theorem 1.37.

44 Propositional logic

(1) implies (3) by Proposition 1.74.

We must show that (3) implies (2). By Proposition 1.59, we have {FFA-G} - H.
By A-Introduction, {F, -G} F A =G.

It follows that {F',-G}F H.

Since () € Res*(H), there must exist an atomic formula A such that both {A}
and {—A} are in Res*(H). It follows from Proposition 1.71 that both {H} - A
and {H} F —A. Therefore, both

{F, -G} + A and {F,~G} I —A.

By proof by contradiction, we have {F'} + ==G. Finally, {F'} - G by Double
negation. [

1.9 Completeness and compactness

Completeness and compactness are two properties that a logic may or may not
possess. We conclude our study of propositional logic by showing that this logic
does, in fact, have each of these properties.

A logic is a formal language that has rules for deducing the truth of one
statement from that of another. If a sentence G' can be deduced from a set of
sentences F using these rules, then we write F = G. The notation F = G, on the
other hand, means that whenever each sentence in F is true, G is also true. If
F I G, then F = G. The opposite, however, is not necessarily true. Put another
way, F = G means that F implies G and F F G means that we can prove that
F implies G using the rules of the logic. But just because something is true does
not mean we can prove it. Perhaps the rules of the logic are too weak to prove
everything (or the expressive power of the logic is too strong). If we can prove
everything that is true (that is, if F = G does imply F F G), then we say that
the logic is complete.

(Completeness:) F = G if and only ifF F G.

In Section 1.4, we defined the notation F F G for propositional logic by
listing a bunch of rules. However, completeness should be understood not as a
statement about these specific rules, but as a statement about the logic itself.
Completeness asserts the existence of a list of rules that allows us to deduce
every consequence from any set of formulas of the logic. To prove this we need
to demonstrate such a list of rules. We show that the rules in Tables 1.5 and
1.6, as well as the rules for resolution, suffice for propositional logic. As we will
see in Chapter 9, second-order logic does not have completeness. We cannot give
a nice list of rules that allow us to deduce every consequence from any set of
second-order sentences.

Propositional logic 45

To prove that propositional logic has completeness, we must pass from finite
to infinite sets of formulas. If F is finite, then F | G if and only if F + G by
Theorem 1.76. Suppose now that F is infinite. If F is a set of formulas in
CNF, then it can be viewed as a set of clauses. The set Res™(F) is defined
as it was for finite sets of clauses. Let Res*(F) denote the union of all of the
sets Res™(F) (for n € N). Again, Res*(F) is the set of all clauses that can
be derived from F using resolution. If F is infinite, then Res*(F) is infinite
and cannot be viewed as a formula. Such an infinite set of clauses is satis-
fiable if and only if there exists an assignment that models each clause of the
set. To prove that propositional logic has completeness, it suffices to prove the
following.

Proposition 1.77 Let F be a set of formulas in CNF. Then () € Res*(F) if and
only if F is unsatisfiable.

For finite F, this is a restatement of Propositions 1.72 and 1.74. Recall the
proofs of these two statements. For Proposition 1.74, we assumed that F' was
unsatisfiable, and we proved that () € Res*(F) by induction on the number of
atomic formulas occurring in F'. But mathematical induction proves only that
something is true for all finite n. So the method we used to prove Proposition
1.74 does not work if F involves infinitely many atomic formulas.

Consider the other direction of Proposition 1.77. Suppose) € Res*(F).
Then) € Res™(F) for some n. That is, we can derive () from F in a finite
number of steps. Therefore, we can derive () from some finite subset F' of F.
By Proposition 1.72, F' is unsatisfiable. Since F' is a subset of F, F must be
unsatisfiable also.

So one direction of Proposition 1.77 follows from the results of the previous
section. We can deduce the infinite case from the finite case by observing that if
() can be derived from F, then it can be derived from some finite subset of F. To
prove the other direction of Proposition 1.77 we need an analogous idea. We need
to show that if F is unsatisfiable, then some finite subset of F is unsatisfiable.
This is known as compactness.

Compactness: F is unsatisfiable if and only if some finite subset of F is
unsatisfiable.

Put another way, compactness says that F is satisfiable if and only if every
finite subset of F is satisfiable. As with completeness, one direction of com-
pactness always holds. If F is satisfiable, then every finite subset of F must be
satisfiable also. But just because every finite subset of a set is satisfiable does
not necessarily mean that the set itself is satisfiable. Consider, for example, the
following set of English sentences.

46 Propositional logic

Fy = “There are finitely many objects in the universe.”
Fy = “There is at least one object in the universe.”

Fy = “There are at least two objects in the universe.”
F3 = “There are at least three objects in the universe.”
F,, = “There are at least n objects in the universe.”

Taken together, these sentences are contradictory. If there are more than
n objects for each n, then there cannot possibly be finitely many objects as Fy
asserts. However, if we take only finitely many of the above statements, then
there is no problem. Any finite set of these sentences is satisfiable, but the
collection as a whole is not. Any logic that can express these sentences does not
have compactness.

We prove that propositional logic does have compactness in Theorem 1.79.
First, we prove the following lemma. This lemma may not seem relevant at the
moment, but it is the key to proving Theorem 1.79.

Lemma 1.78 Let X be an infinite set of finite binary strings. There exists an
infinite binary string w so that any prefix of w is also prefix of infinitely many
zin X.

Proof A binary string is a sequence on Os and 1s such as 1011. The strings 1,
10, 101, and 1011 are the prefixes of 1011. We have an infinite set X of such
strings of finite length. We want to construct an infinite string @ of Os and 1s so
that each prefix of w is also a prefix of infinitely many strings in X.

We construct w step-by-step from left to right. In each step we will do two
things. In the nth step, we not only decide what the nth digit of w should be,
we also delete strings from X that we do not like.

To determine what the first digit of w should be, look at the first digits of
all the strings in X. Of course, there are infinitely many strings and you cannot
look at all these digits at once, but suppose that you are somehow omniscient.
There are two possibilities. Either you see infinitely many 1s or you do not. If
infinitely many strings in X start with 1, then we let the first digit of w be a 1
and we delete all strings in X that begin with a 0 (we are still left with infinitely
many). Otherwise, if only finitely many strings in X start 1, we delete these and
let the first digit of @ be a 0.

Now suppose we have determined the first n digits of w. Suppose too
that we have deleted all sequences from X that do not start with these same n
digits and are left with an infinite subset X’ of X. To determine the (n 4+ 1)th

Propositional logic 47

entry in @ we look at the (n + 1)th digits of all the strings in X'. Since X' is
infinite, X’ must have infinitely many strings of length n + 1 or greater. So
again, there are two possibilities. If infinitely many strings in X’ have 1s in the
(n + 1)th place, then we let the (n + 1)th digit of @w be 1. Otherwise, we let
the (n + 1)th digit be 0. Either way, we delete all strings from X’ that do not
share the same first n + 1 entries as w. We are still left with an infinite subset
of X.

Continuing this procedure, we obtain an infinite sequence w so that the first
n digits of w agrees with the first n digits of infinitely many sequences in X. We
have not really given a practical way of constructing w, but we have proven that
such a string exists. [

We are ready now to prove propositional logic has compactness.

Theorem 1.79 (Compactness of propositional logic) A set of sentences of
propositional logic is satisfiable if and only if every finite subset is satisfiable.

Proof As we remarked earlier, only one direction of this requires proof. Suppose
F ={Fy, Fy,...} is a set of formulas and every finite subset of F is satisfiable.
Let Ay, As, As, ... be a list without repetition of the atomic formulas occurring
in F; followed by the atomic formulas occurring in F5 (but not Fy), and so on.

Since every finite subset of F is satisfiable, for each n there exists an assign-
ment A,, such that A, = A, F,,. So each F; in F holds under all but finitely
many of these assignments. We may assume that A, is defined only on the
atomic formulas occurring in Fi, ..., F,. For each n, the truth values A,, assigns
to A1, Ay, ... forms a finite sequence of 0s and 1s. So X = {A,|n=1,2,...} is
an infinite set of finite binary sequences. By the previous lemma, there exists an
infinite binary sequence w so that every prefix of w is a prefix of infinitely many
sequences in X.

Define an assignment A on all the A,s as follows: let \A(A,,) be the nth digit
of w. We must show that every formula F' in F holds under A. This follows from
the fact that F' holds under all but finitely many of the assignments in X. Let
m be such that F' contains no atomic formula past A,, in our list. Then there is
an A, in X so that A, | F and the first m entries of A,, are the same as A. It
follows that A also models F'. O

Proposition 1.77 follows from compactness. We can now prove that propos-
itional logic has completeness. We could give a proof similar to that of Theorem
1.76 using Proposition 1.77 in place of Propositions 1.72 and 1.74. However,
compactness yields a more direct proof.

Theorem 1.80 (Completeness of propositional logic) For any sentence G and
set of sentences F, F = G if and only if F F G.

Proof By Theorem 1.37, if F + G, then F | G.

48 Propositional logic

Conversely, suppose that F = G. Then F U {—~G} is unsatisfiable. By com-
pactness, some finite subset of F U {=G?} is unsatisfiable. So there exists finite
Fo C F such that Fo U {—~G} is unsatisfiable and, equivalently, Fy = G. Since
Fo is finite, we can apply Theorem 1.76 to get Fo F G. Finally, F - G by
Monotonicity. [

Exercises

1.1. Show that = and V can be taken as primitive symbols in propositional
logic. That is, show that each of the symbols A, —, and < can be defined
in terms of = and V.

1.2. Show that — and — can be taken as primitive symbols in propositional
logic. That is, show that each of the symbols A, V, and < can be defined
in terms of - and —.

1.3. Find the truth tables for each of the following formulas. State whether
each is a tautology, a contradiction, or neither.
(a) (A= B)V((AN=C) < B)
(b) (A= B)A(A——B)
() (A= (BVO)V(C—-4)
(d (A—=B)ANC)V(AAD).
1.4. In each of the following, determine whether the two formulas are

equivalent.
(a) (AAB)VC and (A— -B)—C

(b) (((A— B)— B) — B) and (A — B)
(¢) (W—B)—A) —Aand (C—D)VvC
(d) A< ((mAAB)V(AA-B))and -B.

1.5. Show that the following statements are equivalent.

1. FEG,
2. EF—G,
3. F A -G is unsatisfiable, and
4. F=FANG.
1.6. Show that the following statements are equivalent.
1. F=aG,

2. EF <G, and
3. (FA-G)V (-F A Q) is unsatisfiable.

1.7.

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

1.14.

1.15.

Propositional logic 49

(a) Find a formula F' in CNF which has the following truth table.

bS
oy
Q
e

= O = = O O = O
= = o = O = O O
_ =~ R O R O O O
= o O O = = = O

(b) Find a formula in DNF having the above truth table.
Find formulas in CNF equivalent to each of the following.
(a) (Ao B)eC

(b) (A= (BVC))V(C—-4)

(¢) AAN-BAC)V(mAAN-C)V(BAC)V A.

The Cut rule states that from the formulas (F — G) and (G — H)
we can derive the formula (F — H). Verify this rule by giving a
formal proof.

(a) Let «»-Symmetry be the following rule:
Premise: F - (F < G)

Conclusion: F + (G < F)
Verify this rule by giving a formal proof.

(b) Give a formal proof demonstrating that {(F' < G)} F (=F < =G).

Give formal proofs demonstrating that the formulas (F' A (F V G)) and
(FV (F AQG)) are provably equivalent.

If F — G is a consequence of F, then so is -G — —F. We refer to this
rule as —-Contrapositive. Verify this rule by giving a formal proof.

Show that V-Symmetry follows from the other rules of Tables 1.5
and 1.6.

Show that —-Elimination follows from the other rules of Tables 1.5
and 1.6.

Show that Double negation follows from Assumption, Monotonicity, and
Proof by cases.

50

1.16.

1.17.

1.18.
1.19.

1.20.

1.21.

1.22.
1.23.
1.24.
1.25.
1.26.

Propositional logic

Suppose that we remove from Table 1.5 the following four rules:
V-Elimination, V-Symmetry, —-Introduction, and —-Elimination and
replace these with
DeMorgan’s rules, V-Distributivity, the Cut rule (from Exercise 1.9),
and the converse of Double negation (if F + ——F then F F F).

Show that the resulting set of rules is complete.
Use resolution to verify each of the following statements:
(a) —Ais a consequence of (A — B) A (A — —B)
(b) (FAA-BAC)V(=AAN-C)V (BAC)V Ais a tautology
(¢) ((A— B)A(A— —B))— —A is a tautology.
For each formula in Exercise 1.3 find an equivalent formula in CNF.

For each formula in Exercise 1.3, verify your answer to that problem by
using resolution.

Determine whether or not the following Horn formulas are satisfiable. If

it is satisfiable, find an assignment that models the formula.

(a) (T—>A1)/\(THA2)/\(A1 /\AQ/\A3 —>A4)/\(A1 /\AQ/\A4 HA5)
/\(Al ANAg N Az N Ay — A@) A (A5 A Ag — A7) A (AQ — Ag) A\ (A7 —>J_)

(b) (T — A1) A(T — A2) A (A1 A As A Ay — Ag) A (A1 A Ag A Ag) A (As A A7 — Ag)
/\(Al/\Ag/\Ag,—>A7)/\(A2—>A4)/\(A4—>Ag)/\(A2/\A3/\A4—>A9)
A(As A Ag — Ag) A (Ag A A7 — Ag) A (A7 A Ag A Ag —1)

Consider the following formula in DNF.
(Ay AB1)V(AaABg) V-V (A, A By)

Given this formula as input, how many steps will it take the CNF
algorithm to halt and output a formula in CNF? Is this algorithm
polynomial-time?

Complete the proof of Theorem 1.37.

Complete the proof of Proposition 1.44.

Prove Proposition 1.45 by providing two formal proofs.

Prove Proposition 1.46.

What is wrong with the following claim? Why is the given “fake proof”

not a proof?
Claim: (A — B) V C is not a subformula of any formula.

Proof [Fake proof] Let F' be any formula. We show that (A — B) vV C is
not a subformula of F' by induction on the complexity of F.

If F' is atomic, then clearly (A — B) Vv C' is not a subformula.

Let F; and F be two formulas. Our induction hypothesis is that
neither F; nor F» has (A — B) V C as a subformula.

1.27.

1.28.
1.29.

1.30.

1.31.

1.32.

Propositional logic 51

Suppose F' is =F;. If (A — B) Vv C is a subformula of F', then either
(A — B) Vv C is a subformula of Fy or is F' itself. It is not a subformula
of Fy by our induction hypothesis. Moreover, since (A — B) V C does not
contain the symbol —, it cannot be F'.

Suppose F'is Fy AFy. If (A — B)VC is a subformula of F', then since
(A — B) V C does not contain the symbol A, it must be a subformula of
either I or of F5. But by our induction hypothesis, this is not the case.

It follows that (A — B)V C is not a subformula of any formula. [

Prove Proposition 1.48 by mathematical induction. That is, given formulas
{F1,...,F,} and {G4,...,G,,}, prove each of the following by induction
on n.

(&) (NiZi Fo) V(A2 Gy) = Nio (A (B3 v Gy))
(b) (ViLi Fi) A (VL1 Gi) = Vs (VL (B A Gy)).
Prove Theorem 1.50 by induction on the complexity of H.
Let F and G be sets of formulas. We say that F is equivalent to G, denoted
F =G, if for every assignment A, A = F if and only if A E G.
(a) Show that the following is true:
For any F and G, F = G if and only if both:
F F G for each G € G and
GF F for each F € F.

(b) Demonstrate that the following is not true:

For any F and G, F = G if and only if both:
for each G € G there exists F' € F such that G = F, and
for each F' € F there exists G € G such that F = G.

If a contradiction can be derived from a set of sentences, then the set
of sentences is said to be inconsistent. Otherwise, the set of sentences is
consistent. Let F be a set of sentences. Show that F is consistent if and
only if it is satisfiable.

Suppose that F is an inconsistent set of sentences (as defined in Exer-

cise 1.30). For each G € F, let F¢ be the set obtained by removing G

from F.

(a) Prove that for any G € F, Fg F -G by using the result of
Exercise 1.30.

(b) Prove that for any G € F, Fg F -G by sketching a formal proof.

A set of sentences F is said to be closed under conjunction if for any F' and
G in F, F A G is also in F. Suppose that F is closed under conjunction

52

1.33.

1.34.

1.35.

Propositional logic

and is inconsistent (as defined in Exercise 1.30). Prove that for any G € F
there exists F' € F such that {F} - -G.

Call a set of sentences minimal unsatisfiable if it is unsatisfiable, but every

proper subset is satisfiable.

(a) Show that there exist minimal unsatisfiable sets of sentences of size
n for any n.

(b) Show that any unsatisfiable set of sentences has a minimal unsatis-
fiable subset.

(Craig’s interpolation theorem) Suppose = (F' — G) and F is not a con-
tradiction and G is not a tautology. Show that there exists a formula H
such that every atomic in H is in both F and G and |= (F — H) and
E(H— Q).

(Beth’s definability theorem) Let H be a subformula of F. Let Ay,..., A,
be the atomic subformulas of F' that do not occur in H. Suppose that,
for any formula H’, the formula H < H' is a consequence of the formula
F A F' where F’ is the formula obtained by replacing each occurrence
of H in F with H'. Suppose also that m > 1. Show that there exists a
formula G having no atomic subformulas other than Ay, ..., A,, such that
EF— (H+<QG).

2 Structures and first-order logic

2.1 The language of first-order logic

First-order logic is a richer language than propositional logic. Its lexicon contains
not only the symbols A, V, =, —, and < (and parentheses) from propositional
logic, but also the symbols 3 and V for “there exists” and “for all,” along with
various symbols to represent variables, constants, functions, and relations. These
symbols are grouped into five categories.

e Variables. Lower case letters from the end of the alphabet (...z,y,z)
are used to denote variables. Variables represent arbitrary elements of
an underlying set. This, in fact, is what “first-order” refers to. Variables
that represent sets of elements are called second-order. Second-order logic,
discussed in Chapter 9, is distinguished by the inclusion of such variables.

e Constants. Lower case letters from the beginning of the alphabet
(a,b,c,...) are usually used to denote constants. A constant represents a
specific element of an underlying set.

e Functions. The lower case letters f, g, and h are commonly used to denote
functions. The arguments may be parenthetically listed following the func-
tion symbol as f(z1,x,...,z,). First-order logic has symbols for functions
of any number of variables. If f is a function of one, two, or three variables,
then it is called unary, binary, or ternary, respectively. In general, a function
of n variables is called n-ary and n is referred to as the arity of the function.

e Relations. Capital letters, especially P, @, R, and S, are used to denote
relations. As with functions, each relation has an associated arity.

We have an infinite number of each of these four types of symbols at our dis-
posal. Since there are only finitely many letters, subscripts are used to accomplish
this infinitude. For example, z1, za, x3, ... are often used to denote variables. Of
course, we can use any symbol we want in first-order logic. Ascribing the letters
of the alphabet in the above manner is a convenient convention. If you turn to a
random page in this book and see “R(a,x,y),” you can safely assume that R is
a ternary relation, x and y are variables, and a is a constant. However, we may
at times use symbols that we have not yet mentioned. We may use the symbol
Q if we please. However, if we do so, we must say what this symbol represents,

54 Structures and first-order logic

whether it is a constant, a variable, a function of 23 variables, a ternary relation,
or what.

e Fixed symbols. The fixed symbols are A, V, =, —, <, (,), 3, and V.

By “fixed” we mean that these symbols are always interpreted in the same
way. If you look on page 211 of this book and see the symbol A, it means the
same thing as it did on page 8. It means “and.” The same is true for each
of the fixed symbols. In contrast, the interpretation of the function symbol f
depends on the context. We may use this symbol to represent any function we
choose.

The fixed symbols 3 and V, called quantifiers, make the language of first-
order logic far more expressive than propositional logic. They are called the
existential and universal quantifiers, respectively. In any first-order formula, each
quantifier is immediately followed by a variable. We read 3z as “there exists x
such that” and Vz as “for all x.”

The following is an example of a sentence of first-order logic: Vy3zR(f(x), y).
This sentence says that for all y there exists « such that the relation R holds for
the ordered pair (f(z),y). Here f is a unary function and R is a binary relation.
Whether this sentence is true or not depends on the context. If the relation R is
equality, then this sentence is true if and only if the function f is onto.

Because of the ubiquity of equality in mathematics, we add to our list of
fixed symbols the symbol = for “equals.” We still refer to this as “first-order
logic” although it is often called “first-order logic with equality.” The inclusion
of equality allows the quantifiers to actually quantify. For example, the sentence

33?133323583(_\(1‘1 = CCQ) A\ _\(.%‘1 = 1‘3) A\ ﬂ(.’L‘g = $3))

says that there exist at least three distinct elements. Likewise, we can write
sentences that say there exist at least seven elements, or fewer than 23 elements,
or exactly 45 elements.

We have now completely listed the symbols of first-order logic. Our next
objective is to define the syntax and semantics. That is, we need to say which
strings of these symbols are permissable as formulas and also how to interpret
the formulas.

2.2 The syntax of first-order logic

The definition of a formula in first-order logic is analogous to the definition of
formula in propositional logic. We first define atomic formulas and then give rules
for constructing more complex formulas. We used upper case Roman letters such

Structures and first-order logic 55

as F', GG, and H to denote formulas in propositional logic. In first-order logic, we
reserve these letters for other uses and instead use lower case Greek letters such
as ¢, 1, and 6 to denote formulas.

Prior to defining formulas, we must define the term term. Terms are defined
inductively by the following two rules.

(T1) Every variable and constant is a term.
(T2) If f is an m-ary function and tq,...,¢,, are terms,
then f(t1,...,ty,) is also a term.

Definition 2.1 An atomic formula is a formula that has the form ¢; = ¢ or
R(t1,...,t,) where R is an n-ary relation and t1,...,t, are terms.

As with propositional logic, we regard some of the fixed symbols as primitive.
The other symbols are defined in terms of the primitive symbols. We view —, A,
and 3 as primitive. Every formula of first-order logic is built from atomic formulas
by repeated application of three rules. Each rule corresponds to a primitive
symbol.

(R1) If ¢ is a formula then so is —p.
(R2) If ¢ and ¢ are formulas then so is ¢ A).
(R3) If ¢ is a formula, then so is Jz¢p for any variable z.

Note that (R1) and (R2) were also rules for propositional logic and only the rule
(R3) is new.

Definition 2.2 A string of symbols is a formula of first-order logic if and only
if it is constructed from atomic formulas by repeated application of rules (R1),
(R2), and (R3).

The definitions of V, —, and « are the same as in propositional logic. We
define Vzyp as ~3z—¢. For any formula ¢, the two formulas Vaxy and —3z—¢ are
interchangeable. So from (R1) and (R3) we have the following: if ¢ is a formula,
then so is Vxyp for any variable z.

Example 2.3 VyP(z,y)V 3IyQ(z,y) is a formula of first-order logic and
z(QVP)y3)(V is not.

In the next section, we discuss the semantics of first-order logic. For this
we need to know the order of operations of the symbols. Parentheses dictate
the order of operations in any formula. In absence of parentheses, we use the
following rule: —, 3, and V have priority over A,V,—, and « .

56 Structures and first-order logic

Example 2.4 32 P(z,y)VQ(x,y) means (3xP(z,y))V(Q(z,y)) and VyP(z,y) —
Q(z,y) means (VyP(z,y)) — (Q(z,y)).

We also use the following convention: the order in which to consider —, 3,
and V is determined by the order in which they are listed. We again employ
conventions (C1) and (C2) from Section 1.1. These allow us to drop parentheses
that are not needed.

Example 2.5 We write =3zVy3zR(x,y, z) instead of —~(3x(Vy(3z(R(x,y, 2)))))-
Having defined formulas, we next define the notion of a subformula.

Definition 2.6 Let ¢ be a formula of first-order logic. We inductively define what
it means for 6 to be a subformula of ¢ as follows:

If o is atomic, then 6 is a subformula of ¢ if and only if 6 = .

If ¢ has the form —, then 6 is a subformula of ¢ if and only if § = ¢ or
is a subformula of .

If ¢ has the form 1 A 12, then 6 is a subformula of ¢ if and only if 8 = ¢
or # is a subformula of 11, or € is a subformula of 5.

If ¢ has the form Jzv, then 6 is a subformula of ¢ if and only if 8 = ¢ or 0
is a subformula of 1.

Example 2.7 Let ¢ be the formula JaVyP(x,y) V VzIyQ(x,y) where P
and @ are binary relations. The subformulas of ¢ are JzVyP(z,y),
VyP(z,y), P(z,y), V23yQ(z, y), 3yQ(z, y), Q(z,y) and ¢ itself.

Note that the formula P(z,y) V VaIyQ(z,y), occurring as part of ¢, is not a
subformula of .

The free variables of a formula ¢ are those variables occurring in ¢ that
are not quantified. For example, in the formula VyR(z,y), = is a free vari-
able, but y is not since it is quantified by V. For any first-order formula ¢, let
free(p) denote the set of free variables of . We can define free(p) inductively as
follows:

If ¢ is atomic, then free(y) is the set of all variables occurring in ¢,
if o =), then free(y) = free(y),
if =1 A0, then free(p) = free(y)) U free(d), and
if o = Jz1), then free(p) = free(yp) — {x}.

Definition 2.8 A sentence of first-order logic is a formula having no free
variables.

Structures and first-order logic 57

Example 2.9 JzVyP(x,y)VvVaxIyQ(x,y) is a sentence of first-order logic, whereas
JxP(z,y) VVzQ(x,y) is a formula but not a sentence (y is a free variable).

Example 2.10 Let ¢ be the formula Vy3z f(z) = y. Then ¢ is a sentence since
both of the variables occurring in ¢ are quantified. The formulas f(x) = y and
Jz f(x) = y are both subformulas of . Neither of these subformulas is a sentence.

In contrast to the free variables of a formula ¢, the bound variables of ¢ are
those variables that do have quantifiers. For any first-order formula ¢, bnd(y)
denotes the set of bound variables occurring in ¢. Again, this notion can be
precisely defined by induction.

If ¢ is atomic, then bnd(p) = 0,

if ¢ = =), then bnd(p) = bnd(y),

if o =1 A0, then bnd(p) = bnd(v) U bnd(6), and
if ¢ = x4, then bnd(p) = bnd(yv) U {z}.

Every variable occurring in ¢ is in free(¢) or bnd(y). As the next example
shows, these two sets are not necessarily disjoint. A variable can have both free
and bound occurrences within the same formula.

Example 2.11 Consider the formula Jz(R(z,y) A JyR(y,z)). The variable y
occurs free in R(z,y) and bound in JyR(y,z). The variable x occurs only
as a bound variable. So, if 1 denotes this formula, then free(v) = {y} and

bnd(y) = {z,y}.

Notation We write p(z1,22,...,2T,) to denote a formula having free variables
T1,X2y ..., Tn. We write p(t1,ta,...,t,) to denote the formula obtained by repla-
cing each free occurrence of x; in @ with the term t;. When using this notation,
it should always be assumed that each t; contains none of the variables in bnd(yp).
(E.g., if p(x) is 3 y—(z =y) then we do not allow the substitution p(y)).

The presence of free variables distinguishes formulas from sentences. This
distinction did not exist in propositional logic. The notion of truth is defined
only for sentences. It does not make sense to ask whether the formula y =z +1
is true or not. But we can ask whether Vy3x(y = z+ 1) or ¢; = ¢co + 1 is true or
not. The answer, as we have already indicated, depends on the context.

2.3 Semantics and structures

As with propositional logic, the semantics for A and = can be described by saying
A behaves like “and” and — behaves like “negation.” Likewise, the semantics for
the quantifiers 9 and V can be inferred from the phrases “there exists” and “for
all.” However, we must be more precise when defining the semantics of a logic.

58 Structures and first-order logic

The goal of this section is to formally define the semantics of first-order logic.
First, we intuitively describe the semantics with some examples.
Consider the first-order sentence

VyJz f(z) = y.

This sentence says that for all y there exists « so that f(z) = y. To determine
whether this sentence is true or not, we need a context. It depends on what
the variables represent and what the function f is. For example, suppose the
variables are real numbers and f is defined by the rule f(z) = 2?. Then the
above sentence is false since there is no x such that f(x) = —1. If the function
f is defined by f(x) = 23 (or, if the variables represent complex numbers) then
the sentence is true.

Now consider VaVy(R(z,y) — Jz(z #x Az # y A (R(x,2) A R(z,y))). This
sentence says that for any = and y, if R(z,y) holds, then there exists some z
other than x and y so that R(x,z) and R(z,y) both hold. Suppose again that
the variables represent real numbers. If the relation R(x,y) means z < y, then
the above sentence is true since between any two real numbers there exists other
real numbers. That is, the real numbers are dense. However, if the variables
represent integers (or if R means <) then this sentence is false.

So whether a sentence is true or not depends on two things: our underlying
set and our interpretation of the function, constant, and relation symbols. This
observation leads us to the central concept of this chapter. A structure consists of
an underlying set together with an interpretation of various functions, constants,
and relations. The role of structures in first-order logic is analogous to the role
played by assignments in propositional logic. Given any sentence ¢ and any
structure M, we define what it means for M to model ¢. Intuitively, this means
that the sentence ¢ is true with respect to M. As in propositional logic, we write
M = ¢ to denote this concept. The formal definition of this concept will be
given later in this section.

Structures naturally arise in many branches of mathematics. For example,
a vector space is a structure. The groups, rings, and fields of abstract algebra
also provide examples of structures. In graph theory, the graphs can be viewed
as first-order structures (we shall discuss this in detail in Section 2.4). The real
numbers provide examples of structures that should be familiar to all readers.
The real numbers form not one structure, but many. Recall that a structure has
two components: and underlying set and an interpretation of certain functions,
constants, and relations. When we refer to the “real numbers” we are only spe-
cifying the underlying set and not the symbols to be interpreted. We may want to
consider the reals with the functions of addition and multiplication. That is one
structure. Another structure is the reals with the relation < and the constant 0.
Depending on what aspect of the real numbers we wish to investigate, we may

Structures and first-order logic 59

choose various functions, constants, and relations on the reals. The functions,
constants, and relations that we choose to consider is called the vocabulary of the
structure. Each choice of a vocabulary determines a different structure having
the real numbers as an underlying set.

Definition 2.12 A wvocabulary is a set of function, relation, and constant symbols.

Definition 2.13 Let V be a vocabulary. A V-structure consists of a nonempty
underlying set U along with an interpretation of V. An interpretation of V
assigns:

e an element of U to each constant in V,
e a function from U™ to U to each n-ary function in V, and

e a subset of U™ to each n-ary relation in V.

We say M is a structure if it is a V-structure for some vocabulary V.

We present structures by listing the underlying set, or universe, followed by
the function, relation, and constant symbols that it interprets.

Example 2.14 Let V = {f,R,c} where f is a unary function, R is a binary
relation, and c is a constant. Then M = (Z|f, R, c) denotes a V-structure. The
universe of M is the set of integers Z. To complete the description of M, we
must say how the symbols of V are to be interpreted. We may say, for example,
that M interprets f(x) as x2, R(z,y) as © < y, and the constant ¢ as 3. This
completely describes the structure M.

Example 2.15 Let V = {P, R} where P is a unary relation and R is a binary
relation. Then M = (N|P, R) denotes a V-structure. The universe of M is the set
of natural numbers N. To complete the description of M, we must say how the
symbols of V are to be interpreted. We may say, for example, that M interprets

P(z) as “z is an even number,” and
R(z,y) as “c+1=y.7

This information completely describes structure M.

Example 2.16 R = (R|+, -, 0, 1) denotes a structure in the vocabulary {+,-,0,1}
where + and - are binary functions and 0 and 1 are constants. The universe of
R is the set of real numbers R. To complete the description of R, we must say
how the symbols are to be interpreted. We may simply say that R interprets the
symbols in the “usual way.” This means that R interprets + as plus, - as times,
0 as 0, and 1 as 1. This completely describes the structure R.

60 Structures and first-order logic

Definition 2.17 Let V be a vocabulary. A V-formula is a formula in which every
function, relation, and constant is in V. A V-sentence is a V-formula that is a
sentence.

If M is a V-structure, then each V-sentence ¢ is either true or false in M. If ¢
is true in M, then we say M models ¢ and write M = . Structures in first-order
logic play an analogous role to assignments in propositional logic. But whereas,
in propositional logic, there were only finitely many possible assignments for a
sentence, there is no end to the number of structures that may or may not model
a given sentence of first-order logic.

Intuitively, M = ¢ means that the sentence ¢ is true of M. We must
precisely define this concept. Before doing so, we consider one more example.

Example 2.18 Consider again the structure R from Example 2.16. The vocabu-
lary for this structure is {+,-,0,1} which we denote by V,, (the vocabulary of
arithmetic).

Consider the V-sentence Vz3y(1 4+ z - ¢ = y). This sentence says that for
any z there exists y that is equal to 22 + 1. This is true in R. If we take any
real number, square it, and add one, then the result is another real number. So
REVzIy1 +x-z=y).

Consider next the V-sentence Vy3z(1+ 2 -2 = y). This sentence asserts that
for every y there is an z so that 1 + 22 = y. This sentence is not true in R. If
we take y = —2, for example, then there is no such x. So the structure R does
not model the sentence Vy3z(1 4+ x - x = y).

Let M be a V-structure and let ¢ be a V-sentence. We now formally define
what it means for M to model . First we define this concept for sentences ¢
that do not contain the abbreviations V, —, «», or V. We define M = ¢ by
induction on the total number of occurrences of the symbols A, =, and 3. If ¢
has zero occurences of these symbols, then ¢ is atomic.

o If © is atomic, then ¢ either has the form ¢; = to or R(ty,...,t,,) where
t1,...,t, are terms and R is a relation in V. Since ¢ is a sentence, (contains
no variables, and so each ¢; is interpreted as some element a; in the universe
U of M. In this case,

M = t; =ty if and only if a; and ag are the same element of U, and

M = R(t1,...,tm) if and only if the tuple (a1, ..., an) is in the subset of
U™ assigned to the m-ary relation R.

Now suppose that ¢ contains m+1 occurrences of A, -, and 3. Suppose that
M k= ¢ has been defined for any sentence ¢ containing at most m occurrences of

Structures and first-order logic 61

these symbols. Since first-order formulas are constructed from atomic formulas
using rules (R1), (R2), and (R3), there are three possibilities for (.

o If ¢ has the form —, then M |= ¢ if and only if M does not model .
e If © has the form ¢ A6, then M = ¢ if and only if both M | ¢ and M = 6.

The third possibility is that ¢ has the form Jzv. If x is not a free variable
of ¢ then M |= ¢ if and only if M = . Otherwise, let ¢(x) be a formula having
x as a free variable. Before defining M |= ¢ in this case, we introduce the notion
of expansion.

Definition 2.19 Let V be a vocabulary. An expansion of V is a vocabulary
containing V as a subset.

Definition 2.20 Let M be a V-structure. A structure M’ is an expansion of M
if M’ has the same universe as M and interprets the symbols of V in the same
way as M.

If M’ is an expansion of M, then, reversing our point of view, we say that
M is a reduct of M.

If M’ is an expansion of M, then the vocabulary of M’ is necessarily an
expansion of the vocabulary of M.

Example 2.21 The structure M’ = (R|+,—,-,<,0,1) is an expansion of M =
(R]+, -, <,0) where each of these structures interpret the symbols in the usual
way (see Example 2.16).

Example 2.22 Any structure is (trivially) an expansion of itself.

Our immediate interest is the expansion of a V-structure M obtained by
adding a new constant to the vocabulary for each element of the universe Uy,
of M. Let V(M) denote the vocabulary V U {¢;,|m € U} where each ¢, is a
constant. Let M denote the unique expansion of M to a V(M)-structure that
interprets each c,, as the element m.

o If ¢ has the form Jze(x), then M | ¢ if and only if Mc = ¢(c) for some
constant ¢ of V(M).

We have now defined M = ¢ for any sentence ¢ that does not use V, —,
<, or V. Since each of these symbols is defined in terms of =, A, and 3, the
definition of M = ¢ can be extended to all sentences in a natural way. Suppose
that, for some sentence ¢, M |= ¢’ has been defined. Suppose further that ¢’
has a subformula of the form —(—t A —0). Let ¢ be the sentence obtained by
replacing an occurrence of the subformula —(—¢ A =) in ¢’ with (¢ V 0). We

62 Structures and first-order logic

define M | ¢ to mean the same as M | ¢'. Likewise, if ¢ is obtained from
¢’ by replacing a subformula of the form (¢ — 6) with (=¢ Vv 6), (¢ < 6) with
(¥ — O) A (0 —), or =Fz—)(x) with Vip(z) then, as definition, M = ¢ if and
only if M = ¢'.

We have now defined what it means for a V-structure M to be a model of a
V-sentence . We further extend the definition to apply to all V(M)-sentences.
Recall that V(M) is the expansion of V obtained by adding a new constant for
each element in the universe of M. There is a natural expansion of M to a V(M)-
structure denoted by M¢. For any V(M)-sentence ¢, we define M = ¢ to mean
Mc = ¢. For any V-structure M, we refer to the constants of V(M) that are
not in V as parameters.

Example 2.23 Let V. be the vocabulary consisting of a single binary relation
<. Let R< be the V.-structure having underlying set R which interprets < in
the usual way. Then R models

Vedy3z((y < 2) A (z < 2)),

Va¥y((z <) — Fx((z < 2) A (= <)
3<5)A(-2<0), and

—Jx((z < =2) A (b < x)).

The first two are V.-sentences. The other two are V. (R)-sentences that are
not V.-sentences. We regard —2, 0, 3, and 5 as parameters.

Note that we have not defined the concept of “models” for formulas that
are not sentences. Conventionally, when one says that a structure M mod-

els a formula p(z1,...,z,), what is meant is that M models the sentence
V... Vepe(x,...,2,). Of course, the formula ¢(z1,...,z,) may be true for
some values of x1,...,x, and not for others. The set of n-tuples for which the

formula holds is called the set defined by .

Definition 2.24 Let (1, ...,2,) be a V-formula. Let M be a V-structure having
underlying set Ups. The set of all n-tuples (by,...,by,) € (Up)™ for which M =
o(b1,...,by) is denoted by ¢(M). The set ¢(M) is called a V-definable subset of
M (although it is actually a subset of (Ups)").

Typically, most subsets of a structure’s universe are not definable (as we will
see in Section 2.5). The definable subsets are special subsets and play a central
role in model theory (Chapters 4-6). The V-definable subsets are the subsets
that the vocabulary V is capable of describing. For the sake of model theory, the
notion of a first-order structure can be defined without reference to the syntax of

Structures and first-order logic 63

first-order logic. In general, a “structure” can be defined as a set with together
with special subsets having names. A first-order structure is a structure having
names for those sets that are definable by a first-order formula (see Exercises 2.11
and 2.12).

Example 2.25 Let V. and R. be as in the previous example. Consider the
V< (R<)-formulas

(x<y)V(x>y)V(xr=y), and
((z<3)A=(z=3)AB<a)V(r=5)V(x<-2).

Let ¢(x,y) denote the first formula and let ¢(z) denote the second formula. Then
R. E ¢(x,y). By this we mean that R. models the sentence VaVyp(z,y). It
follows that the set defined by ¢(z,y) is all of R2. In contrast, the formula v (x)
does not hold for all z in R. So R< does not model this formula. The set ¥)(R<)
defined by 9(x) is (—o0, —2) U (3,5]. Note that R also does not model the
formula —(x). The set =¢)(R<) is [2,3] U (5, 00), the complement of ¢/(R<)
in R.

If M models @, then we say ¢ holds in M, or simply, that ¢ is true in M.
A sentence may be true in one structure and not in another. If a V-sentence ¢
holds in every V-structure, then it is valid, (or a tautology). If the sentence ¢
holds in some structure, then it is satisfiable. Otherwise, if there is no structure
in which ¢ is true, then ¢ is unsatisfiable (or a contradiction).

We use the same terminology as in propositional logic. We give the analogous
definitions for consequence and equivalence. For V-sentences 6 and ¢, “0 is a
consequence of ¢” means that, for every V-structure M, if M | ¢ then M = 6.
And “f is equivalent to ¢” means that 6 and ¢ are consequences of each other.
Again, we use the following notation:

= means that ¢ is a tautology,
¢ = v means 9 is a consequence of ¢, and
@ = 0 means @ and 1 are equivalent.

The definition of satisfiability can be extended to apply to all formulas of
first-order logic (not just sentences). The formula @(z1,...,z,,) is satisfiable if
and only if the sentence Vi ...V, p(z1,...,z,y) is satisfiable. Therefore, the
notions of unsatisfiability, tautology, and consequence also apply to formulas as
well as sentences (see Exercise 2.6).

A primary aim of ours is to resolve the following decision problems.

Validity problem: Given formula ¢, is ¢ valid?
Satisfiability problem: Given formula ¢, is ¢ satisfiable?

64 Structures and first-order logic

Consequence problem: Given formulas ¢ and v, is ¥ a consequence of ¢?
Equivalence problem: Given formulas ¢ and v, are ¢ and ¥ equivalent?

These are, in some sense, variations of the same problem. For this reason we
focus on just one of these: the Satisfiability problem. If we could resolve this
problem, then we could also resolve the Validity problem (by asking if -y is
unsatisfiable), the Consequence problem (by asking if ¢ A =) is unsatisfiable),
and the Equivalence problem (by asking if ¢ and 1 are consequences of each
other).

The question of whether or not a given formula is satisfiable regards the
syntax of the formula rather than the semantics. For example, consider the
formula (y + 1) < y. If we interpret the vocabulary {+4,<,1} in the usual
manner, then this formula cannot be satisfied. The result of adding one to a
number cannot be less than the number. Under a different interpretation, how-
ever, this formula is satisfiable (suppose that we interpret < as “not equal”).
For the same reason, 2 + 2 = 4 is not a tautology. For an example of a
formula that is not satisfiable, consider VzR(z,y) — Jx—R(z,y). This for-
mula is unsatisfiable by virtue of its structure. It has the form “p implies
not p.” Regardless of how the binary relation R is interpreted, the formula is
contradictory.

The Satisfiability problem for first-order logic is decidedly more difficult
than the corresponding problem for propositional logic. In propositional logic we
could, in theory, compute a truth table to determine whether or not a formula
is satisfiable. In first-order logic, we would have to check every structure to do
this. We have no systematic way for doing this. So, for now, we have no way
of proving that a first-order formula is unsatisfiable. To show that a formula is
satisfiable, however, can be easy. We need only to find one structure in which it
is true.

Example 2.26 Let ¢ be the sentence VaIyR(z, y) A JyVz—R(z, y). To show that
this is satisfiable, we must find a structure M that models ¢.

Let M = (N|R) where N denotes the natural numbers and the binary rela-
tion R is interpreted as the successor relation. That is, R(x,y) holds if and only
if y=x+1 (y is the successor of x).

Under this interpretation, ¢ says that every element has a successor and
there exists an element that has no predecessor. This is true in M. Every natural
number has a successor, but 0 has no predecessor.

So M = ¢ and o is satisfiable.

It is also easy to see that ¢ is not a tautology. We need only to find one
structure that models —p. Consider, for example, the structure N = (Z|R)

Structures and first-order logic 65

where Z denotes the set of integers and the binary relation R is interpreted as
the successor relation. This structure does not model ¢ since every integer has
a predecessor.

Example 2.27 Let Vg be the vocabulary {E} consisting of one binary relation.
Let M be a Vg-structure. The relation E is an equivalence relation on M if and
only if M models the three sentences

Ve E(z,)
VaVy(E(z,y) — E(y,x))

VaVyVz((E(z,y) A E(y, z) — E(x,2))).

The first sentence, call it @1, says that F is reflexive, the second sentence, (o,
says that E is symmetric, and the third sentence 3 says E is transitive.

We have seen equivalence relations before. “Equivalence” was the name
we gave to the relation = between formulas of propositional logic. It is easy
to see that this relation warrants the name we bestowed it. It clearly satisfies
the three conditions of an equivalence relation. That is, the Vg-structure (U|E)
models each ¢;, where U is the set of all formulas of propositional logic and FE
is interpreted as =.

We can show that these three sentences are not redundant, that all three
are needed to define the notion of equivalence relation. To do this, we show that
none of these sentences is a consequence of the other two. For example, to show
that ¢o is not a consequence of p; and @3, we must find a structure that is a
model of ¢1 A w3 A —py. That is, we must demonstrate a Vg-structure where
E is reflexive and transitive, but not symmetric. The Vg-structure (R|E) where
F is interpreted as < on the real numbers is such a structure. Likewise, we can
show that ¢, is not a consequence of @9 and y3, and 3 is not a consequence of
w1 and @o. We leave this as Exercise 2.4.

In these examples we are able to show that certain formulas are satis-
fiable by exhibiting structures in which they hold. Using this same idea, we
can show that a given formula is not a tautology, that one formula is not a
consequence of another, and that two given formulas are not equivalent. How-
ever, we have no way at present to show that a formula is unsatisfiable, or a
tautology, or that one formula is a consequence of another. This is the topic
of Chapter 3 where we define both formal proofs and resolution for first-order
logic.

66 Structures and first-order logic

2.4 Examples of structures

Let us now examine some specific structures. We consider four types of structures
that one encounters in mathematics and computer science: number systems,
linear orders, databases, and graphs.

2.4.1 Graphs. Graph theory provides examples of mathematical structures that
are both accessible and versatile.

Definition 2.28 A graph is a set of points, called vertices, and lines, called edges
so that every edge starts at a vertex and ends at a vertex. Two vertices are said
to be adjacent if they are connected by an edge.

The following are examples of graphs:

Graph 1 Graph 2 Graph 3 Graph 4

Instead of giving a picture, we can describe a graph by listing its vertices
and edges. The following data completely describes a graph.

Vertices: a, b, ¢, d, e
Edges: ab, ad, ae, bc, cd, ce, de

This graph has five vertices (a, b, ¢, d, and e) and seven edges (between vertices a
and b, a and d, and so forth). Note that both Graphs 2 and 3 fit this description.
We regard Graphs 2 and 3 as two depictions of the same graph.

We can view any graph as a structure G as follows. The underlying set U of
G is the set of vertices. The vocabulary Vg of G consists of a single binary relation
R. The structure G interprets R as the edge relation. That is, for elements a
and b of U, G = R(a,b) if and only if the graph has an edge between vertices a
and b.

FEach of the above graphs model each the following two Vg-sentences.

Vz—-R(z,)
VaVy(R(z,y) < R(y,x))

The first of these sentences says that the binary relation R is not reflexive (no ver-
tex is adjacent to itself). The second sentence says that R is symmetric. Hence-
forth, when we speak of a graph, we mean a Vg-structure that models the above

Structures and first-order logic 67

two sentences. Our notion of a “graph” is more accurately described in graph
theoretic terms as an “undirected graph with neither multiple edges nor loops.”

Graphs 1-4 also model the sentence VxIyR(x,y) which asserts that each
vertex is adjacent to some other vertex. However, this is not true of all graphs.
For example, consider the following graph:

Graph 5

The vertex in the middle of the square is not adjacent to any vertex. There-
fore, this graph models JxVy—R(z,y) which is equivalent to the negation of
VaxIyR(z,y). Any graph containing more than one vertex that models this
negation must not be connected. We now define this terminology.

Definition 2.29 For any vertices a and b of a graph, a path from a to b is a
sequence of vertices beginning with a and ending with b such that each vertex
other than a is adjacent to the previous vertex in the sequence.

Definition 2.30 A graph is connected if for any two vertices a and b in G, there
exists a path from a to b.

Each of the Graphs 1-4 is connected. Since each has more than one ver-
tex, each models Vz3yR(x,y). On the other hand, none of these graphs models
JzVyR(x,y). This sentence asserts that there exists a vertex that is adjacent
to every vertex. Since no vertex is adjacent to itself, no graph models this sen-
tence (i.e. the negation of IzVyR(z,y) is a consequence of V- R(x, z)). However,
Graph 1 contains a vertex that is adjacent to every vertex other than itself. This
can be expressed in first-order logic as follows:

JxVy(—(z = y) — R(z,y)).

Graph 4 also models this sentence.

To distinguish Graph 1 from Graph 4, we can say that Graph 1 contains
a unique vertex that is adjacent to every vertex other than itself. This can be
expressed as a sentence of first-order logic. To simplify this sentence, let ¢(x)
denote the formula Vy(—(z = y) — R(z,y)). For any graph G and any vertex a
of G, G E p(a) if and only if a is adjacent to every vertex of G other than a
itself. The following sentence says there is a unique such element:

Jyp(y) AVz(p(2) — (2 = y)).

This sentence distinguishes Graph 1 from Graphs 2—4.

68 Structures and first-order logic

Graph 4, on the other hand, is characterized by the following sentence that
says that ¢(x) holds for every vertex x.

VaVy(—-(z = y) — R(x,y)).

Any graph that models this sentence is called a clique (or a complete graph). The
clique having n vertices is called the n-clique and is denoted by K,,. So Graph 4
is the 8-clique Kg. Note that, when n is specified, we use the definite article
when referring to the n-clique. This is because any two n-cliques are essentially
the same. More precisely, they are isomorphic.

Definition 2.31 Graphs G; and G2 are said to be isomorphic if there exists
a one-to-one correspondence f from the set of vertices of (G; onto the set of
vertices of G5 such that for any vertices a and b of GG, a and b are adjacent in
G, if and only f(a) and f(b) are adjacent in G3. Such a function f is called an
isomorphism.

Isomorphic graphs are essentially the same.
Example 2.32 Consider the following two graphs.

Graph G:
Vertices: a, b, ¢, d
Edges: ab, be, cd, ad.

Graph H:
Vertices: w, z, y, 2
Edges: wz, wy, zz, yz.

The function f defined by
fla) =w, f(b) =z, f(c) =2, and f[f(d) =y

is an isomorphism from G onto H. Both of these graphs can be depicted as
squares. The only difference between G and H are the letters used to represent
the vertices.

We have demonstrated a Vg-sentence distinguishing Graph 1 from Graph 4.
We can do much better than this. There exists a Vg-sentence distinguishing
Graph 1 from all graphs that are not isomorphic to Graph 1. That is, there
exists a Vg-sentence pg such that for any graph H, H = ¢ if and only if H is
isomorphic to G. We prove this in Section 2.6 as Proposition 2.81. In this sense,
first-order logic is a powerful language for describing finite graphs.

In another sense, however, first-order logic is not a powerful language.
Basic graph theoretic properties cannot be expressed using first-order logic. For
example, there is no first-order sentence that says a graph has an even number

Structures and first-order logic 69

of vertices. Also, first order logic cannot say that a graph is connected. Recall
that the sentence VzIyR(z,y) holds in any connected graph having more than
one vertex. However, just because this sentence holds in a structure does not
mean that it is connected. There is no Vg-sentence ¢ such that G | ¢ if and
only if G is a connected graph. These and other limitations of first-order logic
are discussed in Section 4.7.

2.4.2 Relational databases. Relational databases provide concrete examples of
structures. Any collection of data can be viewed as a database, whether it be a
phone book, a CD catalog, or a family tree. A relational database is presented
as a set of tables. For example, the three tables below form a relational database
(Tables 2.1-2.3).

We now describe a structure D representing this relational database. The
underlying set of D consists of all items occuring as an entry in some column of
a table. So this set contains 13 names and four dates.

Table 2.1 Parent table

Parent Child
Ray Ken
Ray Sue
Sue Tim
Dot Jim
Bob Jim
Bob Liz
Jim Tim
Sue Sam
Jim Sam
Zelda Max
Sam Max

Table 2.2 Female table

‘Women

Dot
Zelda
Liz

Sue

70 Structures and first-order logic

Table 2.3 Birthday table

Person Birthday
Ann August 5
Leo August 8
Max July 28
Sam August 1
Sue July 24

The vocabulary V of D consists of a n-ary relation for each table where n
is the number of columns in the table. That is, the vocabulary contains a unary
relation F' and binary relations P and B corresponding to the Female, Parent,
and Birthday tables.

The V-structure D interprets these relations as rows of the tables. For
example, D | B(a,b) if and only if “ab” is a row of the Birthday table. This
completely describes the V-structure D. For example, we see that

D & F(Dot),D E P(Zelda, Max), and
D = —~B(Zelda, July 28).

In addition to B, F', and P, we can define first-order formulas expressing
various other relations in D. For example, the formula = F(z) says that « is male.
The formula 3z(P(z, z) AP(z,y)) says that x is a grandparent of y. The conjunction
of this formula with F'(z) says that z is a grandmother of y. The formula JyB(x, y)
says that x is a date and the negation of this formula says that x is a person. The
formula 3z(B(x, z) A B(y, z)) asserts that « and y share the same birthday. There
is no end to the relations that can be defined (see Exercise 2.2).

We return to this example at the end of Chapter 3 where we discuss Prolog.
Prolog is a programming language based on first-order Horn logic that can be
used to present and search any relational database.

2.4.3 Linear orders. Next, we look at some structures in the vocabulary V.
consisting solely of the binary relation <. Rather than use the notation “< (z,y)”
we use the more familiar “x < y” to express that the binary relation < holds for
the ordered pair (z,y). As our choice of symbols indicates, each of the structures
we consider interprets < as “less than.”

We consider four V. -structures denoted by N, Z., Q., and R.. To define
each structure, we must state what the underlying set is and how the symbols
are to be interpreted. The underlying sets of the above structures are, in order,
the natural numbers, the integers, the rational numbers, and the real numbers.

Structures and first-order logic 71

Each of these structures interprets < in the usual way. We can present these
structures more concisely as follows:

.« No=(N|<)
* Z. =(Z| <)
e Q. =(Q[<)
e R. = (R| <).

These four structures have a lot in common. They are all V_-structures and
each of them models the following V.-sentences:

Vavy((z <y) — ~(y <))

Ve(-(z < x))

VaVy((z <y) vV (y <2)V(z=1y))
VaVyVz(((z < y) A (y < 2)) — (z < 2)).

Taken together, these sentences say that < linearly orders the underlying set.
Each of the four structures models each of these four sentences. However, this
is not true for all V.-sentences. Let ¢ be the sentence VzIy(y < x), saying
that there is no smallest element. Clearly, R, Q., and Z. are models of ¢.
However, N does have a smallest element, namely 1. So N does not model ¢,
rather N models the sentence JxVy—(y < x), asserting that there is a smallest
element. Call this sentence 6. Note that 6 is equivalent to —¢. The sentence 6
distinguishes N~ from the other three models.

Next let us find a first-order sentence distinguishing Z. from the other
three structures. Observe that Z_. has no smallest element and it is not dense.
A linearly ordered set is dense if between any two elements, there is another
element. This property can be expressed in first-order logic by the following
V.-sentence

VaVy((x < y) — Fz((x < 2) A (z < y))).

Call this sentence 6. Both Q. and R. model §. Between any two rational
numbers a and b there exist infinitely many rational numbers [(a +) /2 for one].
The same is true for the real numbers. However, the integers are not dense.
Between 1 and 2 there are no other integers. So Z. = —d. The V.-sentence
@ A =4 distinguishes Z . from the other three structures.

Now suppose that we want to distinguish between Q. and R.. We may
use the fact that R« is bigger than Q.. (In the next section, we discuss the size
of a structure in detail and show that, is some precise sense, there are more real

72 Structures and first-order logic

numbers than rational numbers.) Another distinguishing characteristic is order-
completeness. A linear order is order-complete if it cannot be split into two open
intervals. The set of rational numbers, for example, is the union of the intervals
(—00,v/2) and (v/2,00). The parentheses “(” and “)” indicate that the intervals
do not contain the end points (this is what we mean by “open”). Since v/2 is
not a rational number, every rational number is in one of these two intervals.
So Q< does not have order-completeness. The structure R, on the other hand,
does have order-completeness. This is a distinguishing characteristic of the real
numbers.

However, if we attempt to find a V.-sentence that distinguishes R« from
Q., we will fail. For every V.-sentence ¢, R. | ¢ if and only if Q< | .
We give an elementary proof of this in Section 5.2. Our first-order language
is too weak to express any difference in these structures. We noted that R
is order-complete whereas Q. is not, but we cannot express this with a first-
order sentence (try it). Rather, order-completeness is a second-order concept. In
second-order logic we can express things like “there do not exist two subsets such
that...” We also noted that R is bigger than Q, but, as we will see in Chapter 4,
first-order logic can not distinguish between one infinite number and another.
Both Q< and R< are infinite, and that is all first-order logic can say. From the
point of view of V_-sentences, the structures R and Q. are identical.

2.4.4 Number systems. Although first-order logic cannot tell the difference
between the V_-structures Q. and R, it can tell the difference between the
real numbers and the rational numbers in vocabularies other than V.. Consider
the vocabulary of arithmetic {+,-,0,1} having binary functions + and -, and
constants 0 and 1. Let V,, denote this vocabulary and consider the following
Var-structures:

e A= (Z|+,-0,1),
hd Q = (Q|+7 'aovl)a
e R=(R|+,-,0,1),
e C=(Cl+,-,0,1).

The underlying sets of these structures are, in order, the integers, the
rational numbers, real numbers, and the complex numbers. Each of these
structures interprets the symbols of V,,. in the usual way.

Rather than use the formal notation “+(x,y) = 2” we use the more conven-
tional “x 4y = z.” Likewise, we write x -y instead of -(z,y). We let 2 abbreviate
(1+1), 22 abbreviate x - z, and so on. Any polynomial having natural numbers

Structures and first-order logic 73

as coefficients is a V,,-term. Equations such as (for example)
5 —
22 =92 +3=0

are Vg,-formulas. Again, 3 and z° are not symbols in V,,., they are abbreviations
for the V,, terms (14 (14 1)) and z- (z - (z - (x - x))), respectively.

We still cannot express order-completeness in this vocabulary, but we can
distinguish between the structures R and Q. The V,,-sentence 3x(x? = 2) asserts
the existence of v/2. It follows that R models this sentence and Q does not.
Likewise, the equation 2x + 3 = 0 has a solution in Q but not in A. So Q |
Ix(2x + 3 = 0), whereas A = -3x(2x + 3 = 0).

To progress from N to Z to Q, we add solutions for more and more polyno-
mials. We reach the end of the line with the complex numbers C. The complex
numbers are obtained by adding to the reals, the solution i = v/—1 of the equa-
tion 22 +1 = 0. The V,,-sentence 3z(2? + 1 = 0) distinguishes C from the other
structures in our list. The set C consists of all numbers of the form a + bi where
a and b are both real numbers. The Fundamental Theorem of Algebra states
that for any nonconstant polynomial P(x) having coeflicients in C, the equation
P(z) = 0 has a solution in C (this is true even for polynomials of more than one
variable). So there is no need to extend to a bigger number system. By virtue
of adding a solution of 22 +1 = 0 to R, we have added a solution for every
polynomial.

The names of these number systems reflect historical biases. The counting
numbers 1,2, 3, ... are the “natural” numbers to consider in mathematics. Negat-
ive numbers are not natural, the square root of 2 is irrational, and the square
root of —1 is imaginary. The names suggest that things get more complicated as
we progress from “natural” numbers to “complex” numbers. From the point of
view of first-order logic, however, this is backwards. The structure C is the most
simple. The structure R is not simple like C, but it does have many desirable
properties. We will discuss the properties of these two structures in Chapter 5.
The structure A is not so nice. The “A” stands for arithmetic, which sounds
quite elementary. However, from the point of view of first-order logic, A is most
complex. We investigate the structure A in Chapter 8.

2.5 The size of a structure

For any set U, |U| denotes the number of elements in U. For a V-structure M,
| M| means |Ups|, the number of elements in the underlying set Up; of M. We
refer to | M| as the size of M. For example, if M5 is Graph 2 from Section 2.1,
then |Ms| = 5. If the underlying set of M is infinite, then we could just write

74 Structures and first-order logic

|M| = oo and say no more, but this oversimplifies the situation. It implies that
any two infinite sets have the same size. This is not the case. To explain this, we
need to say precisely what we mean by “same size.”

Let A and B be two finite sets. Picture each set as a box of ping pong balls.
Imagine reaching into box A with your left hand and box B with your right hand
and removing one ball from each. Repeat this process. Reach in to the boxes and
simultaneously remove a ball from each, and again, and again. Eventually, one
of the boxes is emptied. If box B is emptied first, then we conclude that box A
must have contained at least as many balls as box B at the outset. That is,
|B| < |A]. Since A and B are finite, this is elementary. For infinite sets we take
this idea as definition of “|B| is less than or equal to |A|.”

Definition 2.33 Let A and B be sets. We define “|B| < |A]” as follows: |B| < |A]
if there exists a one-to-one function f from B into A.

The function in this definition plays the same role as our right and left hands
in the preceding discussion. The definition requires that f is one-to-one and has
domain B. Given any element b in B, the function “picks out” an element f(b)
from A. If such a function exists, we conclude that |B| < |A].

Example 2.34 Let P be the set of all prime natural numbers and let E be the
set of all even natural numbers. Let f: P — FE be defined by f(p) = 2p. This
function is one-to-one. We conclude that |P| < |E|. That is, there are at least as
many even numbers as there are prime numbers.

Example 2.35 Recall that N x N denotes the set of all ordered pairs (m,n) of
natural numbers. Let f: N — N x N be defined by f(n) = (n,1) for all n € N.
This function is one-to-one. We conclude that |[N| < |N x NJ|. The reader should
not be surprised by this fact. Less obvious is the fact that the opposite is true.
Consider the function g: N x N — N defined by g(m,n) = 2™3™. This too is a
one-to-one function. So not only is |N| less than or equal to |N x N|, but also
IN x NJ is less than or equal to |N|. Naturally, we conclude that these two sets
have the same size.

Definition 2.36 Let A and B be sets. We say A and B have the same size and
write |A| = |B] if both |B| < |A| and |A] < |B|. We write |A| < |B| if both
|A| < |B| and it is not the case that |A| = |B] .

So to show that two sets A and B have the same size we must demonstrate
a one-to-one function from A to B and a one-to-one function from B to A. It
suffices to show there exists a function f from A to B (or from B to A) that is
both one-to-one and onto (since f~1! is also one-to-one and onto). Such a function
is called a one-to-one correspondence or a bijection.

Structures and first-order logic 75

Example 2.37 Let N be the natural numbers and again let E' denote the even
natural numbers. In some sense there are “more” natural numbers than even
numbers (since E C N). However, these two sets have the same size. This is
witnessed by the function f(z) = 2z defining a bijection from N onto E.

Example 2.38 Let R be the real numbers and let I be (0, 1), the set of all reals
between 0 and 1. The function f: R — I defined by f(z) = (2/7) arctan z is a
bijection from R onto I. So [R| = |I|.

If sets A and B can be put into one-to-one correspondence with each other,
then they must have the same size. The following theorem states that the con-
verse is also true. If |A| < |B| and |B| < |A|, then there must exist a bijection
between A and B. This provides an alternative definition for “same size.”

Theorem 2.39 Sets A and B have the same size if and only if there exists a
bijection from A onto B.

Proof Only one direction requires proof. As we previously remarked, if there
exists a bijection between A and B, then A and B must have the same size. We
now prove the opposite: if |A| = | B], then such a bijection necessarily exists.

Suppose A and B have the same size. By the definition of “same size” there
exist one-to-one functions f: A — B and g: B — A. Our goal is to demonstrate
a bijection h: A — B. Before defining h, we define some sequences.

Given any a € A, we define a (possibly finite) sequence s, as follows. Let
a1 = a. Now suppose a,, € A has been defined for some m € N. Take b,, € B
such that g(b,,) = am,. If no such b, exists, then the sequence ends. Otherwise, if
by, does exist, the sequence continues. Take a,,+1 € A such that f(a,+1) = bpn.
Again, if no such a,,;1 exists, the sequence terminates. Note that the sequence
alternates between elements of A and elements of B. The sequence s, can be
depicted as follows:

9 f 9 f 9
a; by <—ag —by—az bz

There are three possibilities for the sequence s,. Either it terminates with some
element a; € A, or it terminates with some element b; € B, or it never terminates.
These three possibilities partition the set A into three subsets.

e Let A4 be the set of all @ € A such that s, terminates in A.

e Let Ap be the set of all a € A such that s, terminates in B.

e Let An be the set of all a € A such that s, never terminates.

Similarly, we can define sequences s; that begin with b € B and partition
B as follows:

e Let By be the set of all b € B such that s; terminates in A.

76 Structures and first-order logic

e Let Bp be the set of all b € B such that s, terminates in B.

e Let By be the set of all b € B such that s, never terminates.

The function f, when restricted to A 4, is a bijection f: Ax — Ba. We know
that f is one-to-one. To see that it is onto, take any b € B 4. Since the sequence
sp terminates in A, there must exist a € A4 such that f(a) = b. (Otherwise, sp
would be the one-element sequence b). Likewise g, when restricted to Bp, forms
a bijection g: Bg — Ap. Finally, Ay and By are in one-to-one correspondence
by either g or f. A bijection h: A — B can now be defined by putting these
three parts together.

f(a), a€ Ap
h(a) =< g7(a), ac Ap
f(a), a € Ay O

For finite sets, Theorem 2.39 is elementary. To determine how many ping
pong balls are in a given box, we put the ping pong balls into one-to-one corres-
pondence with the set {1,2,3,...,k} for some k € N (that is, we count them).
We say that two boxes contain the same number of ping pong balls if each can
be put into one-to-one correspondence with the same set {1,2,3,...,k} and,
hence, with each other. If A and B are infinite, we may have difficulty visualiz-
ing them as boxes of ping pong balls. We extrapolate our definitions for infinite
sets from the corresponding definitions for finite sets. Furthermore, we employ
the following assumption.

Assumption: If A and B are sets, then |A| < |B| or |B| < |A].

For finite A and B, this assumption is a fact that can be proved. If we
remove ping pong balls one at a time from each of two given boxes, eventually
one (or both) of the boxes will be emptied. We must be careful, however, when
handling boxes containing infinitely many ping pong balls (see Exercise 2.43).
For infinite A and B, we accept this assumption without proof. It is equivalent
to an axiom of mathematics known as the Axiom of Choice.

It follows from this assumption that, for any infinite set A, |N| < |A|. This
leads to a crucial dichotomy of infinite sets: either |[N| = |A| or |N| < |A].

Definition 2.40 A set A is denumerable if there exists a bijection between A
and N.

Definition 2.41 A set A is countable if it is either finite or denumerable.
Otherwise, A is uncountable.

Proposition 2.42 The set of rational numbers Q is countable.

Structures and first-order logic 7

Proof Clearly, [N| < |Q] (since N C Q). Conversely, each nonzero element in Q
can be written in a unique way as a reduced fraction of natural numbers times

(=1)™ for m =1 or 2. Let f : Q — N be defined by f(%(—1)") = 23*5™ where
¢ is reduced. Further, let f(0) = 0. Now f is a one-to-one function from Q into

N. By definition, |Q| < |N|. Hence Q and N have the same size. 0O

In a similar manner, we showed in Example 2.35 that Nx N has the same size
as N. So N x N is a countable set. We use this to prove the following useful fact.

Proposition 2.43 The union of countably many countable sets is countable.

Proof For each n € N, let A,, be a countable set. Let U denote the union of these
sets. If the A,s are each denumerable and are disjoint from one another, then U
is as big as possible. Suppose this is the case. So each A,, can be enumerated as
{a1,a2,as,...}. Let f(m,n) denote the mth element in the enumeration of 4,,.
This defines a bijection f: N x N — U. We conclude that U has the same size
as N x N. Since N x N is countable, so is U. [

An example of an uncountable set is provided by the set of all subsets of N.
For any set A, the set of all subsets of A is called the power set of A, denoted
by P(A). We show that |P(A)| is always strictly bigger than |A|.

Proposition 2.44 For any set A, |A] < [P(A4)].

Proof To show that |A| < |P(A)| we must show that both |A] < |P(A4)| and
4] £ [P(A)].

The one-to-one function f: A — P(A) defined by f(a) = {a} (for each
a € A) shows that |A| < |P(A)].

To show that |A| # |P(A)|, we must show that there does not exist a
bijection between A and P(A). Let g be an arbitrary one-to-one function from A
to P(A). We show that g is necessarily not onto. (Note that the above one-to-one
function f is not onto.) For each element a in A, either a is in the set g(a) or a
is not in g(a). Let X be the set of those elements a in A for which a is not in
g(a). Then a € X if and only if a & g(a). For each a € A, it cannot be the case
that g(a) = X (otherwise we would have a € X if and only if a ¢ X which is
absurd). Since X is not in the range of g, g is not onto. Since g was arbitrary,
we conclude that no one-to-one function from A to P(A) is onto. O

Corollary 2.45 Any denumerable set has uncountably many subsets.
In particular, there are uncountably many subsets of N. We use this fact to
show that there are uncountably many real numbers.

Proposition 2.46 The set of real numbers R is uncountable.

78 Structures and first-order logic

Proof We define a one-to-one function f from P(N) into R.

Let X be an element of P(N). Then, as a subset of the natural numbers,
X contains at most 10 single-digit numbers, at most 90 two-digit numbers, at
most 900 three-digit numbers, and so forth. Let rx be the real number between
0 and 1 described as follows. The first two digits following the decimal point
represent the number of single-digit numbers in X. These are succeeded by each
of the single-digit numbers in X listed in ascending order. The next two digits
in the decimal expansion of rx represent the number of two-digit numbers in
X. These are followed by the list of the two-digit numbers in X. The next three
digits state how many three-digit numbers are in X, and so forth.

For example, let X = {2,4,5,6,7,8,9,10, 24,213, 3246}. There are 07 single-
digit numbers in X (namely 2,4,5,6,7,8, and 9), there are 02 two-digit numbers
(namely 10 and 24), there is 001 three-digit number (213), and 0001 four-digit
number (3246). So we have

rx = 0.0724567890210240012130001324600000000. . .

The number rx contains a complete description of the set X. It follows that the
function f: P(N) — R defined by f(X) = rx is a one-to-one function. Hence
|P(N)| < |R]. Since P(N) is uncountable, so is R. [

We next show that there are only countably many V-formulas for any
countable vocabulary V.

Proposition 2.47 If the vocabulary V is countable, then so is the set of all
V-formulas.
Proof We define a one-to-one function f from the set of all V-formulas into N.
Since V is countable, we can assign a different natural number to each
symbol occurring in a V-formula. Then to each V-formula, there is an associ-
ated finite sequence of natural numbers. Suppose that a given V-formula ¢ has
ai,as,...,an, as its associated sequence of natural numbers. Define f(p) as the
product

201 .3%2 . 593 g0

where p,, denotes the nth prime number. We recall two basic facts about the
natural numbers: there are infinitely many primes and there is a unique way
to factor any given natural number into primes. So we can factor the natural
number f(y) to recover the sequence aq,...,a, and the formula ¢. It follows
that f is a one-to-one function as was required. [

By Proposition 2.47, most subsets of N are not definable in any countable
vocabulary. The same idea used to prove Proposition 2.47 can be used to show
that there are countably many sentences in English or any other natural lan-
guage. So there exist uncountably many real numbers that elude description in

Structures and first-order logic 79

any natural language. Likewise, there exist uncountably many subsets of the
natural numbers that cannot be defined. The following proposition shows that
this is also true of functions on the natural numbers.

Proposition 2.48 The set of all functions from N to N is uncountable.

Proof Let F denote the set of all functions from N to N. We show that |I| < |F|.
Recall that I is the interval (0,1) consisting of real numbers between 0 and 1.
By Example 2.38, I and R have the same size. By the previous proposition, I is
uncountable. Let r be an arbitrary element of I. Let f.: N — N be defined by
letting f,-(n) be the nth digit in the decimal expansion of r. Clearly, if r; and 79
are distinct numbers in I, then f,, and f,, are distinct functions. Therefore, the
function assigning f,- to input r is a one-to-one function from I to F'. It follows
that |I| < |F| and |F| is uncountable. (In fact, we have shown that there exist
uncountably many functions from N to the set {0,1,2,3,4,5,6,7,8,9}). O

A function f(x) is said to be computable if there exists a computer program
that outputs f(x) when given input x. Applying Proposition 2.47 to computer
languages, we see that there are only countably many possible computer pro-
grams. It follows that there are uncountably many functions from N to N that
cannot be computed. This is also true for functions on the reals. Most functions
are not computable. This fact defies empirical evidence. Most of the functions
with which we are familiar (most functions one encounters in calculus, say) are
computable. The notion of computability is discussed in detail in Chapter 7. In
Section 7.6.1, we shall give examples of functions that are precisely defined but
not computable.

At the outset of this section, we said that having a single notion of “infinity”
is misleading. We have replaced this with two notions. An infinite set is either
countable or uncountable. Many of the infinite sets we encounter either have
the same size as N or the same size as R. (Both P(N) and F' have the same size
as R. See Exercises 2.41 and 2.42.) This dichotomy is still crude. Proposition 2.44
guarantees the existence of arbitrarily large uncountable sets, so having a single
notion of “uncountable” is now misleading. In Section 4.2, we introduce cardinal
numbers to represent the size of a set and study the plethora of uncountable
numbers in more depth. For now, we end our digression into the infinite and
return to our discussion of structures.

2.6 Relations between structures

We consider certain relations that may or may not hold between two structures
in the same vocabulary.

80 Structures and first-order logic

2.6.1 Embeddings. Let M and N be structures. The notation f: M — N is
used to denote “f is a function from M to N.” When using this notation, it is
understood that f is not a symbol in the vocabularies of M or N. Each unary
function in the vocabulary of M is interpreted as a function from the universe
of M to itself. When we speak of a function from M to N, we actually mean a
function from the underlying set of M to the underlying set of N. That is, to
each element a from the universe Uy of M, f assigns an element f(a) in the
universe Uy of N. We are most interested in the case where, for some vocabulary
V, M, and N are both V-structures and f preserves certain V-formulas.

Definition 2.49 Let V be a vocabulary and let M and N be V-structures. A
function f: M — N preserves the V-formula ¢(Z) if, for each tuple a of elements

in M, M = ¢(a) implies N |= ¢(f(a)).

Definition 2.50 Let M and N be V-structures and let f: M — N be a function.
If f preserves all V-formulas that are literals, then f is a literal embedding (or just
an embedding). If f preserves all V-formulas, then f is an elementary embedding.

Example 2.51 Consider the following two graphs:

A B a b

D C d c

Let f: M — N be defined by

F(A) = a,f(B) = b, f(C) = ¢, and f(D)=d.
Let g : M — N be defined by

f(A) =b,f(B) =, f(C)=d, and [f(D)=f.
Then g is a literal embedding and f is not.

Example 2.52 Recall the structures N, Z., Q., and R. from Section 2.4.3.

Let id : N« — Z< be the identity function defined by id(x) = x. This is a
literal embedding. Since N = —3x(x < 0) and Z. = 3x(x < 0) this embed-
ding does not preserve the formula —3z(x < y), and so it is not an elementary
embedding.

The identity function id: Z. — Q< is also a literal embedding that is not
elementary (it does not preserve the formula -3z(y < x Az < 2)).

The identity function from Q- to R, on the other hand, is an elementary
embedding. This will be proved in Chapter 5.

Structures and first-order logic 81

We next show that literal embeddings necessarily preserve formulas other
than literals.

Definition 2.53 A quantifier-free formula is a formula in which the quantifiers
3 and V do not occur.

Definition 2.54 An existential formula is a formula of the form Jy;Jys ...y,
o(Z,Y1,Y2, - - -, Ym), Where p(Z,7) is a quantifier-free formula and m > 0.

We show that embeddings preserve existential formulas. First we prove the
following proposition regarding quantifier-free formulas.

Proposition 2.55 Let f : M — N be an embedding. Then for any quantifier-free
formula ¢(Z) and any tuple @ of elements from the universe of M,

M = p(a) if and only if N = o(f(a)).

Proof We proceed by induction on the complexity of ¢.

Suppose ¢(Z) is atomic. Then, since f preserves literals, if M = ¢(a), then
N = ¢(f(a)). Conversely, if N = ¢(f(a)) then, since —¢(Z) is a literal preserved
by f, it must be the case that M = ¢(a).

Now suppose that, for formulas 1) and 6,

M = ¢(a) if and only if N = ¢(f(a)), and
M = 0(a) if and only if N |=0(f(a))

for any tuple a of elements from the universe of M. This is our induction hypo-
thesis. Since we want to prove the proposition only for quantifier-free formulas,
the induction step, as in propositional logic, comprises three parts correspond-
ing to -, A, and =. We must show that M |= ¢(a) if and only if N = o(f(a))
when ¢ is =1, when ¢ is 9 A 6, and when ¢ = 1. The first two of these follow
immediately from the semantics of first-order logic and the latter follows from
the definition of =. O

Proposition 2.56 Embeddings preserve existential formulas.

Proof Let f : M — N be an embedding and let ¢(Z) be an existential for-
mula. We must show that, for any tuple a of elements from the universe Uy, of
M, if M = ¢(@) then N |= ¢(f(a)). Since ¢(Z) is existential, it has the form
Fy13ye ... JYmwo (T, y1, Y2, - - -, Ym), where ©o(Z,y) is a quantifier-free formula
and m > 0.

By the semantics of 3, M = ¢(a) means that M |= ¢o(a,b) for some tuple
b of elements from Up;. Since ¢ is quantifier-free, we have N |= oo(f(a), f(b))
by the previous proposition. Again by the semantics of 3, N = ¢(f(a)). O

82 Structures and first-order logic

Note that if f : M — N is a literal embedding then, by Proposition
255, M = a # b if and only if N |= f(a) # f(b). It follows that any literal
embedding is necessarily a one-to-one function. Note too that any elementary
embedding is a literal embedding. In general, “elementary” is a much stronger
adjective that “literal.” However, if f happens to be onto, then these two notions
coincide.

Proposition 2.57 Let M and N be V-structures. If the function f: M — N
is onto, then f is a literal embedding if and only if f is an elementary
embedding.

Proof Let f : M — N be an literal embedding that is onto. Then ! is
a one-to-one function from N onto M. We show that both f and f~! pre-
serve each V-formula. That is, for each V-formula ¢(z) and each tuple a of
elements from M, M |= ¢(a) if and only if N = ¢(f(a)). We prove this by
induction on the complexity of ¢(Z). If ¢(z) is atomic, then this is precisely
Proposition 2.55.

Our induction hypothesis is that both f and f~! preserve V-formulas 1) and
6. If ¢ is equivalent to v then it is also preserved by f and f~!. Moreover, if ¢
is either =) or ¥ A 6, then, by the semantics of — and A, ¢ is preserved by f
and f~!. It remains to be shown that ¢ is preserved in the case where ¢ is the
formula Jy1p.

Let ¢(Z) be the formula Jyy(Z,y). First we show that f preserves ¢.
Suppose that M [¢(a) for some tuple @ of elements in M. Then, by the
semantics of 3, M = (a,b) for some element b of M. Since 1) is preserved by
f, N = o(f(a), f(b)). Again by the semantics of 3, N = ¢(f(a)).

Now we show that f~! preserves ¢. Suppose that N = o(f(a)). Then, by
the semantics of 3, N | ¢(f(a),c) for some element ¢ of N. Since f is onto,
¢ = f(b) for some element b of M. Since f~! preserves ¥, M = 1(a,b). Finally,
again by the semantics of 3, M | p(a). O

Definition 2.58 Let M and N be V-structures. A function from M to N is an
isomorphism if it is a one-to-one correspondence that preserves every V-formula.

If such an isomorphism exists, then M and N are isomorphic, denoted
by M = N.

Definition 2.59 Let M and N be V-structures. If M and N model the same
V-sentences, then M and N are said to be elementarily equivalent, denoted
M = N.

Example 2.60 The V_-structures Q< and R« from Section 2.4.3 are element-
arily equivalent.

Proposition 2.61 Let M and N be V-structures. If M = N, then M = N.

Structures and first-order logic 83

Proof Let f : M — N be an isomorphism. Then both f and f~! preserve every
formula. In particular, for any sentence p, M = ¢ if and only if N E . O

If V-structures M and N are elementarily equivalent, then we cannot dis-
tinguish them using first-order logic. Moreover, if M and N are isomorphic,
then they are essentially the same. The only difference between isomorphic
structures is the names given to the elements of the underlying sets (recall
Example 2.32).

2.6.2 Substructures. If B is a set, then A C B means that A is a subset of B.
If N is a structure, then M C N means that M is a substructure of N. We now
define this concept.

Definition 2.62 For any structure N, M is a substructure of N, denoted M C
N, if

1. M is a structure having the same vocabulary as N,

2. the underlying set Up; of M is a subset of the underlying set Uy of N, and

3. M interprets the vocabulary in the same manner as N on Uy,.

Example 2.63 Recall the structures N, Z., Q., and R from Section 2.4.3.
We have N. C Z. C Q- C R. Likewise, for the structures discussed in
Section 2.4.4, A CQC R cC C.

Example 2.64 Let G be the following graph:

Vertices: a, b, ¢, d, e
Edges: ab, ac, ad, ae, bc, cd, de

If we choose any subset of these vertices and any subset of edges involving the
chosen vertices, then we obtain what is known in graph theory as a subgraph.
Let H be the following subgraph of G.

Vertices: a, b, ¢, d
Edges: ab, ad, bc, cd

Although H is a subgraph of G, H is not a substructure of G (viewing G
and H as Vg-structures). Since G |= R(a,c) and H = —R(a,c), H does not
interpret the binary relation R the same way as G does on the set {a,b,c,d}.
The notion of substructure corresponds to the graph theoretic notion of induced
subgraph.

Let N be a V-structure and let Uy be the underlying set for N. Not every
subset of Uy may serve as the universe for a substructure of N. Since a substruc-
ture is itself a V-structure, it must interpret each constant and function in V.

84 Structures and first-order logic

Since N is a V-structure, it interprets each constant ¢ in V' as an element a,. of
Un. Let C be the subset of Uy defined by C = {a.|c a constant in V}. Let f be
an n-ary function in V. A subset D of Uy is closed under f if and only if, for
each n-tuple a of elements of D, f(a) is also an element of D. For D to be the
universe of a substructure of N, it is necessary and sufficient that D contains
each element in C' and is closed under each function in V.

Example 2.65 Let N be the structure (N|.S) that interprets the binary relation
S as the successor relation. That is, for any a and b in N, N = S(a,b) if and
only if b = a + 1. Since the vocabulary contains neither constants nor functions,
every subset of N is the universe for a substructure of N. It follows that there
are uncountably many substructures of N. Moreover, there exist uncountably
many substructures, no two of which are isomorphic. We leave the verification
of this fact as Exercise 2.35.

Example 2.66 Let N be the structure (N|s) that interprets the unary function
s as the successor function. That is, for any @ and b in N, N = s(a) = b if and
only if b = a 4+ 1. Only those subsets of N that are closed under s may serve as
the universe of a substructure. The closed subsets of N are the sets of the form
{n|n > d} for some d € N. It follows that there are countably many substructures
of N. Moreover, all of these substructures are isomorphic. So there is only one
substructure up to isomorphism.

Example 2.67 Let N be the structure (N|s, 1) that interprets the unary function
s as the successor function and the constant 1 as the element 1 in N. If D C N
is the universe of a substructure of N, then D must contain 1 and be closed
under the function s. It follows that D must be all of N. Therefore, the only
substructure of IV is N itself.

An alternative definition of substructure is provided by the notion of
embedding.

Proposition 2.68 Let N and M be structures in the same vocabulary. Then M
is a substructure of N if and only if the identity function id : M — N defined
by id(x) = x is an embedding.

Proof Exercise 2.26. [

If M C N, then, reversing our point of view, N is said to be an extension
of M. Note the distinction between an “extension” and an “expansion” of a
structure. A structure has both an underlying set and a vocabulary. An expansion
of a structure has the same underlying set, but the vocabulary may be increased.
An extension of a structure has the same vocabulary, but the underlying set may
be enlarged.

Structures and first-order logic 85

Definition 2.69 The formula ¢(Z) is said to be preserved under extensions if,
whenever M C N and a is a tuple of elements from the universe of M, if

M = ¢(a) then N = p(a).

Definition 2.70 The formula ¢(Z) is said to be preserved under substructures
if, whenever M C N and a is a tuple of elements from the universe of M, if

N E p(a) then M = p(a).

Proposition 2.71 Quantifier-free formulas are preserved under substructures and
extensions.

Proof This follows immediately from Proposition 2.55. O

Proposition 2.72 Existential formulas are preserved under extensions.
Proof This follows immediately from Proposition 2.56. O

In particular, existential sentences are preserved under extensions. Intuit-
ively, an existential sentence asserts that a quantifier-free formula ¢o(7) holds
for some tuple g of elements in the universe. If this is true in M and M C N,
then it must also be true in N since every tuple of elements from the universe
of M is also a tuple of elements from the universe of N. Likewise, if () holds
for all tuples ¥ of elements in the universe of N, then, in particular, it holds
for all elements in any substructure of N. So sentences of the form Vg () are
preserved under substructures.

Definition 2.73 A universal formula is a formula of the form

Vy1Vy2 .. ~vym90(i.aylay2v s 7ym)a

where ¢(Z,7) is a quantifier-free formula and m > 0.
Proposition 2.74 Universal formulas are preserved under substructures.

Proof Exercise 2.32. [

In Chapter 4, we prove converses of these propositions. We show in
Section 4.5.1 that if a formula ¢ is preserved under substructures, then ¢ is
equivalent to an universal formula. Likewise, if ¢ is preserved under extensions,
then ¢ is equivalent to an existential formula.

The notion of elementary embedding yields the following strengthening of
the notion of substructure.

Definition 2.75 Let NV and M be structures in the same vocabulary. Then M is
an elementary substructure of N (or, equivalently, N is an elementary extension
of M), denoted M < N, if and only if the identity function id : M — N defined
by id(z) = x is an elementary embedding.

86 Structures and first-order logic

If N is an elementary extension of M, then for any formula ¢(z) and any
tuple @ of elements from the universe of M, M = ¢(a) if and only if N = ¢(a).
It follows that if M < N, then M = N. The converse of this does not hold. In
the following example, M is a substructure of N and M = N, but M is not an
elementary substructure of N.

Example 2.76 Let N be the natural numbers with the successor function. That
is, N = (NJ|s) from Example 2.66. Let M be the substructure of N having
universe {2,3,4,...}. Let f : N — M be defined by f(n) = n+1 for each n in N.
Then f is an isomorphism from N onto M. We have both M C N and M = N.
However, M is not an elementary substructure of V. There exists an elementary
embedding of M into N, but it is not the identity function. In particular, let ¢(x)
be the formula =3y (s(y) = z) saying that = has no predecessor. Then M | ¢(2),

but N E —p(2).

2.6.3 Diagrams. The concept of a diagram (and, more specifically, an element-
ary diagram) of a V-structure M is a fundamental concept that we shall use
repeatedly in this book (primarily in Chapter 4). Intuitively, a diagram of M
is a set of first-order sentences that together say “M can be embedded into
me.” That is, M can be embedded into any model of the diagram of M. Like-
wise, the elementary diagram of M is a set of sentences such that M can be
elementarily embedded into any model. We now explicitly define these sets of
sentences. Recall that V(M) denotes the expansion of V obtained by adding
a constant for each element of the underlying set of M and M denotes the
expansion of M to a V(M)-structure that interprets these constants in the
natural way.

Definition 2.77 Let M be a V-structure.

The elementary diagram of M, denoted ED(M) is the set of all V(M)-
sentences that hold in M¢.

The literal diagram of M, denoted D(M), is the set of all literals in ED(M).
We often refer to the literal diagram of M as simply the diagram of M.

Example 2.78 Consider the graph defined by the following information:

Vertices: a, b, ¢, d
Edges: ab, be, cd, bd.

Let G denote the Vg-structure represented by this graph. The diagram D(G)
contains the atomic formulas

R(a,b), R(b,c), R(c,d), and R(b,d)

Structures and first-order logic 87

stating the edges of G. It also contains the negated atomic formulas
—R(a,c) and -R(a,d)

stating the edges that are not in G. There are also negated atomic formulas
indicating that a, b, ¢, and d are distinct:

—(a=1b),7(a=c¢),~(a=d),=(b=c¢),~(b=d), and —(c=d).

Note that G can be embedded into any graph which models these 12 literals in
D(G). Moreover, D(G) contains the literals

R(b,a),R(c,b),R(d,c), and R(d,D)

along with
—R(a,a),~R(b,b), ~R(c,c),~R(d,d),

and
a=a,b=bc=c,d=d,~(b=a),~(c=a),...

and so forth. In all, there are 32 different (although redundant) literals in D(G).
Note that G can be embedded into any Vg-structure that models all of these
sentences.

Proposition 2.79 Let M and N be V-structures. The following are equivalent:

(i) M can be embedded into N.
(ii) N |=D(M) for some expansion N of N.
(iii) N’ = N for some extension N’ of M.
Proof Let Uy and Uy denote the underlying sets of M and IV, respectively.

First, we show (iii) implies (i). Suppose that M C N’ and N’ = N. Let
f : N’ — N be an isomorphism. Then f restricted to M is an embedding of M
into N.

To see that (i) implies (ii), suppose that f : M — N is an embedding. Let
C = {cym : m € Uy} be constants not in V. Let V(C) be the expansion VU C of
V. Let N be the expansion of N to a V(C)-structure that interprets each ¢, € C
as the element f(m) € Uy. Then N |= D(M).

Finally, let N be as in (ii). We want to show that (iii) holds. The set Uy,
might not be a subset of Uy. However, for each m € Uy, there must exist
m’ € Uy that N interprets as the constant c¢,,. Let Uy be the set obtained by
replacing each m’ € Uy with m. Now Uy C Upns. Let N’ be the V-structure
having underlying set Uy~ that interprets V in the same manner as N. Then the
function f defined by f(m) =m’ for m € Up; and f(z) =z for x € Uy — Uy is
and isomorphism from N onto N’. [

Likewise we have the following.

88 Structures and first-order logic

Proposition 2.80 Let M and N be V-structures. The following are equivalent:

(i) M can be elementarily embedded into N.
(ii) N = ED(M) for some expansion N of N.

(iii) N’ = N for some elementary extension N’ of M.

Proof Exercise 2.27. [

If M is a finite structure in a finite vocabulary, then D(M) is finite. It
follows that any finite structure is completely described by a single sentence of
first-order logic.

Proposition 2.81 Let V be a finite vocabulary. For any finite V-structure M,
there exists a V-sentence ¢js such that, for any V-structure N, N | ¢y if and
only if N & M.

Proof Let {a1,as,...,a,} be the underlying set of M. Let ¢(a) be the con-
junction of the finitely many sentences in D(M) where @ denotes the n-tuple
(a1,az2,...,a,). Let p(Z) denote the V-formula obtained by replacing each a;
in p(a) with the variable x; (which we assume does not occur in ¢(a)). We
abbreviate the sentence Jz13xs ... Iz, p(Z) by simply writing 3zp(z).

Let %, be the sentence

V.’Elv,fl,'g . .V(En+1 \/(1’1 = QC]‘)
i#J

saying that, given any n + 1 elements, there must exist two that are equal.

Now let ¢y be the sentence ¥, A IZp(T). We must verify that this sentence
works. Suppose N = @pr. Then, since N | 3Zp(Z), N contains n elements
b1,...,b, so that N |= ¢(b1,...,b,). By Proposition 2.79, M can be embedded
into N. Let f : M — N be an embedding. Since N = ¢, |N| < n. It fol-
lows that f must be onto. By Proposition 2.57, f is elementary and, hence, an
isomorphism. [J

Corollary 2.82 If M is finite, then, for any structure N, M = N if and only if
M = N.

As we previously mentioned, this corollary is not true for infinite structures.
If M is infinite, then there exist many non-isomorphic structures N for which
M = N. This is proved in Chapter 4. Phrased another way, first-order logic is not
capable of fully describing infinite structures. First-order logic is, in this sense,
a weak language. Ironically, as a consequence of this weakness, first-order logic

Structures and first-order logic 89

has many desirable properties (discussed in Chapter 4) that make it a prom-
inent logic. The weakness of first-order logic gives rise to the subject of model
theory.

2.7 Theories and models

Model theory is the branch of logic concerned with the interplay between math-
ematical structures and sentences of a formal language. First-order logic serves
as a primary language for this subject. Any structure M determines a set of
first-order sentences Th(M) called the theory of M.

Definition 2.83 For any V-structure M, the theory of M, denoted Th(M), is
the set of all V-sentences ¢ such that M | .

Conversely, any set of first-order sentences I'' determines a class of structures
Mod(T).

Definition 2.84 For any set of V-sentences, a model of I' is a V-structure that
models each sentence in I'. The class of all models of I" is denoted by Mod(T").

Note: The word class is used instead of set for Mod(T") because of the following
technicality: Mod(T') is sometimes unbounded. It is unbounded precisely when
I" has an infinite model. By unbounded we mean that for any set X, Mod(T") is
strictly bigger than X. If this is the case, then Mod(T") must not be a set (it
cannot be strictly bigger than itself).

Under certain conditions on I', the theory of any model of I' is T" itself. If
this is the case, then Th(M) =T if and only if M € Mod(T"). This happens only
if " is a complete theory, a notion that we presently define.

Definition 2.85 Let I" be a set of V-sentences. Then I' is a complete V-theory if,
for any V-sentence ¢ either ¢ or —¢ is in I' and it is not the case that both ¢
and —g are in I'.

Proposition 2.86 For any V-structure M, Th(M) is a complete V-theory.

Proof We show that for any vocabulary V, any V-structure M, and any V-
sentence @:

T either o or —p is in Th(M) and it is not the case that both ¢ and —p are
in Th(M).

With no loss of generality, we may assume that ¢ contains no occurrences
of V, —, <, or V. This is because these symbols are defined in terms of the
primitive symbols —, A, and 3. We proceed by induction on the number of total
occurences of =, A, and 3 in ¢.

90 Structures and first-order logic

If ¢ contains no occurrence of the primitive symbols, then ¢ has the form
R(t1,...,tn) or t; =ty where ty,...,t, are V-terms. That is, ¢ is atomic. Since
p is a sentence, each t; is variable-free. Since M is a V-structure and each t; is
a variable-free V-term, M interprets each ¢; as an element a; of the universe U
of M. By the definition of =, M |= t; = t5 if and only if a¢; and as are the same
element of U, and M | R(t1,...,t,) if and only if the tuple (a1,...,a,) is in
the subset of U™ that the interpretation of M assigns to R.

In either case, we see that M |= ¢ or M = —p and not both.

We have verified () for any vocabulary V, any V-structure M, and any
atomic V-sentence ¢. Now suppose that we have shown this for any V-sentence
containing at most m total occurences of -, A, and 3. This is our induction
hypothesis.

Suppose ¢ has the form —¢) or) A 6. By our induction hypothesis, (1) holds
for both ¢ and 6. By the semantics of — and A, the above statement also holds
for ¢. Finally, suppose that ¢ has the form 3¢ (z). By the semantics of 3, M = ¢
if and only if M¢c = ¢(c) for some constant ¢ in the vocabulary of M. Again
by our induction hypothesis, the above statement holds for (c), and therefore
it holds for ¢ as well.

It follows from induction that (1) holds for all sentences . O

This proposition, although quite elementary, is of fundamental importance.
This proposition verifies that first-order logic avoids the ambiguities and para-
doxes that arise in natural languages. In any set of first-order sentences describing
a given structure, there is nothing contradictory.

Definition 2.87 A set of sentences I is said to be consistent if no contradiction
can be derived from I'.

The word “derived” is formally defined for first-order logic in the next
chapter, but the idea is analogous to the notion of “derived” for propositional
logic.

Definition 2.88 A theory is a consistent set of sentences. If T' is a theory, then
Mod(T) is called an elementary class.

Let V be a vocabulary. Then a V-theory is a consistent set of V-sentences.
A V-theory T is a complete theory if it is maximal in the following sense: any set
of V-sentences that contains T" as a proper subset is not consistent. This agrees
with our previous definition of “complete theory.”

Model theory studies theories and models and the interaction between them.
Understanding the theory of a structure lends insight into the structure. The
theory describes the structure. On the other hand, understanding the models
of a theory lends insight into the theory. A theory T can be classified based on
various properties of Mod(T).

Structures and first-order logic 91

We continue our study of model theory in Chapters 4-6. Chapter 4 con-
siders the properties of first-order logic that make it an appropriate language
for model theory. In Chapter 5 we focus on theories and consider some proper-
ties that a theory may or may not posses. In Chapter 6, we consider individual
models of a theory that have special properties. Prior to this, in Chapter 3, we
consider the basic problem of determining whether a given sentence of first-order
logic is satisfiable. Toward this aim we develop formal proofs and resolution for
first-order logic.

Exercises

2.1. Let V be the vocabulary {+, <, 1,2,3} where + is a binary function, <
is a binary relation, and 1, 2, and 3 are constants. We write (z + y) for
+(z,y) and z < y for < (z,y). Consider the following V-formulas:

1. Vady((z+y) =1)

2. Va-(x <1)

3. (1+1)=2)

4. 2<1

5. Vz(2<1)— (z+2<z+1)

6. VaVydz(z +y==z)

7. VavVyVz(z+3=y)A(z+3=2)) = (y = 2))
8. VavVyVz((z+y=3)A(z+2=3)) = (y = 2))
9. Vavy(((z+3) <(y+3)) = (z <y))

10. VaVy((z <2) — ((x+3) =4))

(a) Which of these 10 formulas are sentences?
(b) Which of these 10 formulas are satisfiable?
(¢c) Which of these 10 formulas are tautologies?
(

d) Let NT be the V-structure having universe N that interprets the

symbols of V in the usual way. Which of the above sentences
does Nt model?

(e) Let R™ be the V-structure having universe R that interprets the
symbols of V in the usual way. Which of the above sentences
does R* model?

(f) List the terms occurring in the above formulas.

(g) For each of the ten formulas, state the number of subformulas.
How many atomic subformulas does each formula have?

92

2.2.

2.3.

2.4.

2.5.

Structures and first-order logic

Let V be the vocabulary consisting of a binary relation P and a unary

relation F. Interpret P(z,y) as “x is a parent of y” and F(x) as “z is

female.”

(a)
(b)
(c)
(d)
()

(f)

Define a V-formula ¢p(z,y) that says that x is a brother of y.

(z,y
Define a V-formula ¢ 4(x,y) that says that z is an aunt of y.
(z,y

x
Define a V-formula ¢ (x,y) that says that « and y are cousins.

Define a V-formula o (x) that says that x is an only child.

Define a V-formula or(z) that says that z has exactly two
brothers.

Give an example of a family relationship that cannot be defined by
a V-formula.

The finite spectrum of a first-order sentence ¢ is the set of natural numbers
n such that ¢ has a model of size M. Find a first-order sentence ¢ having
S as a finite spectrum for each of the following sets S:

(a)
(b)
()
(d)

S is the set of even natural numbers.
S is the set of odd natural numbers.
S is the set of prime numbers.

S is the set of perfect squares.

Refer to Example 2.27.

(a)
(b)

Show that ¢1 is not a consequence of @2 and 3.

Show that 3 is not a consequence of ¢ and @s.

Let Vg, be the vocabulary {+,0} where + is a binary function and 0 is a
constant. We use the notation = 4 y to denote the term +(z,y). Consider
the following V-sentences.

VaVyVz(z + (y + 2) = (z +y) + 2)
Ve((r4+0=2) A (042 =2x))

Ve(Jy(x +y = 0) A z(z + 2 =0)),

Let v be the conjunction of these three sentences.

(a)
(b)
(¢)

(d)

Show that ~ is satisfiable by exhibiting a model.
Show that 7 is not a tautology.

Let o be the sentence VaVy((z +y) = (y + x)).
Show that « is not a consequence of ~.

Show that ~ is not equivalent to the conjunction of any two of the
above three sentences.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

Structures and first-order logic 93

A first-order formula o (z) is said to be satisfiable if and only if the sentence
Vap(x) is satisfiable. Prove that a formula ¢(z) is a tautology if and only
if the sentence Jxp(z) is a tautology.

Let Vy = {+,-,1}. Let N be the Vy-structure having underlying set N

that interprets this vocabulary in the usual manner.

(a) Define a Vy-formula e(x) such that, for any a € N, N = ¢(a) if and
only if a is even.

(b) Define a Vy-formula 7(z) such that, for any a € N, N = 7(a) if and
only if a is prime.

(¢c) Define a Vy-formula u(z,y) such that, for any a and b in N, N |=
w(a,b) if and only if a and b are relatively prime (that is, the greatest
common divisor of a and b is 1).

(d) Define a Vy-formula v(x,y,z) such that, for any a, b, and ¢ in N,
N = v(a, b, c) if and only if ¢ is the least number divisible by both a
and b.

Goldbach’s conjecture states that every even integer greater than 2 is

the sum of two primes. Whether or not this is true is an open question

of number theory. State Golbach’s conjecture as a V,,.-sentence where

Var = {"‘7 '707 1}

Let Vo = {+,-,0,1} be the vocabulary of arithmetic. Let R be the

Var-structure that has universe R and interprets the vocabulary in the

usual manner.

(a) Define a V,,-formula a(z) such that, for any a € R, R = a(a) if and
only if a is positive.

(b) Define a V,,-formula §(z,y) such that, for any ¢ and b in R, A |
B(a,b) if and only if a < b.

(c) Define a Vg,-formula (z) such that, for any a in R, R | v(a) if and
only if the absolute value of a is less than 1.

Let V. and R be as in the previous exercise. Let VT = V,,. U {f} be

the expansion of V,, obtained by adding a unary function f. Define

a VT-sentence ¢ such that, for any expansion RT of R to a V'-

structure, RT = ¢ if and only if RT interprets f as a continuous

function.

Let A and B be definable subsets of structure M. Suppose that A and B
are both sets of n-tuples of elements from the underlying set of M.
(a) Show that AU B is definable.

(b) Show that AN B is definable.
(¢) Show that A — B = {ala € A and a ¢ B} is definable.

94

Structures and first-order logic

2.12. Let Uy be the underlying set for structure M. Suppose that A C (Ups)3
and B C (Uyps)? are definable subsets of M.

2.13.

2.14.

2.15.

2.16.

2.17.

(a)
(b)

(c)
(d)

(e)

Show that A x B C (Up)® is definable.

Suppose we rearrange the order of the n-tuples. Consider the set
of all (z,z,y) such that (z,y,z) is in A. Show that this set is
definable.

Show that C' C (Ujs)? is definable where C' is the set of ordered pairs
(z,y) such that (z,y, z) is in A for some z.

Show that D C (Upys)? is definable where D is the set of ordered pairs
(z,y) such that both (x,y,z) € A for some z and (z,y,z) € B for
some z.

Show that E C (Ups)? is definable where E is the set of ordered pairs
(x,y) such that, for some z, (z,y, z) is in both A and B.

We define the distance d(a,b) between two vertices a and b of a graph as
the least number of edges in a path from a to b. If no such path exists,
then d(a,b) = co. Recall that Vg is the vocabulary of graphs.

(a)

Show that, for any n € N, there exists a Vg-formula 6, (z, y) so that,
for any graph G, G = 6,(a,b) if and only if d(a,b) = n. (Define the
formulas d, (z, y) by induction on n.)

Does there exist a Vg-formula d(x,y) so that, for any graph G,
G = 0(a,b) if and only if d(a,b) = co? Explain your answer.
Define a Vg-sentence ¢ such that ¢ has arbitrarily large finite models
and, for any model G, GG is a connected graph.

Find a connected graph that does not model the sentence ¢ you
found in part (a).

Define a Vg-sentence ¢ such that —p has arbitrarily large finite
models and, G = ¢ for any connected graph G.

Find a graph that is not connected and models the sentence ¢ from
part (a).

Define a Vg-sentence ¢ such that ¢ has arbitrarily large finite models
and, for any finite model G of ¢, |G| is even.

Find a finite graph G such that |G| is even and G does not model
the sentence ¢ from part (a).

Define a Vg-sentence ¢ such that —¢ has arbitrarily large finite
models and, for any finite graph G, if |G| is even, then G = ¢.

Find a finite model G for the sentence ¢ from in part (a) such that
|G| is odd.

2.19.

2.20.

2.21.

2.22.

Structures and first-order logic 95

(a) Explain the difference between the first-order prefixes 3zVy and Va3y.

(b) Explain the difference between the first-order prefixes JzVydz and
VrIyvz.

(¢c) Explain the difference between the first-order prefixes Va3yVz3w and
JaxVy3zVw.

Show that the sentences VadyVz(R(x,y) A R(x,z) A R(y,z)) and
JzVy3z(R(x,y) A R(x, 2) A R(y, 2))

are not equivalent by exhibiting a graph that models one but not both of
these sentences.

32" means

For each n € N, 32" denotes a counting quantifier. Intuitively,
“there exists at least n such that.” First-order logic with counting quan-
tifiers is the logic obtained by adding these quantifiers (for each n € N)
to the fixed symbols of first-order logic. The syntax and semantics of this

logic are defined as follows.

Syntax: for any formula ¢ of first-order logic with counting quantifiers,
32"z is also a formula.

Semantics: M = 32" p(z) if and only if M |= ¢(a;) for each of n distinct
elements aq, asg, ..., a, in the universe of M.

(a) Using counting quantifiers, define a sentence 7 such that M | ¢
if and only if |M]| > 7.

(b) Using counting quantifiers, define a sentence o3 such that M |= ¢a3
if and only if |M]| < 23.

(¢) Using counting quantifiers, define a sentence (45 such that M = ¢g5
if and only if |M| = 45.

(d) Define a first-order sentence ¢ (not using counting quantifiers) that
is equivalent to the sentence 32"z (z =).

(e) Show that every formula using counting quantifiers is equivalent to a
formula that does not use counting quantifiers. Conclude that first-
order logic with counting quantifiers has the same expressive power
as first-order logic.

Suppose we are presented with a graph G that has multiple edges. This
means that there may be more than one edge between two vertices of
G (so, by our strict definition of “graph,” a graph with multiple edges
is not a graph). Describe G as a first-order V-structure for a suitable
vocabulary V.

Let K, be the n-clique for some n € N. Then any graph having at most
n vertices is a subgraph of K.

96

2.23.

2.24.

2.25.
2.26.
2.27.
2.28.

2.29.

2.30.

2.31.

2.32.

Structures and first-order logic

(a) How many substructures does K, have?

(b) How many substructures does K,, have up to isomorphism?

(¢) How many elementary substructures does K,, have?

Define an infinite structure having exactly n substructures where n is a

natural number greater than 1.

Let G be Graph 1 from Section 2.4.1.

(a) How many sentences are in the diagram of G?

(b) Find a sentence pg such that H = ¢g if and only if H = G.

Repeat Exercise 2.24 with Graph 4 from Section 2.4.1.

Prove Proposition 2.68.

Prove Proposition 2.80.

(a) Let N = (N|S,1). Show that any proper substructure of N is not
elementarily equivalent to V.

(b) Let N be the structure (N| <) from Section 2.4.3. Show that any
infinite substructure of N, is elementarily equivalent to N but no
proper substructure is an elementary substructure of N..

Let A, B, and C' be V-structures with A € B C C. For each of the
following, either prove the statement or provide a counter-example.
(a) fA<Band B=<C,then A=< C.

(b) f A<C and B < C, then A < B.
(¢c) fA<Band A=< C, then B=<C.

Let V be the vocabulary {s, P} consisting of a unary function s and a unary
relation P. Let M be the V-structure with universe N that interprets s as
the successor function and P as the predicate “even.” That is, for natural
numbers a and b, M = s(a) =bif and only if a+1 =05, and M = P(a)
if and only if a is even.

Let N be the V-structure with universe N that interprets s as the
successor function and P as the predicate “odd.” That is, IV interprets s
the same way as M, but N = P(a) if and only if a is odd.

(a) Show that there exist embeddings f; : M — N and fo: N — M.

(b) Show that M and N are not isomorphic.

Define structures M and N in the same vocabulary so that there exist
elementary embeddings f: M — N and g : N — M, but M % N.

Using the fact that existential formulas are preserved under exten-
sions, prove that wuniversal formulas are preserved under
substructures.

2.33.

2.34.

2.35.

2.36.

2.37.

2.38.

2.39.
2.40.

2.41.

Structures and first-order logic 97

Let M and N be V-structures. A function f : M — N is said to be a
homomorphism if it preserves atomic V-formulas. Suppose that f is onto
(i.e each element in the universe of N is in the range of f). Let ¢ be a
V-formula that does not contain the symbols =, —, nor «<». Show that f
preserves ¢.

Let M be a V-structure having underlying set U. For any n-tuple a =
(a1,...,ay) of elements from U, let (@) be the substructure of M generated
by a. That is, the underlying set of (@) is the smallest subset of U that
contains each a; and also contains all of the constants of V' and is closed
under each function of V. Let @ and b be two n-tuples of elements from U.
Show that the following are equivalent:

(i) For every quantifier-free V-formula ¢(z), M | ¢(a) if and only if

M o(b).
(i) (@) = (b).
Let N be the structure (N|.S) that interprets the binary relation S as the

successor relation. Show that N has uncountably many non-isomorphic
substructures.

Let A be a set. Prove that the following are equivalent.
(i) A is infinite.

(i) IN| <A

(iii) |AU B| = |A]| for any finite set B.

(

(

(

~—

iv) |Pr(A)| = |A| where Pr(A) is the set of all finite subsets of A.

v) There exists a function f: A — A that is one-to-one but not onto.

vi) For any B with |B| < |A| and any function f : A — B, there exists
b € B such that f(a) = b for infinitely many a € A.

Find a V.-sentence ¢ so that the only models of ¢ interpret < as a dense
linear order. Show that ¢ has only infinite models.

Let V¢ be the vocabulary consisting of a single unary function f. Find a
V-sentence that has only infinite models.

Find a set of sentences that has only uncountable models.

(a) Let F' be the set of all finite strings of letters of the alphabet. Show
that F' is countable.

(b) Let I be the set of all infinite strings of letters of the alphabet. Show
that I is uncountable.

(a) Let U= {1,2,3}. List the elements of P(U).
(b) Show that for any finite set U, if |U| = n then |P(U)| = 2.

98

2.42.

2.43.

(¢)

Structures and first-order logic

Show that the power set of the natural numbers P(N) and the real
numbers R have the same size.

Let I be the set of all functions from N to N. Show that F' and R have
the same size.

Box A contains infinitely many ping pong balls that are numbered
1,2,3,...

(a)

Reach into box A and take out 100 balls and put them in your
lap. Then put one back. Repeat this. Take out another 100 balls,
put them in your lap, and then put one back. Suppose we do this
countably many times. How many balls will you have in your lap?

Suppose you began, in part (a), by taking out balls numbered 1-100
and then put ball 1 back. Suppose you then removed balls 101-200
and put ball 2 back. Then you took balls 201-300 into your lap, found
ball 3, and put it back. And so forth. After doing this countably many
times, which balls are left in your lap?

Now suppose that we repeatedly remove 99 balls from box A and
never return any of these balls to the box. First we take balls 1-99
into our lap and, instead of putting ball 1 back, we take a marker,
add two zeros, and turn it into 100. We then take balls 101-199 out
of A, take ball 2 from our lap, turn it into 200, and keep them all in
our lap. After repeating this countably many times, how many balls
are in your lap and what numbers do they have on them?

Do the processes in (b) and (c¢) have different results? If so, explain
why this is the case (if not, look at (b) and (c) again). Note that after
each stage, we have the same numbered balls in our lap. Suppose
someone else put the ping pong balls in our lap and we do not know
if a marker was used or not. What then? Why should the use of a
marker affect the outcome?

3 Proof theory

As with any logic, the semantics of first-order logic yield rules for deducing
the truth of one sentence from that of another. In this chapter, we develop
both formal proofs and resolution for first-order logic. As in propositional logic,
each of these provides a systematic method for proving that one sentence is a
consequence of another.

Recall the Consequence problem for propositional logic. Given formulas F
and G, the problem is to decide whether or not GG is a consequence of F. From
Chapter 1, we have three approaches to this problem:

e We could compute the truth table for the formula FF — G. If the truth
values are all 1s then we conclude that F' — G is a tautology and G is a
consequence of F. Otherwise, GG is not a consequence of F'.

e Using Tables 1.5 and 1.6, we could try to formally derive G from {F}. By
the Completeness Theorem for propositional logic, G is a consequence of F'
if and only if {F} - G.

e We could use resolution. By Theorem 1.76, GG is a consequence of F' if and
only if) € Res(H) where H is a formula in CNF equivalent to (F' A =G).

Using these methods not only can we determine whether one formula is a con-
sequence of another, but also we can determine whether a given formula is a
tautology or a contradiction. A formula F' is a tautology if and only if F' is a
consequence of (A V —A) if and only if =F is a contradiction.

In this chapter, we consider the analogous problems for first-order logic.
Given formulas ¢ and v, how can we determine whether v is a consequence of
©? Equivalently, how can we determine whether a given formula is a tautology
or a contradiction? We present three methods for answering these questions.

e In Section 3.1, we define a notion of formal proof for first-order logic by
extending Table 1.5.

e In Section 3.3, we “reduce” formulas of first-order logic to sets of formulas
of propositional logic where we use resolution as defined in Chapter 1.

e Finally, in Section 3.4, we modify the notion of resolvents and develop
resolution for first-order logic.

100 Proof theory

One aim of resolution is to provide an automated proof system. Toward this
aim, we consider variations of resolution such as SLD-resolution. We close this
chapter with a section on Prolog, a programming language that implements
S LD-resolution.

3.1 Formal proofs

Let ¢ be a first-order formula and let T be a set of first-order formulas. We use
the notation I' - ¢ to express that ¢ can be formally derived from I'. As with
propositional logic, the definition of this notion consists of a list of several rules.
For propositional logic, formal proofs were defined as sequences of statements
each of which is justified by one of the rules in Tables 1.5 or 1.6. Changing the
Roman letters to Greek letters yields Tables 3.1 and 3.2 below.

For first-order logic, this list of rules is incomplete. In contrast, if F and G
are formulas of propositional logic and G is a consequence of F', then we can form-
ally prove that G is a consequence of F' using the rules of Table 1.5 or Table 1.6.
This is the Completeness theorem for propositional logic. To obtain an analogous

Table 3.1 Rules for derivations

Premise Conclusion Name

pisin T |) Assumption
'pand ' C T) R %) Monotonicity
'k 'k —=p Double negation
'y, T TE @A) A-Introduction
L@ Ap) 'k A-Elimination
TH @A) TE(pAY) A-Symmetry
ke Tk (eVY) V-Introduction
L'E (Vo)

Tru{yr-o,Tu{pt-6 T'k0 V-Elimination
L'k (V) Tk (eVY) V-Symmetry
Fu{e} k¢ Tk (p—1) —-Introduction
'k(p—1), Do FrEy —-Elimination
L' Tt (¢) (,)-Introduction
T'E () 'y (,)-Elimination
L' (¥ ANp)AB) 'k (Y ANpA6) A-Parentheses rule

'k ((¥Ve)Vve) 'k (¢ VeVe) V-Parentheses rule

Proof theory 101

Table 3.2 More rules for derivations

Rules Name

'tk (¢ V) if and only if I' F = (=@ A =) V-Definition

't (¢ —) ifand only if I'F (e V) —-Definition
't (¢ <) if and only if both T't (¢ — ¢) and ' (¢p — ¢) «>-Definition
I' - Vzp(z) if and only if I' - —3z—p(x) V-Definition

Table 3.3 Yet more rules for derivations

Premise Conclusion Restriction Name

TF o) '+ Jye(y) t is a term and y is a F-Introduction
variable not in bnd(y)

't o(to) '+ Vye(y) (y) ¢ bnd(p) ant to is a V-Introduction

variable or a constant not
occurring in I’

'E0—qy 'k 320 — Jzvp none 3-Distribution
I'-0—vy I'FVz — Vap none V-Distribution
T'FQiz(Q2yb) 'k Qi1zQ2y0 Each Q; is a quantifier Q-Parentheses rule
None T'Ht=t t is a term Reflexivity

@), THt=t TFel) t and ¢’ are terms Equality Substitution

result for first-order logic, we must add rules to this list pertaining to quantifiers
and equality. For example, we certainly should include the definition of V:

I'F Vap(z) if and only if ' F —Jz—p(z).

This and other rules are listed in Table 3.2.

Table 3.3 contains rules regarding quantifiers and substitutions. Recall that
©(t) is the formula obtained by replacing each free occurrence of z in ¢(x) with
the term ¢ (assuming ¢ does not use variables in bnd(p)). In the above rules,
©(z) may have free variables other than x. Also, we may use any letters in place
of x and y. We demonstrate the rules in Table 3.3 with a couple of examples.

Example 3.1 We demonstrate the rules 3-Introduction and V-Introduction. Sup-
pose that I' - R(a,b) where R is a binary relation and a and b are constants that
do not occur in I'. Then we can derive each of the following sentences (along
with many others) from T

3zR(a, z) by F-Introduction
YwR(w,b) by V-Introduction

102 Proof theory

VwVzR(w, z) by V-Introduction (twice), and
FzVwR(w, z) by V-Introduction followed by 3-Introduction.

Suppose now that T' - R(f(b),b) where f is a unary function. Since f(b) is a
term that is not a constant, we can derive from I' the sentence 3zR(z, b) but not
the sentence VzR(z,b). Likewise, we cannot derive the sentence 3zVwR(w,)
from I". However, we can derive each of the following sentences:

VwR(f(w),w) by V-Introduction
Jw3IzR(w, z) by F-Introduction (twice), and
Vz3wR(w, z) by F-Introduction followed by V-Introduction.

Example 3.2 We illustrate the usefulness of 3-Distribution. Suppose we want to
formally prove that =3z (z) is a consequence of Vz—)(x). By V-Definition, we
know that

{Ve=p(z)} = =Frm—ih(x).

It remains to be shown that

{=Fz==p(z)} - —Fwp().

Using 3-Distribution, we can formally prove this in three steps. First, show that
¥(x) — ——p(z) is a tautology. By the completeness of propositional logic, there
exists a formal proof for this fact. Second, use 3-Distribution to obtain the valid
implication Javp(x) — Jr——ep(x). Third, by —-Contrapositive (Exercise 1.12),
—~I-—(x) — —Jzy(x) is also valid. We conclude that, if T' F Va—i)(x) then
I' F =3x¢)(z). This argument can be made into a formal proof defined as follows
(see Proposition 3.7).

Definition 3.3 A formal proof in first-order logic is a finite sequence of state-
ments of the form “X F Y” each of which follows from the previous statements
by one of the rules we have listed (including the definition of V and the rules in
Tables 3.1-3.3). We say that ¢ can be derived from T if there is a formal proof
concluding with the statement I' F .

Our first priority is to show that this notion of formal proof is sound. We
must show that if ¢ can be derived from I', then ¢ is in fact a consequence of I'.
We restate this as the following theorem.

Theorem 3.4 (Soundness) If I' - ¢ then T' |= .

Note: This theorem follows from the semantics of first-order logic (that is, the
definition of “E”) given in Section 2.3. When we say something is true “by the
semantics” the reader is referred to this section.

Proof theory 103

Proof We check that each rule for deduction is sound. In Theorem 1.37 we
verified each of the rules in Table 1.5. It follows that each of the rules in Table 3.1
are also sound. Moreover, V-Definition and each of the rules in Table 3.2 are
sound by the definition of the symbols. Reflexivity and Equality substitution are
sound by the definition of =. The Q-Parentheses rule is one of our conventions
regarding the use of parentheses. It remains to be shown that the first four rules
of Table 3.3 are sound.

First, consider 3-Introduction. This rule states that if I' = ¢(¢), then T' -
Jzp(x). To show that this rule is sound, we must verify that if T' = o(t) then
I' E Jzp(z). It suffices to show that, for any structure M, M = ¢(t) implies
M E Jzp(z). This follows immediately from the semantics of 3.

For V-Introduction, suppose that I' = ¢(c) where ¢ is a constant that does
not occur in I'. Suppose that M is a V-structure that models I". For any element
a of the underlying set Up; of M, let M.—, be the structure having underlying
set Uy, that interprets ¢ as a and interprets the other symbols of V in the same
manner as M (if ¢ € V, then M._, is an expansion of M). Since ¢ does not occur
in ', M.—, models T (since M does). Since I = ¢(c), Mq—q | (c). Tt follows
that M |= ¢(a). Since a is an arbitrary element from Uy, M = Vap(x) by the
semantics of V. This shows that ' = Vzp(z) and verifies V-Introduction.

Now consider 3-Distribution. Suppose that M = 6 — ¢ and M = Jz6. Let
U denote the universe of M. We want to show that M = Jzi.

Case 1: z is not a free variable of #. By the semantics of 3, 6 is equivalent
to dz6. So if M | 3z, then M | 0 and, by the semantics of —, M = 1. Now
if x is not a free variable of v, then t» = Jxtp. Otherwise, M = ¥ (x) means
M = Vayp(x) which means M = v (a) for any a in Uyps. Either way, we see that
M = Jzvp as we wanted to show.

Case 2: z is a free variable of 6 but not of . In this case, M = 6 — ¢
means M |= Va(6(x) —). By the semantics of ¥V, M |= 6(a) — ¢ for any a
in Ups. Since M = 320, M = 0(a) for some a € Uys. By the semantics of —,
M = . Finally, M = 3z since ¢ = Ja).

Case 3: z is a free variable of both § and ¢. Here M | 6 — 1 means
M = Vz(0(z) — 1(x)). This means that, for all a in Uy, M = 0(a) — ¢(a).
Since M |= 3z0 it follows that M |= 6(a) for some a in Ups. Hence M = ¢(a).
Again by the semantics of 3, M = Jze.

The verification of V-Distribution is similar and is left as Exercise 3.4. [
Corollary 3.5 If both {p} ¢ and {¢} I ¢, then ¢ = 9.

The Completeness theorem for first-order logic states that the converse of
Theorem 3.4 is true. If ¢ is a consequence of I', then we can formally prove that
it is a consequence. The rules for derivations we have given form a complete

104 Proof theory

set of rules for first-order logic. It follows that the converse of Corollary 3.5
holds as well. However, the Completeness theorem will not be proved until the
next chapter. For this reason, we presently do not assume that the converses
of Theorem 3.4 and Corollary 3.5 hold. In the present chapter, just because
two formulas are equivalent does not mean that we can formally prove that
they are equivalent. For this, we again use the terminology “provably equivalent”
previously defined in Section 1.5.

For the remainder of this section, we verify various instances of the converses
of Theorem 3.4 and Corollary 3.5. For example, by the semantics of V, ¢(t) is a
consequence of Vzp(z) for any term t. We now show that ¢(t) can be formally
derived from Vzo(x).

Proposition 3.6 For any formula ¢(z) and any term ¢, {Vap(x)} F o(t).
Proof We use proof by Contradiction as defined in Example 1.36.
Premise: T' F Vap(x)
Conclusion: T" - ¢(¢)

Statement Justification

1. T+ Vap(z) Premise

2. TU{—~¢(t)} F Vap(z) Monotonicity applied to 1

3. TU{~¢(t)} F ~Fz—p(x) V-Definition applied to 2

4. TU{—e(t)} F —p(t) Assumption

5. TU{—¢(t)} F Jz—p(x) F-Introduction applied to 4

6. ' F —==p(t) Proof by Contradiction applied to 3 and 5

7. TFpt) Double negation (from Example 1.43) applied to 6

O

Recall that M | ¢(x1,...,2,) means the same as M k

Yy1 - YYn@(Y1,- .., Yn). This is how the symbol = was defined in section 2.3

for formulas having free variables. It follows that the formula ¢(z1,...,z,) is

equivalent to the sentence Vy1 -+ Vyno(y1,...,yn). By Proposition 3.6 and V-

Introduction, they are provably equivalent. We next show that the two formulas
from Example 3.2 are provably equivalent.

Proposition 3.7 The formulas Vz—p(z) and —3zp(z) are provably equivalent
for any formula ¢(x).
Proof Example 3.2 provides proof that {Vz—¢(x)} F —3xp(x). We now provide
a formal proof for the converse.

Premise: I' F =3z p(z)

Conclusion: ' F Va—p(z)

Proof theory 105

Statement Justification

1. TU{——p(x)} F ~—p(z) Assumption

2. TU{~p(z)} F p(z) Example 1.43

3. T F ——p(z) — o(z) —-Introduction applied to 2

4. T F Jz——p(z) — Jxp(z) 3-Distribution applied to 3

5. T'F —3zp(x) — —Jz——p(x) —-Contrapositive (Exercise 1.12)
6. I' F —3zp(x) Premise

7. T F —3z—-—(x) —-Elimination applied to 5 and 6
8. '+ Va—p(z) V-Definition

O

By the semantics V, Vzo(xz) = Yye(y) (@(z) holds for each element x of

some model if and only if p(y) holds for each element y of that same model).
We show that Vap(z) and Vyp(y) are provably equivalent.

Corollary 3.8 Let 2 and y be variables that do not occur in the formula ¢(z).
Then Vzp(z) and Vyp(y) are provably equivalent.

Proof By Proposition 3.6, {Vxp(z)} F ¢(t) for any term ¢. In particular,
{Vzp(x)} F o(y). By V-Introduction, {Vxp(r)} + Vyp(y). Likewise (switching
the roles of z and y), we see that {Yyp(y)} F Vap(z). O

Likewise, we have the following.

Corollary 3.9 Let x and y be variables that do not occur in formula ¢(z). Then
Jzp(x) and Jyp(y) are provably equivalent.

We leave the proof of Corollary 3.9 to the reader (see Exercise 3.7).

Corollary 3.10 For any formula ¢(z), {Vxe(x)} F Jze(x).
Proof {Vxzy(z)} F ¢(x) by Proposition 3.6.

{¢(x)} F Jzp(x) by F-Introduction.

Putting these two facts together, we see that {Vzp(z)} F Jxp(z). O

By the semantics of first-order logic, we know that Jzp(z) is a consequence
of Vap(x) (if ¢(x) holds for all elements of in a certain structure, then it holds
for some elements in that structure). Corollary 3.10 states that we can formally
prove this. Note that Yazp(z) is not a consequence of Jzp(z). So these formulas
are not equivalent. However, if (and only if) the variable 2 has no free occurences

106 Proof theory

in 1, then Jzv¢ and Vxi are equivalent formulas. Moreover, they are provably
equivalent.

Proposition 3.11 Let x be a variable that does not occur as a free variable in
the formula . Then ¢, Jx1), and Vi) are provably equivalent.
Proof We demonstrate that {¢} - Vzi and {3z} F 1. The proposition then
follows from Corollary 3.10 which implies {Vay} b Jz1.

First we show that {¢} F Vay

Premise: ' - ¢ and ¢ is a constant that does not occur in I'
Conclusion: I" - Vzv

Statement Justification

1.TH® Premise

2.TF WV -(z=u1x)) V-Introduction applied to 1
3.TF(m(z=2) V) V-Symmetry applied to 2
4.TH(x=2)—>1Y —-Definition applied to 3

5. 'k Vz(z =z) — Vayp V-Distribution applied to 4
6.TF(c=¢) Reflexivity

7. T FVz(zr =x) V-Introduction applied to 6

8. I' - Vaip —-Elimination applied to 5 and 7

Next, we show that {Jzy} F o

Premise: T' - Jxvp
Conclusion: I' - %

Statement Justification

1. '+ Jzyp Premise
2. TU{w}+ Jz¢ Monotonicity applied to 1
3. TU{¢}F Assumption

4. TU {9} FVz—yp The previous proof applied to 3

5 TU{-w}F —-3zy Example 3.2 applied to 4

6. 'F - Proof by Contradiction applied to 2 and 5
7.THY Double negation (from Example 1.43) applied to 6

Proof theory 107

Proposition 3.12 The formulas Va(e(x) A ¢(z)) and Vzp(z) A Yy (z) are
provably equivalent.

Proof We leave the verification of this as Exercise 3.8. [

It is not true that Jz(p(z) A (z)) and Jzp(x) A Jzp(x) are provably equi-
valent. We can show that {3z(p(z) A ¢(x))} F Jxp(x) A zy(x), but not the
converse. However, if (and only if) = does not occur as a free variable of ¥, the
converse is true.

Proposition 3.13 If = does not occur as a free variable of v, then Jxp(z) A Jzep
and Jz(p(x) A1) are provably equivalent.

Proof We only prove this equivalence in one direction. The other direction is
straight forward and is left as Exercise 3.13.

Premise: T' F Jzp(x) A Jzep
Conclusion: T+ Jx(p(x) A1)

Statement Justification
1. T+ 3zp(z) A Jzyp Premise
2. T+ 3z A-Elimination applied to 1
3.THy Proposition 3.11 applied to 2
4. T F —p(x) Ve V-Introduction and V-symmetry applied to 3
5. T F —p(z) Ve(x) Tautology rule (Example 1.32)
6. T+ (mp(z) Vo(z)) A (me(z) V) A-Introduction applied to 4 and 5
7.TF =V (e(x) AN) V-Distributivity (Proposition 1.46) applied to 6
8. Tk p(z) — (p(z) Ay) —-Definition applied to 7
9. I'+ Jzp(x) — Jz(e(x) A1) 3-Distribution applied to 8
10. T' F 3zp(x) A-Symmetry and A-Elimination applied to 1
11. T F 3z(p(z) A) —-Elimination applied to 9 and 10

The previous propositions can be generalized as follows.

Proposition 3.14 Let z1,xo,..

© but not in the formula . Let @1, ...

., T, be variables that occur free in the formula
, Qn, be quantifiers (that is, for each 4, Q;

is either 3 or V). Then the following two formulas are provably equivalent:

lelQZ-TQ T Qnmn<p(x17 T2,
Q121Q2x2 - - - Qun(@(z1, 22, . ..

,Tn) A, and

108 Proof theory

Proof We prove this by induction on n. We use the following claim.

Claim If 6(x) and t(z) are provably equivalent, then so are @Qixf(z) and
Qrap(z).

Proof of Claim If #(x) and v(z) are provably equivalent, then () - 6(z) —
¥ (x). By 3-Distribution or V-Distribution (depending on which quantifier is @),
we have 0 - Q120(x) — Q1z¢(x). Likewise, O - Q12 (z) — Q126(x). The claim
follows.

We now prove the proposition. If n = 1 then this follows from
Proposition 3.12 or 3.13 (depending on which quantifier is ()1). Suppose now
that n = m+1. Our induction hypothesis implies that the following two formulas
are provably equivalent:

Q272 Qi 1Tmy19(T1, T2, - -, T y1) A1, and
Q272 Qg 1Tmi1 (P(T1, T2, ..o, Tig1) AY).

It follows from the claim that the following two formulas are provably equivalent:
Q121(Q222 Qi 1Tm+19(T1, 22, ., Tnt1) AY), and

Q121(Q2z2 - - Quan(p(T1, T2, ..., Tn) ANY)).

The former of these, again by Proposition 3.12 or 3.13, is provably equivalent
with

Q171Q2%2 - - - Qi 1Tm119(T1, Ty - -, 1) AP
The latter of the above two formulas, by the @-Parentheses rule, is provably
equivalent with

Q171Q272 - - Qi 1Tmy1(2(T1, 2, o, Tg1) A D).
This completes the induction step and the proposition follows. [

Similarly, we have the following.

Proposition 3.15 Let Q1,...,Q, denote quantifiers. For each i, let @, denote
the quantifier that is not Q;. That is, for each i, {Q;,Q;} = {3,V}. For any
formula @(x1,..., %),

Q121 - - Qnape(x1,...,x,) is provably equivalent to

Qi1 Qurn—p(T1, ..., xy).

Proof It suffices to show that both

—Va1¢(x1) is provably equivalent to 3x1—p(x1), and

—3Jx1p(xz1) is provably equivalent to Vo1—¢(x1) (see Example 3.2).

Proof theory 109

The proposition can then be proved by induction on n in a similar manner to
Proposition 3.14. We leave the details as Exercise 3.15. O

It follows from the previous propositions that any formula is provably equi-
valent to a formula in which the quantifiers preceed all other fixed symbols.
Informally, the quantifiers can be “pulled out in front” of any formula. We make
this idea precise and prove it in the following section.

3.2 Normal forms

One of our goals in this chapter is to develop resolution for first-order logic. Recall
that, in propositional logic, we needed to have the formulas in CNF before we
could proceed with resolution. Likewise, in first-order logic the formulas will need
to be in a nice form. In this section, we define what we mean by “nice.”

3.2.1 Conjunctive prenex normal form.

Definition 3.16 A formula ¢ is in prenex normal form (PNF) if it has the form
Q121 - - - Qurpth where each Q; is a quantifier (either 3 or V) and 1) is a quantifier-
free first-order formula. Moreover, if 1 is a conjunction of disjunctions of literals
(atomic or negated atomic formulas), then ¢ is in conjunctive prenex normal
form.

So a formula is in prenex normal form if all of its quantifiers are in front.

Example 3.17 Vy3z(f(z) = y) is in PNF, and —Vz3yP(z,y,z) and JzVy
=P(z,y,2) ANVzIyQ(z,y, z) are not.

Theorem 3.18 For any formula of first-order logic, there exists an equivalent
formula in conjunctive prenex normal form.

Proof Let ¢ be an arbitrary formula. First we show that there exists an equi-
valent formula ¢’ in prenex normal form. We prove this by induction on the
complexity of ¢.

If ¢ is atomic, then ¢ is already in PNF, so we can just let ¢’ be ¢.

Suppose 1 and 6 are formulas and there exist ¢’ and 6’ in PNF such that
¥ =" and § = ¢'. Clearly, if ¢ = ¢ then we can let ¢’ be ¢'. To complete the
induction step, we must consider three cases corresponding to -, A, and 3.

First, suppose ¢ is the formula —). Then ¢ = —)’. Since ¢’ is in PNF, ¢’ has
the form Qi1 -+ Qmrmt for some quantifier-free formula 1y and quantifiers
Q1 ,Qm. So o = -Q1x71 - - - Qo By Proposition 3.15, this is equivalent
to Qa1+ Q,,Tm o where {Q;, Q,} = {3,V}. This formula is in PNF, and so
it may serve as .

110 Proof theory

Next, suppose ¢ is the formula ¢ A 6. Then p = ¢’ A ¢, Since ¢’ and 0" are
in PNF,

1// is lel e memwo(xla ey l’m), and
0" is qrz1 - quanbo(z1, ..., 2n)

for some quantifiers (J; and ¢; and some quantifier-free formulas g and 6y. Let
Y1y, Ym and z1,. .., z, be new variables (that is, variables not occurring in ¢’
or ¢'). Then by Corollaries 3.8 and 3.9,

V' =Quyr QuYm®o(rs - - - Ym),

r— }
0'=q121 Gnznbo(21,-..,2,), and so

=0 memwO(yl; ce aym) Nqrzy--- anneo(zla s Zn)
Applying Proposition 3.14 twice,

=y QmUm@ 21 @nZn (Vo (Y1, - -3 Ym) N Oo(21, ..., 2n))

which is in PNF. Let ¢’ be this formula.

Finally, suppose ¢ is the formula 3z. Then ¢ = Jxg1)’ for some variable zg.
Since 1’ is in PNF, Jx¢1)’ is in PNF. So in this case, we can let ¢’ be Jzgt)’.

Given an arbitrary formula ¢ we have shown that there exists an equivalent
formula ¢’ in prenex normal form. Let Q121 - - - Qnn o be the formula ¢’. Each
Q; denotes a quantifier and ¢y is a quantifier-free formula. We want to show that
 is equivalent to a formula in conjunctive prenex normal form. It remains to be
shown that g is equivalent to a formula that is a conjunction of disjunctions.
This can be done by induction on the complexity of g. Since it is quantifier-free,
we do not have to consider the part of the induction step corresponding to 3.
Therefore, the proof is identical to the proof of Theorem 1.57 where it was shown
that every formula of propositional logic is equivalent to a formula in CNF. [

Example 3.19 Let ¢ be the formula ~(Vz3yP(x,y, z) V IaVy—-Q(z,y, z)) having
free variable z. By the previous theorem, there exists a formula ¢’ in PNF that
is equivalent to . Moreover, the proof of the theorem indicates a method for
finding such ¢’. First, noting that ¢ has the form —), we distribute the negation
to obtain

» = JaVy—P(x,y, z) ANVeIyQ(z,y, 2).

So ¢ is equivalent to a formula of the form 1 A 6. By renaming variables, we get
v = aVy-P(x,y, z) AVuvQ(u,v, z).

By applying Proposition 3.14 twice,
p = JaVyVuIv(—-P(z,y,2) A Q(u,v, z))

which is in PNF. Moreover, this formula is in conjunctive PNF.

Proof theory 111

Our goal is to find a method for determining whether a given formula is
satisfiable or not. By Theorem 3.18, it suffices to have a method that works
for formulas in conjunctive prenex normal form (although, as we shall see in
later chapters, no method “works” entirely). Next we show that we can simplify
our formulas further. We show that we need only consider formulas that are
universal: formulas in PNF in which the existential quantifier 3 does not occur.

3.2.2 Skolem normal form.

Definition 3.20 A formula is in Skolem normal form (SNF), if it is universal and
in conjunctive prenex normal form.

Given any formula ¢ of first-order logic we define a formula ¢° that is in
SNF. We prove in Theorem 3.22 that ¢ is satisfiable if and only if ¢ is satisfiable.
The formula ¢° is called a Skolemization of . The following is a step-by-step
procedure for finding .

e First we find a formula ¢’ in conjunctive prenex normal form such that
yA—
o =¢. So

@ is Qi1 QumTmpo(T1, -y Tm)

for some quantifier-free formula ¢o and quantifiers Q1, Q2, ..., Qm.
e If each @, is V, then ¢’ is a universal formula. In this case let ©° be ¢'.

e Otherwise, ¢’ has existential quantifiers. In this case we define a formula
s(¢’) that has fewer existential quantifiers than ¢’. (So if ¢’ has just one
existential quantifier, then s(¢’) is universal.) Let 7 be least such that Q;
is 4.

If i =1, then ¢’ is Fz1Q222 - - QmTmpo(T1, . . ., Tm)-

Let s(¢’) be Qaxa - - Qmampo(c, Ta, . . ., Ty) where ¢ is a constant symbol
that does not occur in ¢'.

If ¢ > 1, then ¢ is Vay - Va,_132;Qi 11241 - - QmTm@o(T1, - -+, Tim)-
Let s(¢’) be the formula

Vay- Vo 1Qiv1ZTiv1 - QmTm
(100(3:17 sy Ti—1, f(xh v axi71)7$i+17 ey m771)7
where f is an (i — 1)-ary function symbol that does not occur in ¢'.
So if the first quantifier in ¢’ is 3, we replace x; with a new constant.

And if the ith quantifier in ¢’ is 3 and all previous quantifiers are V, replace
x; with f(zq,...,2;,-1) where f is a new function symbol.

112 Proof theory

e Since s(¢’) has fewer existential quantifiers than ¢’ by repeating this pro-
cess, we will eventually obtain the required universal formula ¢°. That is,
0 is s (") = s(s(s---s(¢"))) for some n.
Example 3.21 Suppose ¢ is the formula —(VaIyP(x,y, z) V JaVy—Q(z,y, 2)).
First, we find a formula ¢’ in conjunctive prenex normal form that is equivalent
to ¢. In Example 3.19 it was shown that ¢ is equivalent to

FeVyVuIo(—P(x,y, z) A Q(u,v, 2)).

Let ¢’ be this formula.

Next we find s(¢’) as defined above. Then we find s(s(¢’)) and s(s(s(¢"))),
and so forth, until we get a formula in SNF. In this example, since ¢’ has only
two existential quantifiers, we will stop at s(s(¢")).

We have s(¢') is VyVuTv(=P(c,y,2) A Q(u,v, z)), and
s(s(¢")) is VyVu(=P(c, y, 2) A Q(u, f(y,u), 2))

which is in SNF. So we have successfully Skolemized the given formula ¢
and obtained the formula VyVu(—P(c,y, 2) AQ(u, f(y, u), z)). This is the formula
denoted by ¢°.

Theorem 3.22 Let ¢ be a formula of first-order logic and let ¢° be the
Skolemization of ¢. Then ¢ is satisfiable if and only if ©* is satisfiable.

Proof By Theorem 3.18, we may assume that ¢ is in conjunctive prenex normal
form. By induction, it suffices to show that ¢ is satisfiable if and only if s(¢) is
satisfiable. There are two possibilities for s(y).

Case 1: If ¢’ has the form 3x1Qa2 - - - QmTmpo(T1, ..., Tm), then s(¢’) is
Qa2 QmTmpo(c, Ta, ..., Ty) for some constant ¢. Let ¢(x1) be the formula
Q229 QmTmo(T1, ..., Tm)
so that ¢’ is Jx1¢(x1) and s(p’) is ¥(c). By the semantics for 3,

M = Jz19(2) if and only if Mo = ¢(c),

where M¢ is an expansion of M by constants one of which is ¢ . It follows that
Jxq9(xq) is satisfiable if and only if 1 (c) is satisfiable.

Case 2: If @' isVaq -+ - Vi —132;Qi11%i41 - - QuTmpo(X1, - - ., Ty) then s(¢’)
is the formula

Vg - V2 1Qit1%it1 - - QmTm@o(T1, - Tim1, f(T1, ., @im1), Tig1, -+, T

where f is an (i — 1)-ary function symbol that does not occur in ¢'.
Now let ¢(z1,...,x;) be the formula Q; 11211 QmTmwo(T1,. .., Tm).
Suppose that Vi ---Vao;_13z;0(xq,...,z;) is satisfiable. Let M be a model.

Proof theory 113

Let My be an expansion of Mc that interprets f in such a way that for all
constants Cly.-.,Ci—1, Mf ': ¢(Cl, ey Ci—1, f(Cl7 e 7Ci—1))- Then

Mf ': vxl v 'vxiflw(xh sy Ti—1, f(xh v 71'1'71))'

So if Vay « - - Va;_13xi9p (21, . . ., x;) is satisfiable, then so is
Vay - Vo, ..o, f(2, 0, 201))-

Conversely, if M | Vy---Va,_1¥(x1, ..., zi-1, f(21,...,2,-1)), then, by
the meaning of 3, M |=Vaq - - Vo, 3zp(xq, .. ., x5).
It follows that ¢ is satisfiable if and only if s(¢) is satisfiable. [

Note that ¢ and ¢ are not necessarily equivalent. Theorem 3.22 merely
states that one is satisfiable if and only if the other is. For example, if ¢ is the
formula 3z (z, y) for atomic v (z,y), then ¢ is 1 (c, y) which is equivalent to
Va(z,y). Of course, Jxtp(x,y) and Vzip(z,y) are not equivalent formulas, but
if one of these formulas is satisfiable, then so is the other. For our purposes,
this is all we need. To determine whether ¢ is satisfiable, it suffices to determine
whether ¥ is satisfiable.

3.3 Herbrand theory

In this section we “reduce” sentences of first-order logic to sets of sentences in
propositional logic. More precisely, given ¢ in SNF we find a (possibly infinite)
set E(¢p) of sentences of propositional logic such that ¢ is satisfiable if and only if
E(y) is satisfiable. We know E(¢) is unsatisfiable if and only if) € Res*(E(y)).
So we can use the method of resolution from propositional logic to show that a
first-order sentence ¢ in SNF is unsatisfiable. By Theorem 3.22, we can use this
method to determine whether any sentence of first-order logic is unsatisfiable.

The method we describe in this section will not necessarily tell us if a sen-
tence @ is satisfiable. Since E(p) may be infinite, there may be no way to tell
whether () is not in Res*(E(p)). But if § is in Res*(E(y)), then, by the compact-
ness of propositional logic, we can derive it in a finite number of steps. Recall that
to show that ¢ is satisfiable, we must exhibit a model for ¢. We have done this in
previous examples. But to show that ¢ is unsatisfiable, we must show that it does
not hold in any structure. Previously, we had no way of doing this. Theorem 3.25
provides the key. We show that, in certain circumstances, it suffices to show that
@ does not hold in a specific type of structure called a Herbrand structure.

3.3.1 Herbrand structures.

Definition 3.23 Let V be a vocabulary. The Herbrand universe for V is the set
of all variable free V-terms.

114 Proof theory

For example, if V contains constant a¢ and unary function f, then the
Herbrand universe for V contains a, f(a), f(f(a)), and so forth. If, in addition,
V contains a binary function g, then the Herbrand universe will also contain
9(a,a), gla, £(a)), g(g(f(a), F(@), F(f(a))), F(g(f(a),a)), and so forth.

Recall that a V-structure is a set together with an interpretation for each
of the symbols in V. Suppose that we take the Herbrand universe for V as our
underlying set. Call this set H. If V has no constant symbols, then H is empty.
Suppose this is not the case. Then we can turn the Herbrand universe H into a
V-structure by giving an interpretation for V. There is a natural interpretation
for each of the constants and functions on H. Any V-structure that has H as its
underlying set and interprets the constants and functions in this “natural” way
is called a Herbrand V-structure.

For example, suppose V = {f, R,c} where f is a unary function, R is a
binary relation, and c is a constant. Then the Herbrand universe for V is

H= {Caf(c)af(f(c))vf(f(f(c)))a .- }

Let M = (H | f, R, c) be a V-structure having underlying set H. The set H has
an element called ¢ (the first element in the above listing of H). If M interprets
the constant c as any element of H other than the one denoted by ¢, there would
be serious ambiguity. If M is a Herbrand structure, then there is no ambiguity,
the constant ¢ in V is interpreted as the element ¢ of H. This is the natural
interpretation for the constant c. Likewise, there is a natural interpretation for
the function f. The interpretation assigns to f a function from H to H. Given an
element of H as input, f outputs an element of H. If M is a Herbrand structure,
then the function f when applied to the element ¢ outputs the element f(c) (the
second element in the above listing of H). Likewise, given input f(c), f outputs
the element of H denoted by f(f(c)). This is the natural interpretation of f on H.

So a V-structure M is a Herbrand structure if it has universe H and inter-
prets the constants and functions in the manner suggested by the names given
to the elements of H. It is a Herbrand structure regardless of how the relations
are interpreted. So, if V contains a relation and a constant, then there are many
Herbrand V-structures.

Let H be the Herbrand universe and let M be a Herbrand structure for the
vocabulary V. We list a few basic facts:

e H is empty if and only if V contains no constants.
e H is finite if and only if V contains no functions.

e M is the unique Herbrand V-structure if and only if V contains no relations
or H is empty.

Proof theory 115

Definition 3.24 Let T" be a set of sentences. The Herbrand vocabulary for T,
denoted Vr, is defined as follows. Let Vy be the set of functions, relations, and
constants occurring in I'. If V), contains no constants, then Vr = VyU{c}. Other-
wise, Vr = Vy. The Herbrand universe for ', denoted H(T'), is the Herbrand
universe for Vp. M is a Herbrand model of T, if M is a Herbrand Vr-structure
and M | ¢, for each @; in T

In the case where I' contains a single sentence ¢, we will replace I' in the
above notation with .

Consider, for example, the sentence Va((f(z) # x) A (f(f(x)) = z)). Call
this sentence ¢. The Herbrand vocabulary for ¢ is V, = {f,c}, where f is a
unary function and ¢ is a constant. The Herbrand universe for ¢ is H(p) =
{c, f(¢), f(f(c)),...}. In any Herbrand V,-structure, ¢ and f(f(c)) are distinct
elements of the universe H(y). Since ¢ asserts that for all z, f(f(z)) = z, the
sentence ¢ has no Herbrand model. Yet ¢ is satisfiable (find a model for ¢). The
following theorem shows that this only happens when ¢ uses the symbol “=". So
if is a satisfiable sentence that is equality-free, then ¢ has a Herbrand model.

Theorem 3.25 Let T' = {1, p2,...} be a set of equality-free sentences in SNF.
Then I is satisfiable if and only if I' has a Herbrand model.

Proof If I has a Herbrand model, then, of course, I" is satisfiable.

Conversely, suppose T' is satisfiable. Let Vr be the Herbrand vocabulary
for T'. Let N be a Vp-structure that models each ¢; € T'. Let M’ be a Herbrand
Vr-structure.

We define a Vp-structure M that is a hybrid of N and M’. The universe
of M is H(T'), the Herbrand universe for Vr. Let M interpret functions and
constants the same way as M’ and relations the same way as N. Since, M and
N may have different universes, this requires some explaining.

“M interprets functions and constants the same way as M'” means that
M is a Herbrand Vr-structure. To complete our description of M we must
say how M interprets relations. For any m-ary relation R in Vr and t1,...,t,
in the universe H(T') of M, we must say whether M & R(t1,...,t,) or
M = =R(t1,...,t,). Since each t; € H(T') is a variable free Vp-term and N is a
Vr-structure, either N |= R(t1,...,t,) or N |E 2R(t1,...,t,). We define M so
that M = R(t1,...,t,) if and only if N = R(ty,...,t,).

The theorem follows from two claims.

Claim 1 For any Vp-sentence 1 that is both quantifier-free and equality-free,
M = ¢ if and only if N |= 9.

Claim 2 For any SNF Vp-sentence v that is equality-free, if N |= 1) then M = 4.

116 Proof theory

If Claim 2 is true, then M must model I'. This is because, for each ¢; € T,
N E ¢; and p; is in SNF and equality-free. Since M is a Herbrand Vp-structure,
M is a Herbrand model of I". So if we can prove Claim 2, then the theorem follows.
We first prove Claim 1, and then show that Claim 2 follows from Claim 1.

Proof of Claim 1 Let ¢ be quantifier-free. We show that M = ¢ if and only
if N = 9 by induction on the complexity of .

If 4 is atomic, then, since ¢ does not use “=", ¢ must be R(t1,...,t,) for
some n-ary R in Vr and Vp-terms t;. Since v is a sentence, each t; must be
variable free. That is, each t; is in H(T"). By the definition of M, M |= ¢ if and
only if N |= 4.

Suppose M = 4 if and only if N = 11 and M |= 9 if and only if N = 1.
Then clearly, M |= =) if and only if N = =) and M = 91 A)9 if and only if
N E 41 Ao Tt follows that M = ¢ if and only if N = ¢ for any quantifier-free
sentence 1, completing the proof of Claim 1.

Proof of Claim 2 We prove this claim by induction on the number of quan-
tifiers in %. If ¥ has no quantifiers, then by Claim 1, M | ¢ if and only if
N E 9.

Suppose ¢ is Va1 - - - Voo (x1, . . ., z,) where ¥y is quantifier (and equality)
free. Our induction hypothesis is that Claim 2 holds for any equality-free sentence
in SNF having fewer than n quantifiers. Let ¢ be a variable free Vp-term. Let
Y'(z1) be the formula Vi - --Va,o(x1,za,...,2,) obtained by removing the
first quantifier from the sentence 1. Let ¢ be any variable free Vp-term. That is,
t is in H(T'). We have

N E 4 implies N | 4/ (t) (by the semantics of V)
which implies M | ¢'(t) (by our induction hypothesis).

So if N |= ¢ then M |= ¢/(t). But ¢t was an arbitrary element of H(T'). So, if
N = 1, then M = ¢'(t) for all ¢ € H(T"). Since H(T') is the universe of M,
M = Va9’ (x1) (by the semantics of V). Since Va19'(x1) and ¢ are the same,
the proof of Claim 2 is complete. [

In particular, if I' from the previous theorem contains a single sentence ¢,
we get the following.

Corollary 3.26 Let ¢ be an equality-free sentence in SNF. Then ¢ is satisfiable
if and only if ¢ has a Herbrand model.

3.3.2 Dealing with equality. Now suppose ¢ is in SNF and does use “=". We
define a formula pg that does not use equality. Whereas Corollary 3.26 does not

Proof theory 117

apply to ¢, it does apply to ¢r. Moreover, we prove that ¢ is satisfiable if and
only if pg is satisfiable.

Let V be the vocabulary of . That is, V is the finite set of constants,
relations, and functions that occur in . Let E be a binary relation that is not
in V. Let ¢ be the sentence obtained by replacing each occurrence of t; = t3 in
¢ (for V-terms ¢; and tg) with E(t1,12). Let ¢ gr be the following sentence.

Vavyv(E(r,2) A (Ee,y) E(y,2)) A (B(z,y) AE(y, 2) — E(z, 2))).

This sentence says “F is an equivalence relation.”
For each relation R in V), let ¢g be the formula

V$1V$nVy1Vyn <</\E(mz,yl)/\R(a¢1,,xn)> - R(y17~~-,yn)>)

i=1

where n is the arity of R. Let ¢1 be the conjunction of all pr taken over all
relations R € V.
Likewise, for each function f in V, let s be the formula

V$1V$nVy1Vyn (/\E(x%yZ) —>E(f(1'1,.--,.Tn),f(yl,.-.,yn))>)

=1

where n is the arity of f. Let ¢y be the conjunction of all ¢, taken over all
functions f € V.

Now let ¢/, be the sentence P+ NPERr N\ @1 N\ 2.

The formulas ¢gpr, ¢1, and @y together say that the binary relation E
behaves like equality. Note that ¢, wrr, @1, and @2 are each equality-free
formulas in SNF. If we put ¢/; into prenex normal form (by pulling the quantifiers
out front, renaming variables if need be) we obtain an equality-free formula ¢g
that is in SNF.

Lemma 3.27 For any formula ¢ in SNF, ¢ is satisfiable if and only if ¢g is
satisfiable.

Proof Let V be the vocabulary of ¢ and let Vg = VU {E} where E is a binary
relation that is not in V.

If M E ¢, then we can obtain a model for pg by interpreting E as
equality in M.

Conversely, suppose g has a model N. Then E is an equivalence relation on
N. Let U be the underlying set of N and let U/E be the set of all E-equivalence
classes in U. We define a V-structure Ng having U/E as an underlying set. We
must say how Ng interprets the constants, relations, and functions of V.

For each a € N, let [a] denote the E-equivalence class containing a.

118 Proof theory

For each constant ¢ in V, Ng interprets ¢ as [¢|, the E-equivalence class of
the interpretation of ¢ in .

Let R be an n-ary relation in V. For any n-tuple ([a1],...,[an]) of elements
of U/E,
Ng = R(lai], .., |as]) if and only if N = R(aq, ..., a,).
Let f be an n-ary relation in V. For any [b] € U/E and n-tuple ([a1], ..., [an])

of elements of U/E,

Ng = f([a1],- .., [an]) = [b] if and only if N E f(ai,...,a,) =0.

Because N models both ¢, and 9, the structure Ng is well defined.
Finally, it can be shown that Ny [¢g by induction on the
complexity of p. O
Example 3.28 Consider the sentence Va((f(x) # x) A (f(f(z)) = z)). If this
sentence is ¢, then ¢ is the sentence

Ve(=E(f(x),) N E(f(f(2)),2))

and 9 is the sentence

VaVy(E(z,y) — E(f(z), f(y)))-

Since ¢ contains no relations, we need not consider ¢;. The conjunction ¢’y of
Y+, P2, and YR, is equivalent to the following sentence ¢ g in SNF.

VaVyVz(—E(f(z),z) A E(f(f(z)),2) A (E(z,y) — E(f(2), f(y)))
NE(z,x) A (E(z,y) < E(y,2)) A (E(x,y) A E(y, 2)) — E(z, 2))).
Now, by Corollary 3.26, ¢ has a Herbrand model. That is, there is a model

for ¢ having universe H(yp) = {c, f(c), f(f(¢)),...}. Indeed, we may interpret
E on H(p) to be the equivalence relation having the following two classes:

Coaq = {t € H(p) |t has an odd number of fs}, and
Coven = {t € H() |t has an even number of fs}.
It follows that ¢ has a model having only two elements. Let N be the structure

having universe {codd, Ceven } that interprets the function f by the rule f(coqq) =
Coven aNd f(Coven) = Coda. Clearly, N = .

3.3.3 The Herbrand method. We now describe a method for determining
whether an arbitrary sentence ¢ of first-order logic is unsatisfiable. We have

Proof theory 119

shown that we may assume ¢ is equality-free and is in SNF. Let ¢ be
Yy« Vepeo (T, ...y Tn),

where g is quantifier-free and equality-free. Let H(y) be the Herbrand universe
of ¢. Let E(p) be the set

{(po(tl,...,tn) |t1,...,tn S H((p)}

So E(yp) is the set obtained by substituting terms from H(y) for the variables
of ¢ in every possible way. Let {¢1, @2, ...} be an enumeration of E(p).

We claim that ¢ is satisfiable if and only if E(¢) is satisfiable. If M is a model
of ¢, then M | Vay - -Va,p0(z1,...,2,). In particular, M = ¢o(t1,...,t,) for
all variable free V,-terms t,. That is, M models each ¢; in E(p) and so E(y) is
satisfiable.

Conversely, suppose E(y) is satisfiable. Then, by Theorem 3.25, E(¢) has a
Herbrand model M. Note that the Herbrand vocabulary for E(¢p) is the same as
the Herbrand vocabulary for . So the universe of M is H(p). For each t1,...,t,
in H(p), M models ¢g(t1,...,t,) since this sentence is in E(y). It follows from
the semantics of V that M |= Vy - - -Va,po(21,...,2,). That is, M | ¢ and ¢
is satisfiable.

So ¢ is unsatisfiable if and only if E(p) is unsatisfiable. Since E(¢)
contains sentences with no quantifiers, we can view E(p) as a set of sentences
of propositional logic. Since ¢ is in SNF, each ¢; in E(p) is in CNF. We
know from propositional logic that the set E(y) is unsatisfiable if and only
if) € Res*(E(p)). By the compactness of propositional logic, F(p) is unsatis-
fiable if and only if some finite subset {®1,..., ¥} is unsatisfiable. So if ¢ is
unsatisfiable, then) € Res* ({1, ..., pm}) for some m.

This gives us a method for showing that ¢ is unsatisfiable. Check if () is in
Res*({¢1,.-.,om}) for some m. Recall that Res*({¢1,...,pm}) is a finite set.
If @ is in Res*({®1,--.,¢m}) we stop and conclude that ¢ must be unsatisfiable.
Otherwise we continue and check Res*({¢1, ..., ©m, Pm+1})- If ¢ is unsatisfiable,
then this method will eventually find () and conclude that ¢ is unsatisfiable in a
finite number of steps. If ¢ is satisfiable, however, this procedure will continue
forever.

So, in principle, we have a method to show that a given sentence of first-
order logic is unsatisfiable. The first step is to find ¢ that is in SNF and does
“=". This can be done relatively quickly (in polynomial time). But to
show that) € Res*(E(p)) can take an arbitrarily large amount of time. This
method is far from efficient. Even if) is in Res*(E(y)), it may take a very long
time to find it.

In the next section, we define another way to show that a formula is unsat-
isfiable. We define resolution for first-order logic. This method is not polynomial

not use

120 Proof theory

time, but it is more systematic than the method described here. Herbrand theory
will be useful in proving that the resolution we define works.

3.4 Resolution for first-order logic

We now define resolution for first-order logic. Let ¢ be any sentence in SNF.
Then ¢ has the form Va1Vzs - - - Va,, 00 where g is a conjunction of disjunctions
of literals. In particular, ¢q is quantifier-free, and so it can be viewed as a formula
of propositional logic that is in CNF. Let C(pg) denote the set of all clauses in
the CNF formula ¢q. We define C(p) to be C(gpp). That is, C(¢) = {Ch1,...,Cn}
where C; is the set of all literals occurring in the th disjunction.

For example, if ¢ is the sentence

= VaVyvz((P(z,y) V =Q(x, 2)) A (R(z,y, 2) V = P(f (2, 9), 2)),
then C(p) is the set

{{P(Cﬂ,y), —\Q(SL', Z)}a {R(x,y, Z)a _‘P(f(xa y)v Z)}}

Note that a sentence ¢ in SNF uniquely determines C(p). Conversely, by
Proposition 1.67, C(po) determines ¢q up to equivalence. It follows that C(p)
determines ¢ up to equivalence. That is, if C(¢) = C(¢) for sentences ¢ and v
in SNF, then ¢ = 1. For this reason, we need not distinguish between formulas
in SNF and sets of clauses.

We want to say what it means for a clause R to be a resolvent of two clauses
C1 and Cs. As in propositional logic, a resolvent of Cy and Cs is a consequence
of the conjunction of C; and C5. Before giving a formal definition for resolvents,
we consider a couple of examples.

Example 3.29 Let C1 = {-Q(z,y), P(f(z),y)} and C2 = {=P(f(z),y),
R(z,y,2)}. The clause R = {=Q(z,y), R(z,y,2)} is a resolvent of Cy and Cs.
This works the same way as in propositional logic. Since the literal P(f(x),y)
occurs in one clause and the negation of this same literal occurs in the other, the
resolvent can be formed by taking the union of Cy and Cy less P(f(x),y) and

~P(f(x),y).

Example 3.30 Let C; = {—=Q(z,y), P(f(z),y)} and Cy = {-P(z,y), R(z,y,)}
Then we cannot directly find a resolvent of C; and Cs as in the previous example.
Let C4 be the clause obtained by substituting f(z) for z in the clause Cs. That
is, C4 = {=P(f(z),y), R(z,y, f(x))}. We make two observations. First, we can
easily find a resolvent of C; and C%, namely R = {-Q(z,y), R(z,y, f(x))}.
Second, note that C} is a consequence of C5. This is because the SNF sentence
represented by Cy asserts that the formula —=P(z,y) V R(x,y, z) holds for every

Proof theory 121

x, y, and z. In particular, this formula holds in the specific case where z = f(x).
That is, Cy implies C4. Hence, R, which is a consequence of {Cy,C5}, is also a
consequence of {C7, Cy}. We define resolvents so that R is a resolvent of C; and
C5 (and of C; and CY as well). We diagram this situation as follows:

Co
|
Cy cy

N /
R

So prior to finding a resolvent, we must first make substitutions for vari-
ables to make certain literals look the same. In the previous example, we did a
substitution that made P(f(z),y) and P(z,y) identical. This process is called
unification and we postpone the formal definition of “resolvent” until after we
have discussed unification in detail.

3.4.1 Unification. Let L ={Lq,...,L,} be a set of literals. We say L is unifi-
able if there exist variables z1, ..., z,, and terms ¢1, . .., t,, such that substituting
t; for x; (for each i) makes each literal in L look the same. We denote such a
substitution by sub = (z1/t1, 2/ta, ..., Tm/tm). For any sentence ¢ in SNF, we
denote the result of applying this substitution to ¢ by @sub.

For example, if sub = (x/w,y/f(a), z/f(w)) and ¢ = {-Q(z,y), R(a, w, 2)},
then psub = {-Q(w, f(a)), R(a,w, f(w))}.

If L is a set of literals, then Lsub denotes the set of all L;sub such that
L; € L. So L is unifiable if and only if there exists a substitution sub such that
Lsub contains only one literal. If this is the case, we call sub a unifier for L. and
say that sub unifies L.

Example 3.31 Let L = {P(f(x),y), P(f(a),w)}. Let suby = (z/a,y/w) and
subs = (x/a,y/a,w/a). Then both sub; and suby unify L. We have Lsub; =
{P(f(a),w)} and Lsuby = {P(f(a),a)}. Note that, by making another substi-
tution, we can get Lsuby from Lsub;. Namely, if subs = (w/a), then sub;subs
(suby followed by subs) has the same effect as suby. However, we cannot generate
Lsuby from Lsuby since Lsuby has no variables. So, in some sense, the unifier
suby is better for our purposes. It is more versatile. “Our purposes” will be res-
olution, and if we choose suby as our unifier instead of sub;, we might needlessly
limit our options.

Definition 3.32 Let L be a set of literals. The substitution sub is a most gen-
eral unifier for I if it unifies I and for any other unifier subd’ for L., we have
subsub’ = sub’.

122 Proof theory

In Example 3.31, sub; is the most general unifier. As we pointed out, this
is the best unifier for our purposes.

Proposition 3.33 A finite set of literals is unifiable if and only if it has a most
general unifer.

There are two possiblities for a finite set L of literals, either it is unifiable
or it is not. Proposition 3.33 asserts that if L. is unifiable, then it automatically
has a most general unifier. We prove this by exhibiting an algorithm that, given
L as input, outputs “not unifiable” if no unifier exists and otherwise ouputs a
most gerneal unifier for L. The algorithm runs as follows.

The unification algorithm

Given: a finite set of literals L.
Let Ly = L and suby = 0.

Suppose we know Lj; and subg. If Ly contains just one literal, output
“subgsuby - - - subg is a most general unifier for L.”

Otherwise, there exist L; and L; in Ly such that the nth symbol of L; differs
from the nth symbol of L; (for some n). Suppose n is least in this regard. If the
nth symbol of L; is a variable v and the nth symbol of L; is the first symbol of a
term ¢ that does not contain v or vice versa (with L; and L; reversed) then:

Let subgt1 = (v/t) and Lgq1 = Lisubyy.

If any of the hypotheses of the previous sentence do not hold, output “L is not
unifiable.”

We must verify that this algorithm works. First we give a demonstration.

Example 3.34 Let L = {R(f(g(x)),a,z), R(f(g(a)),a,b), R(f(y),a,z)}. First
set Lo = L and suby = 0.

As we read each of the three literals in Ly from left to right, we see that
each begins with “R(f(...”, but then there is a discrepency. Whereas the second
literal continues with “g(a)”, the third literal has “y”. We check that one of these
two terms is a variable and the other is a term that does not contain that variable.
This is the case and so we let

sub; = (y/g(a)), and
Ly = Losuby = {R(f(g(l‘)), a,x)7 R(f(g(a))v a, b)vR(f(g(a))va’ Z)}

We note that IL; contains more than one literal and proceed. Now all literals
begin with R(f(g(..., but then the first literal has “z” and the second has “a”.

Proof theory 123

One of these is a variable and the other is a term that does not contain that
variable, and so we let

suby = (x/a), and
Lo = Lysuby = {R(f(g(a))a ava’)’ R(f(g(a))’ a, b)’ R(f(g(a))7 a,z)}.

The set Ly still contains more than one literal, and so we continue. Each
literal in Ly looks the same up to R(f(g(a)),a, ..., but then the first literal has
“a” and the second has “b.” Neither of these is a variable, and so the algorithm
concludes with output “L is not unifiable.”

If the algorithm outputs “not unifiable,” it is for one of two reasons. One
is illustrated by the previous example. Here we had a discrepency between two
literals that did not involve a variable. Where one literal had the constant a,
the other had b. Clearly, this cannot be reconciled by a substitution and the set
is, in fact, not unifiable. The other possibility is that the dicrepency involves
a variable and a term, but the variable occurs in the term. For example, the
set {P(z,y), P(z, f(y))} is not unifiable. No matter what we substitute for the
variables x and y, the second literal will have one more occurrence of f than
the first literal. The algorithm, noting a discrepency occurs with y and f(y), will
terminate with “not unifiable” because the variable y occurs in the term f(y).
Both reasons for concluding “not unifiable” are good reasons. If the algorithm
yields this output, then the set must not be unifiable.

Note that, when applied to the set L from Example 3.31, this algorithm
outputs sub; as the most general unifier. So, in these examples, the algorithm
works. We want to show that it always works.

If the set L is a finite set, then only finitely many variables occur in L.
It follows that the algorithm when applied to L. must terminate in a finite
number of steps. If it terminates with “L is not unifiable,” then, as we have
already mentioned, I must not be unifiable. Otherwise, the algorithm out-
puts “subgsuby --- suby is a most genral unifier.” We must show that, when
this statement is the output, it is true.

The algorithm outputs “subgsub; - - - suby is the most genral unifier” only
if L = Lsubgsub; - - - subg contains just one literal. If this is the output, then
subgsuby - - - suby, is a unifier. We must show that it is a most general unifier.

Let sub’ be any other unifier for L. We know that subysub’ = sub’ because
subg is empty. Now suppose that we know subg - - - sub,,, sub’ = sub’ for some m,
0 <m < k. Then L,,sub’ = Lsubg - - - suby,sub’ = Lsub’ = {L}. That is, since
sub’ unifies L, it also unifies L,,.

Suppose sub,+1 is (z/t). By the definition of the algorithm, ¢ must be a
term in which the variable x does not occur. Moreover, for some literals L; and
L; in L,,, x occurs in the nth place of L; and ¢ begins in the nth place of L;

124 Proof theory

(for some n). Since sub’ unifies L,,, sub’ must do the same thing to both z
and t. That is, xsub’ = tsub’. It follows that sub,,i1sub’ = (z/t)sub = sub'.
By induction, we have subg - - - sub,,+1sub’ = sub’ for all m < k. In particular,
subg - - - subgsub’ = sub’ and subg - - - suby, is the most general unifier for L.

3.4.2 Resolution. We now define resolution for first-order logic. Recall that for
any literal L, L is the literal defined by L = —L or -L = L.

Definition 3.35 Let C; and C5 be two clauses. Let s; and so be any substitutions
such that C;s; and Cyss have no variables in common. Let Lq,...,L,, € Cis;
and L,... L, € Cysy be such that L = {L1,..., Ly, L},..., L'} is unifiable.
Let sub be a most general unifier for L.

Then R = [(C1s1 —{L1,..., Lin})U(Casa —{L4,..., L })]sub is a resolvent
of Cy and Cs.

Let ¢ be a sentence in SNF. Then ¢ = {C1,...,C,} for some
clauses Cq,...,C,.

Let Res(y) = {R| R is a resolvent of some C; and C; in ¢}.
Let Res®(¢) = ¢, and Res"t! = Res(Res™(p)).

Let Res*(¢) = ,, Res™ ().

The same notation was used in propositional logic. However, unlike the proposi-
tional case, Res*(p) may be an infinite set. To justify this notation and the
definition of “resolvent” we need to show that) € Res*(p) if and only if ¢ is
unsatisfiable. First we look at an example.

Example 3.36 Let C1 = {Q(xz,y), P(f(z),y)}, and Cy = {R(x,c), 2 P(f(c),z),
~P(f(y), h(=)}.

Suppose we want to find a resolvent of C; and Cs. First, we need to rename
some variables since x and y occur in both C; and Cs. Let s; = (z/u, y/v). Then
Cys51 = {Q(u,v), P(f(u),v)} which has no variables in common with Cs.

Second, note that Cs; contains a literal of the form P(_,_) and C5 contains
literals of the form —P(_,_). Namely, P(f(u),v) is in Cys; and =P(f(c),z) and
-P(f(y),h(z)) are in Cs. Let

L ={P(f(u),v), P(f(c),x), P(f(y), h(2))}.

By applying the unification algorithm, we see that L is unifiable and sub =
(u/c,y/c,v/h(2),z/h(z)) is a most general unifier. We conclude that Cy and Cy
have resolvent

R=[(Cis1 = {P(f(u),v)}) U (Co = {=P(f(c), 2), ~P(f(y), h(2))})]sub
= {Q(u,), R(x, c)}sub = {Q(c, h(2)), R(h(2), ¢)}.

Proof theory 125

We verify that the resolvent R from the previous example is in fact a
consequence of (7 and Cy. Recall that €'y and (5 represent sentences in SNF.

C represents VaVy(Q(z,y)) V P(f(x),y)), and
C5 represents VaVyVz(R(xz,c)) V =P(f(c),z) V = P(f(y), h(z)).

Suppose C7 and Cs hold (in some structure). Then, since these sentences are
universal, they hold no matter what we plug in for the variables. In particular,

Cys1sub =Vz(Q(c, h(z)) V P(f(c), h(2))), and
Casub =Vz(R(h(2),¢)) V =P(f(c), h(2))

both hold. That is, Cs1sub is a consequence of C; and Cysub is a consequence
of C5. Put another way,

Cys15ub = Vz(=Q(c, h(2)) — P(f(c), h(2))), and
Casub =Vz(P(f(c), h(z)) — R(h(2),c)).
From these two sentences, we can deduce
Vz(=Q(c, h(z)) — R(h(2),c))

which is equivalent to
Vz(Q(c, h(z)) vV R(h(z), ¢))

which is the sentence represented by R. Hence, R is a consequence of the
conjunction of Cy and Cs.

In a similar manner, we can show that any resolvent of any two clauses
is necessarily a consequence of the conjunction of the two clauses. It follows
that if § € Res*(p), then ¢ must be unsatisfiable. Conversely, suppose ¢ is
unsatisfiable. We need to show that § € Res*(¢p).

At the end of the previous section we showed that ¢ is unsatisfiable if and
only if the set E(p) is unsatisfiable. Recall that E(p) is the set of all sentences
obtained by replacing each variable of ¢ with a term from the Herbrand universe.
These sentences can be viewed as sentences of propositional logic. Suppose that
Cf and Cf are in E(p) and R’ is a resolvent of C] and C} in the sense of
propostional logic. Then there are some clauses C; and Cs of ¢ such that C] =
Cysuby and C5 = Cysuby. In the following lemma we show that there exists a
resolvent R of C; and Cy (in the sense od first-order logic) and a substitution
sub such that Rsub = R’. So, essentially, this lemma says that any R’ that can
be derived from F(y) using propositional resolution can also be derived from ¢
using first-order resolution.

126 Proof theory

Lemma 3.37 (Lifting lemma) Let ¢ be a sentence in SNF. If R’ € Res(E(p)),
then there exists R € Res(¢) such that such that Rsubl’ = R’ for some
substitution sub’.

This is called the “Lifting lemma” because we are “lifting” the resolvent R’
from propositional logic to first-order logic.

Let ¢ be a sentence in SNF and let C; and Cs be two clauses of ¢. Let s be
a substitution such that Cys; and Cy have no variables in common. Let Cf and
C% in E(¢) be such that Cysysuby = C] and Casuby = CY for some substitutions
suby and subs. Let R’ be a resolvent (in propositional logic sense) of C} and C4.
This setup can be diagramed as follows:

(&
C151 Co
subi | | suby
C1 &
AN /
R/

The lemma says that if this setup holds, then there exists a resolvent R of
Cys1 and Cy (in the sense of first-order logic) such that Rsub’ = R’ for some
substitution sub’. This conclusion can be diagramed as follows:

Gy

0181 CV2

In the first diagram, the resolvent is taken as in propositional logic. In the
second diagram, the resolvent R is as in Definition 3.35. The vertical lines in
each diagram refers to a substitution. The lemma can be summarized as saying
“if the first diagram holds, then so does the second diagram.”

Proof of Lemma Supose the first diagram holds. Then there must exist some
literal L € Cf such that L € C% and R’ = (C] — {L}) U (C4 — {L}). This is the
definition of resolvent for propositional logic.

Proof theory 127

Let subl = subysubs. Since Cps; and Cs have no variables in common,
Cysysub’ = Crsysuby = Cf and Cosub’ = Caysubs = CY.

Let Ly = {Ly,...,L,} be the set of all L; in Cys; such that L;sub’ = L.
Likewise, let Ly = {L},..., L)} be the set of all L} in Cy such that L’sub’ = L.
We have the following diagram:

L; c Cisy Cy D Lo
sub’ ‘ ‘ ‘ ‘ sub’
L e (] cy, > L
AN /
RI

Let L ={Ly,...,L,, L},..., L’} (that is L = L; ULy). This set is unifiable
since Lsub’ = {L}. Let sub be a most general unifier for L. Then we can apply
Definition 3.35 to find the following resolvent of C and Cs:

R = [(0181 — Ll) U (CQ — LQ)]SUZ)

Referring to the second diagram of the lemma, we see that it remains to be
shown that R’ can be obtained from R by a substitution. We complete the proof
of the lemma by showing that Rsub’ = R’. By applying sub’ we get

Rsub’ = [(Cys1 —L1) U (Cy — La)]subsub’.

Since sub’ is a unifier for I and sub is a most general unifier for L, we know
subsub’ = sub’. So we have

Rsub’ = [(Cys1 — L1) U (Cy — Lo)]sub/
= (C1s1sub’ — Lysub’) U (Cosub’ — Losub’)
= (C1 —{L}Hu(C; —{L}) =R O

Corollary 3.38 Let ¢ be a sentence in SNF. If C' € Res*(E(y)), then there
exists C' € Res*(y) and a substitution sub’ such that Csub’ = C".

Proof If C' € Res*(E(y)), then C’ € Res™(E(y)) for some n. We prove the
corollary by induction on n. If n = 0, then C’ € E(p). Then, by the definition
of E(p), C' is obtained by substituting variable free terms in for the variables
of some C € ¢.

For the induction step, we utilize the Lifting lemma. Suppose that for some
m, each clause of Res™(E(y)) is obtained from some clause of Res*(y) via
substitution. Let ¢ C Res*(¢) be such that every clause of Res™(E(yp)) comes
from some clause in ¢. Then Res™(E(p)) C E(p). If C' € Res™ 1 (E(yp)), then
C’ € Res(E(9)). By the Lifting lemma, there is some C' € Res(@) such that
Csub’ = C' for some substitution sub’. Since ¢ C Res*(¢), C' € Res*(¢). O

128 Proof theory

In particular, if) € Res*(E(p)), then there exists some C' € Res*(y) such
that Csub’ = @) for some substitution sub’. But this is only possible if C = 0.
So if § € Res*(E(p)), then) € Res*(¢). We conclude that if ¢ is unsatisfiable,
then () € Res*(¢). We have shown that the notion of resolution defined in this
section works. We state this as a theorem.

Theorem 3.39 Let ¢ be a sentence in SNF. Then ¢ is unsatisfiable if and only
if) € Res*(p).

3.5 SLD-resolution

One purpose of resolution is to provide a method of proof that can be done by
a computer. Toward this aim, we refine resolution in this section. Our goal is to
find a version of resolution that can be completely automated. The advantage
of resolution over other formal proof systems is that it rests on a single rule.
Resolution proofs may not be the most succinct. They will not lend insight as to
why, say, a sentence ¢ is unsatisfiable. The benefit of resolution is precisely that
it does not require any insight. To show that ¢ is unsatisfiable, we can blindly
compute Res*(p) until we find (). However, this method is not practical. If () is
in Res*(), then calculating the clauses in Res* () one-by-one in no particular
order is not an efficient way of finding it. The first two theorems of this section
show that it is not necesssary to compute all of Res*(y). We show that we only
need to compute resolvents R of clauses C'y and C5 that have certain forms. We
refer to C'y and Cy as the parents of R.

Definition 3.40 N-resolution requires that one parent contain only negative
literals.

We look at an example from propositional logic. Let
Y= {{Av B}v {_‘Av C}v {_‘B’ D}v {_‘O}’ {_'D}}

We show that ¢ is unsatisfiable using IN-resolution.

GENe
N
{AB {4 {-B.D} {-D}
| s
{B) {-B)
AN /
0

Note that each resolvent has a parent that contains only negative literals.

Proof theory 129

Definition 3.41 Linear resolution requires that one parent be the resolvent from
the previous step.

The word “linear” refers to the diagram. The previous diagram is not
linear because it has two “branches.” The following diagram illustrates a linear
resolution for this same example.

{=4,C} {=C}

N

(4.8 {4
N

B0}y (B}
N

-0} (D}
N

0

So we can derive the emptyset from ¢ either by N-resolution or linear
resolution. The next two theorems show that this is true for any unsatisfiable
. That is, to show that ¢ is unsatisfiable, we can restrict our computations to
N-resolution or linear resolution.

Theorem 3.42 Let ¢ be a sentence in SNF. Then ¢ is unsatisfiable if and only
if @ can be derived from ¢ by N-resolution.

Proof If) can be derived by N-resolution, then) € Res*(p) and so ¢ is
unsatisfiable. Conversely, suppose ¢ is unsatisfiable.

By the Lifting lemma, it suffices to prove this theorem for propositional
logic. This requires some explanation. If) can be derived from E(p) by
N-resolution, then we can “lift” this to a derivation of @ from . By “lift”
we mean that the former can be obtained from the latter via substitutions. Note
that a clause C' contains only negative literals if and only if C'sub does (for any
substitution sub). So an N-resolution derivation in propositional logic lifts to an
N-resolution derivation in first-order logic.

Having said this, we assume ¢ is an unsatisfiable set of sentences of proposi-
tional logic in CNF. By compactness, we may assume ¢ is finite. We showed that
() € Res*(y) in Proposition 1.74. Following that same proof, we show that () can
be derived by N-resolution.

Let ¢ = {C4,...,Cr}. We assume that none of the C;s is a tautology
(otherwise we just throw away these clauses and show that (§ can be derived

130 Proof theory

from what remains). We will prove this proposition by induction on the number
n of atomic subformulas of ¢.

First suppose n = 1. Let A be the only atomic formula that occurs in .
Then there are only three possible clauses in ¢. Each C; is either {4}, {—A},
or {A,—~A}. The last clause is a tautology, and so, by our previous assumption,
it is not a clause of . So the only clauses in ¢ are {A} and {—A}. There are
three possibilities, ¢ = {{A4}}, ¢ = {{—=A}}, or ¢ = {{A}, {—A}}. The first two
of these are satisfiable. So ¢ must be {{A},{—A}}. Clearly,) can be derived by
N-resolution.

Now suppose ¢ has atomic subformulas Aq,..., A, +1. Suppose further that
() can be derived by N-resolution from any unsatisfiable formula 1) that uses only
the atomic formulas Aq,..., A,.

Let ¢ be the conjunction of all C; in ¢ that do NOT contain = A, 41.
Let @1 be the conjunction of all C; in ¢ that do NOT contain A, ;1.

If A, 11 and —A,, 1 are both in a clause, then that clause is a tautology. By
our assumption, there is no such clause and @o U @1 = ¢.

Let o = {Cs — {An11}Cs € ¢o}-
Let 1 = {Cl — {—\An+1}|ci S @1}

That is, ¢g is formed by throwing A, 11 out of each clause of @y in which it
occurs. Likewise, ¢ is obtained by throwing —A, 1 out of each clause of ;.

Note that g is the formula obtained by replacing A,,+1 in ¢ with a con-
tradiction, and ¢; is obtained by replacing A,+1 in ¢ with a tautology. Since
Ap41 must either have truth value 0 or 1, it follows that ¢ = ¢ V 1. Since ¢
is unsatisfiable, ¢ and ¢; are each unsatisfiable. The formulas ¢y and ¢, only
use the atomic formulas A1, ..., A,. By our induction hypothesis, we can derive
() from both ¢q and ¢; using N-resolution.

Now ¢(was formed from ¢ by throwing A, 1 out of each clause. Since we
can derive () from g by N-resolution, we can derive either) or {4, 11} from @
by N-resolution (by reinstating {A4,+1} in each clause of ¢g). Likewise, we can
derive either () or {—=A, 11} from @; by N-resolution. In any case, we can use
N-resolution to derive () from ¢ = goU@;. O

Theorem 3.43 Let ¢ be a sentence in SNF. Then ¢ is unsatisfiable if and only
if @ can be derived from ¢ by linear resolution.

Proof As with Theorem 3.42, only one direction of this theorem requires proof.
Suppose that ¢ is unsatisfiable. We want to show that () can be derived from ¢ by
linear resolution. By the Lifting lemma, it suffices to prove this for propositional

Proof theory 131

logic. So suppose ¢ is a set of sentences in propositional logic that are in CNF.
We say that a set of sentences is minimal unsatisfiable if it is unsatisfiable and
every proper subset is satisfiable. By Exercise 1.33(b), ¢ contains a minimal
unsatisfiable subset ¢’. The following lemma states that for any C' € ¢, we can
derive () by linear resolution begining with C as one parent. The proof of this
lemma completes the proof of Theorem 3.43. [

Lemma 3.44 Let F be a minimal unsatisfiable set of sentences of propositional
logic that are in CNF. For any C € F, we can derive () from F by linear resolution
begining with C' as one parent.

Proof By the Compactness of propositional logic, it suffices to prove this for
finite F. So we may view F as a formula in CNF. We proceed by induction on
the number n of atomic subformulas of F. If n = 1, then F = {{A},{—-A}} for
some atomic formula A. In this case, the conclusion of the lemma is obvious.
Now suppose that, for some n € N, F contains n + 1 atomic subformulas. Our
induction hypothesis is that the lemma holds for any formula in CNF containing
at most n atomic subformulas.

Let L be a literal in C. This literal partitions F into three subsets as
follows.

Let C = {C4,...,C;} be the set of clauses in F that contain L.
Let D = {Dy,...,D,} be the set of clauses in F that contain L.

Let € ={FE1,..., E;} be the set of clauses in F that contain neither
L nor L.

Any clause that contains both L and L is a tautology. Since F is minimal
unsatisfiable, F contains no such clauses. So every clause in F is in exactly one
of the above three sets. Note that C' is in C. We may assume that C; = C.

Case 1: C = {L}.

For any clause D € F, we can find a resolvent of C' and D if and only if D is
in D. If D is in D, then let D’ denote the resolvent of C' and D. That is, D’ is the
formula obtained by removing L from the formula D. Since F is unsatisfiable,
we can derive () from F by resolution. Since it is minimal unsatisfiable the clause
C, as well as each clause of F, is needed in this derivation. It follows that the
clause D € D must exist.

Let Fy, be the set {D1,..., D}, Ev, ..., Ex}.

Note that F, is equivalent to the formula obtained from F by replacing L
with a tautology and L with a contradiction. Either L or L is an atomic formula
that occurs in F but not Fr. If F contains n + 1 atomic subformulas, then Fr,

132 Proof theory

contains n atomic subformulas. Our induction hypothesis applies to any minimal
unsatisfiable subset of F,.

Claim There is a minimal unsatisfiable subset of F, containing D].

First we show that F, is unsatisfiable. Suppose to the contrary that Fp, is
satisfiable. Then there exists an assignment A defined on the n atomic formulas
of Fr, and not defined on L. Let A’ be an extension of A such that A'(L) = 1.
Then A’ models each clause of F. This is a contradiction. Since F is unsatisfiable,
so is Fr. By Exercise 1.33(b), F1 contains a minimal unsatisfiable subset.

Suppose we remove D} from F. We show that the resulting set Fr, — {D}}
is satisfiable. To see this, consider the set {C, Do, ..., D;, E1,..., E}. Since this
is a proper subset of F (not containing D; € F), this set must be satisfiable.
Let A be an assignment that models this set. Since A models both C and Do, it
also models their resolvent Dj. Likewise, A models each formula of Fj, — {D}}
and this set is satisfiable. It follows that any minimal unsatisfiable subset of F,
must contain D] as claimed.

By the induction hypothesis, () can be derived from F by linear res-
olution begining with D} as one parent. The lemma states that @) can be
derived from F by linear resolution begining with C. We begin this deriva-
tion by taking C and D; as parents of the resolvent Dj. Consider now the set
{D},Ds,...,D;,E,...,E}. Note that this set is obtained from F by rein-
stating L to the clauses D, ..., D?’. Since) can be derived from Fr, by linear
resolution begining with D7, either () or L can be derived after reinstating L to
these clauses. If () is derived, then we are done. Otherwise, if L is derived, then
is obtained from L and C to successfully conclude the linear resolution.

Case 2: C contains literals other than L.

For this case, consider the set F7 defined as follows:

Fr=A{C1,....Cl,En,...,E},

where each C7, is obtained by removing L from C; € C. Note that F7 is equivalent
to the formula obtained from F by replacing L with a tautology and L with a
contradiction. As with Fr, the set 77 contains n atomic subformulas and we
can apply our induction hypothesis to any minimal unsatisfiable subset of F7.

Claim There is a minimal unsatisfiable subset of F containing C7.

The set F7 is unsatisfiable for the same reason that 7, is unsatisfiable. Any
assignment that models 77 can be extended to an assignment that models F.
Since F is unsatisfiable, no such assignment exists.

Proof theory 133

Now suppose that we remove C from F7. We show that the resulting set
Fr—{C1} is satisfiable. Since F is minimal unsatisfiable, there exists an assign-
ment A that models every formula of F other than C. Since F is unsatisfiable,
A | —=C. Since A = =C and L € C, it must be the case that A |= L. Since
A models Cy and not L, A must model the formula C} obtained by removing
L from Cs. Likewise, A models each formula in Fy — {C}. It follows that any
minimal unsatisfiable subset of 7 must contain C] as claimed.

By the induction hypothesis,) can be derived from F by linear resolution
begining with C{ as one parent. The set

{Ol,...,Ci,El,...,Ek}

is obtained from F by reinstating L to some of the clauses. Either () or L can
be derived from this subset of F by linear resolution begining with C = Cy. If (§
is derived, we are done. Suppose L is derived. Consider the set

{L,Dy,...,D;,Es,...,Eg}.

If we remove L from this set, then we have a proper subset of F which must be
satisfiable. Having L in this set, however, makes it unsatisfiable. Any assignment
A that models L also models each clause of C. Since F is unsatisfiable, so is the
above set. So there exists a minimal unsatisfiable subset of this set containing L.
By case 1, () can be derived from this set by linear resolution begining with L as
one parent. This completes the linear resolution and the proof. [J

So if ¢ is unsatisfiable, then we can prove that it is unsatisfiable using either
linear resolution or N-resolution. Anything that can be proved using resolution
can also be proved using either of these restricted versions of resolution. Suppose
we restrict further to resolution that is both linear resolution and N-resolution.
Call this LN -resolution.

Question 1 Can we derive () from any unsatisfiable ¢ using LN-resolution?

The answer is “no.” Consider again the example

¥ = {{A’ B}v {_'Av 0}7 {_'B’ D}v {_'O}’ {_‘D}}

We showed that ¢ is unsatisfiable using both N-resolution and linear resolu-
tion. Note that neither of these derivations was by LN-resolution. In fact, 0
cannot be derived from ¢ using LN-resolution (try it). So LN-resolution is too
weak to prove everything. However, suppose we restrict our attention to Horn
sentences.

134 Proof theory

Definition 3.45 Let ¢ be a sentence in SNF. If each clause in ¢ contains at most
one positive literal, then ¢ is a Horn sentence.

This is the same definition we gave for sentences of propositional logic in
CNF. Note that ¢ in our example is not Horn since it contains the clause {A, B}.
The following theorem shows that if we require ¢ in Question 1 to be a Horn

sentence, then the answer becomes “yes.”

Theorem 3.46 Let ¢ be a sentence in SNF. If ¢ is a Horn sentence, then ¢ is
unsatisfiable if and only if () can be derived from ¢ by LN-resolution.

Proof Suppose ¢ is an unsatisfiable Horn sentence. Again by the Lifting Lemma,
we may assume that ¢ is a sentence of propositional logic. Let ¢’ be a min-
imal unsatisfiable subset of ¢. By Theorem 3.42, there is an IN-resolution
derivation of () from ¢’. In particular, ¢’ must contain a negative clause N.
By Lemma 3.44, there exists a linear resolution derivation of () begining with N.
So we have

D N
P
o
o,
;
for some clauses D, D1,...,D, and Ny,..., N,. Since ¢ is Horn, D contains at

most one positive literal. It follows that V7 is contains only negative literals.
Likewise, each N; is negative and this is an L N-resolution. [

Clauses that contain exactly one positive literal are called definite. Note
that each D; in the previous proof is necessarily definite. The positive literal
in D; “cancels” with one of the negative literals in N; yeilding the negative
resolvent N; ;. For each N; there may be many possibilities for D; depending on
which literal in INV; we want to cancel. A selector function chooses which literal
in V; to cancel at each stage. For example, we may say cancel the leftmost
literal of V; at each stage. Or we may require that we cancel a literal that has

Proof theory 135

appeared in the most IV; for j < i. We demand only that the selector function
is invariant under substitutions of variables. That is, suppose that, for a given
set of negative literals N, the selector function chooses L € N. Then for any
substitution of variables sub, we require that the selector function chooses Lsub
from Nsub.

Definition 3.47 SLD-resolution is L N-resolution with a selector function.
The “S” stands for selector, the “L” for linear, and the “D” for definite.

Example 3.48 Let ¢ = {{—A4,C},{A4,-B},{B},{-D,~C},{D,-E},{E}}. We
will perform SLD-resolution on ¢ twice. First, we use the “leftmost” selector
function. At each stage, we underline the literal that we seek to eliminate.

{D.~E} {2D.-0)
\
{8} {2£-0)
\
{-4.0} {=C}
N
{4.-B) (=4}
N
{B) {=B)
N

Now we use the “rightmost” selector function.

{=4,C} {=D,=C}
N
{D,~E} {-A,=D}
AN
{4,-B} {-E,24}
N
{E} {-B,=E}
AN
{B} {=B}
N

0

136 Proof theory

Theorem 3.49 Let ¢ be a sentence in SNF. If ¢ is a Horn sentence, then ¢ is
unsatisfiable if and only if () can be derived from ¢ by SLD-resolution for any
choice of selector function that is invariant under substitutions.

Proof Since the selector function is invariant under substitutions, we may
apply the Lifting Lemma and assume that ¢ is a sentence of propositional
logic. By Theorem 3.46, we can derive () from ¢ by LN-resolution as
follows:

D N
Dy Ny
Dy N
N
DYL NTL
N
0
In this derivation, N is a negative clause of p and D, D1, ..., D,, are definite

clauses of ¢. We proceed by induction on n. If n = 0, then N contains only
one literal L. Any concievable selector function must choose the literal L from
N (there is no other choice). So in this case, the above LN-resolution is also
S LD-resolution regardless of the choice of selector function.

Now suppose that n in the above derivation equals m + 1 for some integer
m > 0. Then there are m + 2 steps in this derivation. Suppose further that if ()
can be derived by LN-resolution in m + 1 steps, then it can also be derived by
SLD-resolution. This is our induction hypothesis.

Let L be the literal of N chosen by the selector function. Then L
must occur in D or some D;. If it happens to occur in D, then SLD-
resolution begins with the same resolvent N; as the above LN-resolution.
From this point, @ is derived in m + 1 steps from N; in the the above
LN-resolution. By our induction hyposthesis, it can be derived by SLD-
resolution.

Now suppose that L is in D; for some i = 1,...,n. Then SLD-resolution
begins by finding the resolvent N’ of D; and N. Consider the following two

Proof theory 137

derivation by LN-resolution:

D N D; N
| |

D1 Ny D N’
| |

D, Ny D, N{
| |

Dg N3 D2 NQ/
| N

D; N; D1 Ni_4

| N

Nit1 N/

The derivation on the left is the same as before. Since the derivation on
the right also begins with N and involves precisely the same definite clauses (in
a different order) the result N/ is the same as the result N;y; of the deriv-
ation on the left. The derivation on the left can be continued as above to
obtain @. Since, N/ = N;;1, we can conclude the derivation on the right in
exactly the same manner. So, in this new derivation, we derive () in the same
number of steps (m+2) as before. Beginning this derivation from the second step,
we see that, using LN-resolution, () can be derived from {N’, D, D;,...,D,} in
m + 1 steps. By our induction hyothesis, we can derive () from this set using
SLD-resolution. [

3.6 Prolog

There are many conceivable ways to implement resolution into a programming
language. Prolog and Otter are two examples. The language of Prolog is based
on first-order Horn logic. Otter allows far more expressions. Otter can take a
set of first-order sentences, put them into CNF, and derive consequences using
resolution and other methods. Whereas Otter is used as a theorem prover for
elementary mathematics and has successfully obtained new results, Prolog is
primarily a search engine for databases (Prolog is closely related to Datalog).
Several versions of Prolog and Otter are freely available on the internet. (Otter
may be downloaded from the pages of the Mathematics and Computer Science
Division of Argonne National Laboratory where it was developed.)

138 Proof theory

In this section, we give some examples of Prolog programs and discuss how
Prolog uses SLD-resolution. We refer the reader to Ref. [20] for details on Otter.

We begin by defining the basic syntax of Prolog. We consider only a fragment
of Prolog called “pure Prolog.” In pure Prolog, there are symbols for conjunction
and implication, but not disjunction, negation, or equality. Lower case letters are
used for relations and functions. Commas are used for conjunction and “q :- p”
is used for p — ¢. The Horn sentence

Vavy((P((z,y)) A E(f(2),y) — Q(x)))

is written in Prolog as
q(X) = pX,Y), e(f(X),Y).

Note that if this were written as a disjuntion of literals, then the literal ¢(z) on
the left would occur as a positive literal and the literals on the right would occur
as negative literals.

Recall that a Horn clause is a clause that contains at most one positive
literal. So in Prolog, there is at most one literal to the left of :-. If it contains no
positive literal, it is called a goal clause. Otherwise, it is called a program clause.
There are two varieties of program clauses. If there are no negative literals, then
it is called a fact. Otherwise it is called a rule. A program in Prolog is a set of
program clauses. For example, the following is a program.

p(ray,ken)
p(ray,sue)
p(sue,tim)
p(dot, jim)
p(bob, jim)
p(bob,1iz)
p(jim,tim)
p(sue,sam)
p(jim,sam)
p(zelda,max)
p(sam,max)
gpX,Y) :- p(X,2),p(Z,Y).

This program consists of 11 facts and one rule. The facts, since they contain
no variables, are sentences of propositional logic. These form a database. If we
interpret the predicate p(X,Y) as “X is a parent of Y,” then the facts just list
pairs of parents and children. The rule defines the relation gp(X,Y) as “X is
a grandparent of Y.” Using first-order logic, we can define gp(X,Y) in a single
sentence without having to list all pairs of grandparents and grandchildren.

Proof theory 139

We can ask certain questions in Prolog. Questions are presented as a list of
positive literals. We use “?-” for the Prolog prompt. The following is an example
of a question we may ask:

7- gp(ray,X),p(X,max)

This can be interpreted as “does there exist an X such that both gp(ray,X) and
p(X,max) hold?” That is, is Ray a great-grandparent of Max? Prolog will not
only answer this question, it will output all values for X for which the statement
is true. We describe how Prolog does this.

Let P denote the set of all sentences in the program. Let) denote the
sentence 3X (gp(ray, X) Ap(X, maz)). Our question asked if @ is a consequence
of P. That is, we want to know if P A =@ is unsatisfiable. Note that —@Q is
equivalent to the Horn sentence VX (gp(ray, X) A p(X,maz) — 0). In Prolog
this sentence is written as

:- gp(ray,X),p(X,max)

which is a goal clause.

Prolog proceeds with SLD-resolution on P U {—=Q} using the “leftmost”
selection rule. Since, =@ is the only negative clause of PU{-Q}, SLD-resolution
must begin with this clause. Prolog searches the program for something to unify
with gp(ray,X), the leftmost literal of =@Q). Prolog searches until it finds the
rule gp(X,Y) :- p(X,Z),p(Z,Y) which has a positive occurrence of gp(X,Y).
Prolog computes the following resolvent:

gp(X,Y) :- p(X,2),p(Z,Y) :- gp(ray,X),p(X,max)
gp(ray,Y) :- p(ray,z),p(Z,Y) :- gp(ray,Y),p(Y,max)
N S

B p(ray,z))p(Z:Y) ,P(Y,maX)

Prolog then searches and finds p(ray,ken) which can be unified with the
leftmost literal of the above resolvent. Prolog then calculates the resolvent
p(ken,Y),p(Y,max). Searching again, Prolog finds nothing that can be unified
with p(ken,Y). So this is a dead end and Prolog must backtrack. Prolog goes
back to the previous step and, instead of taking p(ray,ken), proceeds down
the list to p(ray,sue). After computing the resolvent, Prolog will next find
p(sue,tim). This is another dead end, and so Prolog will backtrack and take

140 Proof theory

p(sue,sam) instead. This choice yields the following SLD-resolution:

gpX,Y) - p(X,2),p(Z,Y) :- gp(ray,X),p(X,max)
\ |
p(ray,sue) :- p(ray,2),p(Z,Y),p(Y,max)
\ |
p(sue,sam) :— p(sue,Y),p(Y,max)
\ |
p(sam,max) :- p(sam,max)
\ |
0

It follows that P A =@ is unsatisfiable, and so @ is a consequence of P. So
Prolog can give an affirmative answer to our question ?- gp(ray,X),p(X,max).
Moreover, by keeping track of the substitutions that were made, Prolog can
output the appropriate values for X. In the first step of the above resolution,
the substitution (X/Y) was made (as indicated by the vertical lines in the first
diagram). Later, the substitution (Y/sam) was made. So X=sam works. Prolog
will backtrack again and continue to find all values for X that work. In this
example, X = sam is the only solution.

Some other questions we might ask are as follows:

Input Output

?7- p(bob,liz) yes

?7- gp(X,sam) X=ray,X=bob,X=dot
?- gp(tim,max) no

?- p(tim,X) no

?7- p(X,Y),p(Y,max) X=jim,X=sue,Y=sam

The output “no” means Prolog has computed all possible SLD-resolutions and
did not come across 0.

Suppose now we want to know who is the grandmother of whom. We will
have to add some relations to be able to ask such a question. Let gm(X,Y) mean
X is the grandmother of Y. We need to add sentences to the program that define
this relation. One way is to list as facts all pairs for which gm holds. This is how
the relation p was defined in the original program. But this defeats the point. If
we could produce such a list, then we would not need to ask Prolog the question.
Another way is to introduce a unary relation f (X) for “female.” The following
rule defines gm.

gn(X,Y) - gp(X,V),f(X)

Proof theory 141

But now we need to define £ (X). We do this by adding the following facts
to the program:

f(dot)
f (sue)
£(1iz)
f(zelda).

We can now ask the question

7- gn(X,Y)

to which Prolog responds
X=dot,Y=tim
X=dot,Y=sam

X=sue, Y=max.

There is one caveat that must be mentioned. Prolog does not use the Uni-
fication algorithm as we stated it. This algorithm is not polynomial time. Recall
that, to unify a set of literals, we look at the symbols one-by-one until we find
a discrepancy. If this discrepancy involves a variable and a term that does not
include the variable, then we substitute the term for that variable and proceed.
We must check that the variable does not occur in the term. This checking pro-
cedure can take exponentially long. Prolog avoids this problem simply by not
checking. Because it excludes a step of the Unification algorithm, Prolog may
generate incorect answers to certain queries. This is a relatively minor problem
that can be avoided in practice.

Example 3.50 Consider the program consisting of the fact p(X,X) and the rule
q(a) - p(f(X),X). If we ask ?- q(a), then Prolog will output the incorrect
answer of “yes.” Since it fails to check whether X occurs in f (X), Prolog behaves
as though p(X,X) and p(£(X),X) are unifiable.

In “pure Prolog,” we have been ignoring many features of Prolog. Prolog has
many built in relation and function symbols. “Impure Prolog” includes is (X,Y)
which behaves like X = Y. It also has binary function symbols for addition
and multiplication. A complete list of all such function and relations available
in Prolog would take several pages. We merely point out that we can express
equations and do arithmetic with Prolog.

So we can answer questions regarding the natural numbers using Prolog.
There are three limitations to this. One is the before mentioned caveat regard-
ing the Unification algorithm. Another limitation is that Prolog uses Horn
clauses. This is a restrictive language (try phrasing Goldbach’s conjecture from

142 Proof theory

Exercise 2.8 as a goal clause for some Prolog program). Third, suppose that
Prolog was capable of carrying out full resolution for first-order logic (as Otter
does). Since resolution is complete, it may seem that we should be able to prove
every first-order sentence that is true of the natural numbers. This is not the case.
Even if we had a computer language capable of implementing all of the meth-
ods discussed in this chapter, including formal proofs, Herbrand theory, and
resolution, there would still exist theorems of number theory that it would be
incapable of proving. This is a consequence of Gédel’s incompleteness theorems
that are the topic of Chapter 8.

Exercises

3.1. Let ¢ be a V-sentence and let I' be a set of V-sentences such that
I' F ¢. Show that there exists a derivation ¢ from I' that uses only
V-formulas.

3.2. Let I' be a set of V-sentences. Show that the following are equivalent:
(i) For every universal V-formula ¢, there exists an existential V-
formula ¥ such that I' - ¢ < 1.

(ii) For every V-formula ¢, there exists an existential V-formula 1 such
that I' = ¢ < 1.

(iii) For every existential V-formula ¢, there exists an universal V-
formula ¥ such that I' - ¢ < 1.

(iv) For every V-formula ¢, there exists a universal V-formula 6 such
that T'F ¢ < 6.

3.3. Let I" be a set of V-sentences. Show that the following are equivalent:
(i) For every quantifier-free V-formula ¢(x1,...,2,,y) (for n € N),

there exists a quantifier-free V-formula ¢ (z1,...,z,) such that T' -
Fyo(z1,. ..y Tn,y) < P(T1,. .., Tn).

(ii) For every formula ¢(z1,...,7,) (for n € N), there exists a
quantifier-free formula 6(x1,...,x,) such that ' F ¢o(x1,...,2,) <
0(x1,...,xn).

3.4. Complete the proof of Theorem 3.4 by verifying the soundness of
V-Distribution.

3.5. Verify each of the following by providing a formal proof:
(a) {Favyp(z,y)} - Vydap(z,y)

(b) {Vadyvzy(x,y,2)} - aVaTyy(z,y, 2)
(¢) {ZaVyIVwb(z,y,z,w)} - VyIaeVwIz0(z, y, z, w).

3.6.

3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

3.13.

3.14.
3.15.
3.16.

Proof theory 143

Verify that the following pairs of formulas are provably equivalent by
sketching formal proofs:

(a) JzIyp(z,y) and Jy3zp(z,y).
(b) VaIyIzy(z,y,z) and VeIzTyy(z,y, 2).

(¢) Fz1VeoVrsIwyIrsIzeh (a1, 2, T3, T4, T5,) and
Ju1VesVeedreIrsIzy 0(21, 22, 3, T4, X5, Tg).

Let z and y be variables that do not occur in the formula ¢(z). Show that

Jzp(x) and Jyp(y) are provably equivalent by giving formal proofs.

Show that Va(¢(x) A (z)) and VYap(x) AV (z) are provably equivalent
by providing formal proofs.

(a) Show that {3z(p(x) A (x))} F Jze(x) A Tz (z).

(b) Show that the sentences Jz(p(x) A (x)) and Jzp(x) A Jzp(z) are
not provably equivalent.

Show that Jz(p(x) V ¢ (z)) and Jxp(x) V Vo (z) are provably equivalent
by providing formal proofs.

(a) Show that {Vxp(x) VvV Vay(z)} - Va(e(z) V i (x)).

(b) Show that the sentences Va(p(x) V ¢(x)) and Vzp(z) V Ve (z) are
not provably equivalent.

Let Vg, be the vocabulary {+,0} where + is a binary function and 0 is a
constant. We use the notation x + y to denote the term +(z,y). Let T be
the set consisting of the following three V,,-sentences from Exercise 2.5:
VaVyVz(z + (y + 2) = (z +y) + 2)
Ve((x+0=2)A(0+2 =x))
Vaedy(x +y =0) AJz(z+ 2 =0)

(a) Show that T'FVaVyVz(z+y =2+ 2 — (y = 2)).

(b) Show that I' FVz(Vy(z +y =y) — (x = 0)).

(c) Show that I' - VadyVz((z +y=0)A (2 + 2 =0)) = (y = 2).
Complete the proof of Proposition 3.13 by deriving Jzp(z) A Jzyp from
Fz(p(z) A1)

Verify that Vz3y(f(z) = y) is a tautology by giving a formal proof.
Complete the proof of Proposition 3.15.

For each n € N, let ®,, be the sentence

dxq - 3dx, /\sci #xj
i#]

asserting that there exist at least n elements.

144

3.17.

3.18.

3.19.
3.20.

3.21.

3.22.

Proof theory

Let ¢1 be the sentence

Vavy((f(z) = f(y) — (z =y))

saying that f is one-to-one and let ¢- be the sentence

Vydu(f(z) =y)
saying that f is onto.
Show that {1, v2, ®,} F @, 41 by giving a sketch of a formal proof.

For each n € N, let ®,, be as defined in the previous exercise.
Consider the following three sentences:

Vavy((z <y) — —(z =y)))
Vavyvz(((z < y) Ay < 2)) — (= < 2))
VaVy((z < y) — F2((z < 2) A (2 < y)))-

Each of these sentences hold in any structure that interprets < as a dense
linear order (such as Q< = (Q| <) or Rc = (R| <)). Let 1, 12 and 3
denote these three sentences in the order they are given.

(a) Show that {11,993, P} F Pppq.

(b) Show that it is not the case that {¢1, 3, P} Ppiq.

For each of the following formulas, find an equivalent formula in Conjunct-
ive Prenex Normal Form. Note that each of these formulas have x and y
as free variables.

(a) —32Q(z,y,2) VVzIwP(w,z,y, 2)

(b) Vz(R(z,z) A R(xz,y) — Jw(R(xz,w) A R(y,w) A R(z,w)))

() F2(S(y,2) Ay(S(z,y) AFz(S(x, 2) A (S(2,9)))))-

Find the Skolemization of each of the formulas in the previous exercise.

Under what conditions on ¢ will the Skolemization ¢° be equivalent
to ¢?

Let V be the vocabulary {f, P} consisting of a unary function f and a
unary relation P. Let ¢ be the formula

Va(P(z) — P(f(x)) A JzP(x) A Jx—P(x)).

(a) Show that ¢ does not have a Herbrand model.
(b) Find a Herbrand model for the Skolemization ¢*.

Let 1 and @2 be the sentences in the vocabulary {f} defined in
Exercise 3.16. Show that ¢, has a Herbrand model, but neither @2 nor
the Skolemization of ¢y has a Herbrand model.

3.23.

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

3.30.

Proof theory 145

Let p(z) be a formula that is both quantifier-free and equality-free. Show
that Jzp(x) is a tautology if and only if p(t1) V @(t2) V -+ V ¢(t,) is a
tautology for some n € (N) and terms ¢; in the Herbrand universe for .

Use the Herbrand method to show that the following sentence is not
satisfiable: Ve—R(z,) AVzR(z, f(x))A JaVy(R(z,y) — R(f(z),y)).

A first-order sentence is a Horn sentence if it is in SNF and each clause
contains at most one positive literal. Describe a polynomial-time algorithm
that determines whether or not a given Horn sentence is satisfiable.

(Use the Herbrand method and the Horn algorithm from Section 1.7.)

Is the following set of literals unifiable?

{Q(f(g(w), h(x)),y, f(2,a)), Q(f(y, h(x)), g(w), f(g(w), x)),
Q(f(9(2),h(a)), 2, f(y,))}.

If so, give the most general unifier and another unifier that is not most
general.

Is the following set of literals unifiable?

{R(f(2),9(2)), R(y, 9(x)), R(v,w), R(w, g(x))}-

If so, give the most general unifier and another unifier that is not most

general.

(a) Using the Unification algorithm, find a most general unifier for the
set {R(z,y, 2), R(f(w,w), f(z,2), f(y,y)}.

(b) Now consider the set {R(z1,...,Znt1), R(f(z0,20))s- -, [(Tn,zn)}
Given this set as input, how many steps will it take the Unification
algorithm to halt and output a most general unifier? Is this algorithm
polynomial time?

Use resolution to prove that the following are tautologies:
(a) (F2vyQ(z,y) AVz(Q(z,z) — FyR(y,x))) — FyFzR(z,y)
(b) (F2VyR(z,y)) < (~VaIy-R(z,y))
() (Va((P(z) — Q(z)) — VyR(z,y)) A Vy(—R(a,y) — —P(a))) —
R(a,b).
Let Vg be the vocabulary {E} consisting of one binary relation.
Let I' be the set consisting of the following three Vg¢-sentences from
Example 2.27.
VeE(x,)
Vavy(E(z,y) — E(y,z))
VavyVz((E(z,y) A E(y, z) — E(z,2))).

146

3.31.

3.32.

3.33.

3.34.

3.35.

Proof theory

Using resolution, derive Vz(E(x,y) < E(z,z)) from I' U {3z(E(x,y) A
E(z,z))}. (First put these sentences in SNF.)

Refer to the proof of Lemma 3.44.
(a) Show that if C'= {L}, then C = {C'}.

(b) Show that if C = {L}, then Fr, is minimal unsatisfiable.

P-resolution is the refinement of resolution that requires that one parent
contains only positive literals. Let ¢ be a sentence in SNF. Show that ¢
is unsatisfiable if and only if () can be derived from ¢ by P-resolution.

T-resolution is the refinement of resolution that requires that neither par-
ent is a tautology. Let ¢ be a sentence in SNF. Show that ¢ is unsatisfiable
if and only if # can be derived from ¢ by T-resolution.

Let F be a formula of propositional logic in CNF. Let A be an assignment
defined on the atomic subformulas of F'. Let A-resolution be the refinement
of resolution that requires that A(C) = 0 for one parent C. Show that F’
is unsatisfiable if and only if # can be derived from F' by .A-resolution.

Let F be a formula of propositional logic in CNF. Suppose that the atomic
subformulas of F are among {A,B,C,...,X,Y Z}. Let alphabetical-
resolution be the refinement of resolution having the following requirement.
We only allow the resolvent R of C; and C if there exists an atomic sub-
formula of both C; and Cy that precedes every atomic subformula of R
alphabetically. Show that F' is unsatisfiable if and only if) can be derived
from F' by alphabetical-resolution.

4 Properties of first-order logic

We show that first-order logic, like propositional logic, has both completeness
and compactness. We prove a countable version of these theorems in Section 4.1.
We further show that these two properties have many useful consequences for
first-order logic. For example, compactness implies that if a set of first-order sen-
tences has an infinite model, then it has arbitrarily large infinite models. To fully
understand completeness, compactness, and their consequences we must under-
stand the nature of infinite numbers. In Section 4.2, we return to our discussion
of infinite numbers that we left in Section 2.5. This digression allows us to prop-
erly state and prove completeness and compactness along with the Upward and
Downward Lowenheim—Skolem theorems. These are the four central theorems of
first-order logic referred to in the title of Section 4.3. We discuss consequences
of these theorems in Sections 4.4-4.6. These consequences include amalgamation
theorems, preservation theorems, and the Beth Definability theorem.

Each of the properties studied in this chapter restrict the language of first-
order logic. First-order logic is, in some sense, weak. There are many concepts
that cannot be expressed in this language. For example, whereas first-order logic
can express “there exist n elements” for any finite n, it cannot express “there
exist countably many elements.” Any sentence having a countable model neces-
sarily has uncountable models. As we previously mentioned, this follows from
compactness. In the final section of this chapter, using graphs as an illustration,
we discuss the limitations of first-order logic. Ironically, the weakness of first-
order logic makes it the fruitful logic that it is. The properties discussed in this
chapter, and the limitations that follow from them, make possible the subject of
model theory.

All formulas in this chapter are first-order unless stated otherwise.

4.1 The countable case

Many of the properties of first-order logic, including completeness and compact-
ness, are consequences of the following fact:

Every model has a theory and every theory has a model.

)

Recall that a set of sentences is a “theory” if it is consistent (i.e. if we can-
not derive a contradiction). “Every theory has a model” means that if a set

148 Properties of first-order logic

of sentences is consistent, then it is satisfiable. Recall too that, for any
V-structure M, the “theory of M,” denoted Th(M), is the set of all V-sentences
that hold in M. “Every model has a theory” asserts that Th(M) is consistent.
Put another way, the above fact states that any set of sentences I' is consistent
if and only if it is satisfiable. In this section, we prove this fact for countable I"
and derive countable versions of completeness and compactness.

Proposition 4.1 Let I' be a set of sentences. If I is satisfiable then I is consistent.

Proof If I is satisfiable then M |=T" for some structure M. By Theorem 2.86,
Th(M) is a complete theory. In particular, Th(M) is consistent. Since I' is a
subset of Th(M), I is consistent. [J

Now consider the converse. If I' is consistent, then it is satisfiable. One
way to prove this is to demonstrate a model for I'. Since I' is an arbitrary
set of sentences, this may seem to be a daunting task. However, there exists
a remarkably elementary way to construct such a model. We use a technique
known as a Henkin construction. This versatile technique will be utilized again
in Sections 4.3 and 6.2.

Theorem 4.2 Let I’ be a countable set of sentences. If I is consistent then I is
satisfiable.

Proof Suppose I is consistent. We will demonstrate a structure that models T'.
Let V be the vocabulary of T'. Let V* =V U {¢1, ¢z, ¢3, ...}, where each ¢;
is a constant that does not occur in V. We let C' denote the set {c1,co,c3, ...}
Since both V and C are countable, so is V1 (by Proposition 2.43).
We shall define a complete V*-theory T with the following properties.

Property 1 Every sentence of I is in T'+.

Property 2 For every VT -sentence in T'" of the form 3z6(z), the sentence 6(c;)
is also in 7't for some ¢; € C.

The second property allows us to find a model M+ of T+. By the first property,
M is also a model of I'. If we can define such T+ and M+, then this will prove
the theorem.

We define T in stages. Let Ty be I'. Enumerate the set of all VT -sentences
as {©1,¢2,...}. This is possible since the set of V*-sentences is countable (by
Proposition 2.47). Suppose that, for some m > 0, T, has been defined in such
a way that T, is consistent and only finitely many of the constants in C' occur
in T,,,. To define T},,41, consider the sentence ¢,,11. There are two cases:

(a) If To;, U {—@m+1} is consistent, then define Ty,41 to be Ty, U {—¢mi1}-

Properties of first-order logic 149

(b) If T, U{—¢m+1} is not consistent, then T, U{@m+1} is consistent. We divide
this case into two subcases:
(i) If @m41 does not have the form 3z6(z) for some formula 6(z), then just
let Tht1 be T U {pma1}-
(ii) Otherwise ¢;,4+1 has the form Jzf(x). In this case let Ty, 41 be Tp, U
{©m+1}U{0(c;)}, where i is such that ¢; does not occur in Ty, U{ @41}

So given T, which is consistent and uses only finitely many constants from
C, we have defined T),,+1. In any case, T},,+1 is obtained by adding at most two
sentences to T,,. Since T, uses only finitely many constants from C, so does
Tn+1- Moreover, we claim that 7,1 is consistent.

Claim 7T, is consistent.

Proof of Claim If 7,1 is as in (a) or (b)(i), then T,,41 is consistent by
its definition. So assume that T,,41 is as in part (ii) of (b). We know that
Ton U{@m+1} is consistent.

Suppose for a contradiction that Tp,+1 = T U {@m+1} U {0(c;)} is incon-
sistent. Then we have

T U{omar} = 20(cq).
Since ¢; does not occur in Ty, U {@m+1} we have
T U{@ms1}F Vz—=0(x) by V-Introduction.
Since @41 is the formula Jz0(x), we have
T U{@m41}F Jzb(x) Dby Assumption.
By the definition of V we have
T U{pma1} B Vz—0(x).

We see that we can derive both Vx—6(z) and its negation from T}, U{@n+1}-
This contradicts our assumption that T,, U{®,,+1} is consistent. Our supposition
that T;,41 is inconsistent must be incorrect. We conclude that T;,1, like T,,, is
consistent.

Recall that Ty is I' which is consistent and uses no variables from C. We
can apply the above definition of T},4+1 with m = 0 to get T7. By the claim, T}
is also consistent and it uses at most finitely many constants from C. And so
we can again apply the definition of T,,,+1, this time with m = 1. This process
generates the sequence Ty C Ty C To,....

We now define the V*-theory TF. Let TF be the set of all VT -sentences ¢
that occur in T} for some i. Put another way, T+ is the union of all of the T;s.

150 Properties of first-order logic

Put yet another way 7T is the limit of the sequence Ty, T4, Ty, ... If we continue
this process forever, then 7" is the end result.

We must verify that T+ has all of the desired properties. First of all,
T+ is consistent. To see this, let A be any finite subset of 7. Then A is
a subset of T,, for some m. Since T,, is consistent, so is A. So every finite
subset of TT is consistent. If TT were inconsistent, then we could derive
a contradiction from T'". Since formal proofs are finite, we could derive a contra-
diction from a finite subset of 7. Since every finite subset of 7' is consistent,
sois T,

So T is a theory. We next show that T'" is a complete theory. Let ¢ be
an arbitrary V*-sentence. Then ¢ is ; for some . Since either ¢; or —; is in
T; C TT, Tt is complete.

Finally, we must show that T has Properties 1 and 2. Since Ty = T, every
sentence of I is in TF. So TF has Property 1. To show that T has Property 2,
let 3z60(z) be a VT -sentence in TF. This sentence is ¢,,, 11 for some m. Since this
sentence is in 77, T,, U {=¢m+1} is inconsistent. In this case, T}, +1 is defined
as Ty U {@ms1} U {0(c;)} for some constant ¢;. So (c;) is in T and T has
Property 2.

Having successfully defined TF, we next define a VT -structure M+ that
models TF. The underlying set UT of M™ is a set of variable-free V*-terms.
Let t; and ty be two V*t-terms that do not contain variables. We say t; and
to are the “same” if TT says they are. That is, t; and t, are the same if and
only if T+ F t; = t5. (Note that, since T is complete, either T F t; = t5 or
T+ =(t; = t2).) Let Ut be such that every variable-free V*-term is the same
as some term in U1 and no two terms of Ut are the same. So if t; and ¢y are
the same, then U' does not contain both of them,it contains exactly one term
that is the same as these terms.

To complete our description of M, we must say how M™ interprets V*.
Since the elements of U™ are VT -terms, there is a natural interpretation. For
any constant ¢ € VT, there exists a unique term ¢ € U such that Tt - ¢ = c.
The structure M interprets the constant ¢ as the element ¢ in its underlying
set. Moreover, M ™ interprets the relations and functions of VT in the manner
described by TF. More precisely,

e for any n-ary relation R € V* and any n-tuple ¢ of elements from U™,
M™* E R(%) if and only if TT + R(%), and

e for any m-ary function f € VT, any element s € U™, and any n-tuple ¢ of
elements in U, M+ |= f(f) = s if and only if TT F f(¢) = s.

This completes our description of M.

Properties of first-order logic 151

Claim For any VT-sentence ¢, M+ = ¢ if and only if TT F ¢.

Proof Since every first-order sentence is equivalent to a sentence that uses only
the fixed symbols —, A, 3, and = (and neither V, «, <, nor V), we may assume
with no loss of generality that these are the only fixed symbols occurring in ¢.
We proceed by induction on the total number of occurrences of =, A, and 3 in .

If ¢ has no occurrences of these three fixed symbols, then ¢ must be atomic.
In this case, M T |= ¢ if and only if TF F ¢ by the definition of M.

Suppose now that ¢ has a total of m 4 1 occurrences of =, A, and 3. Our
induction hypothesis is that the claim holds for any sentence having m or fewer
occurrences of these symbols.

If ¢ has the form ¢ A6, then T F ¢ if and only if both T+) and T+ F
(since T is a complete theory). By our induction hypothesis, this happens if
and only if M T models both 1 and and, therefore, ¢ as well.

If has the form —p, then TT | ¢ if and only if 1) is not in T (since T
is a complete theory). By our induction hypothesis, this happens if and only if
M™ does not model v. By the semantics of =, M+ does not model ¥ if and only
if M+ |= .

Lastly, suppose that ¢ has the form 3z6(z). By Property 2 and our definition
of Ut, TT + ¢ if and only if T + 6(s) for some term s in UT (since TT
is a complete theory). By our induction hypothesis, Tt 6(s) if and only if
M |= 0(s). Finally, by the semantics of 3, MT |= 0(s) for some term s € U™ if
and only if MT | .

This completes the proof of the claim.

It follows from this claim that M+ = TT. Hence, we have demonstrated a
model for I' as was required. [

Corollary 4.3 Let I' be a countable set of formulas. If I is consistent, then I" has
a countable model.

Proof The structure M 7T from the proof of Theorem 4.2 is countable. [

The following corollary is a countable version of the Compactness theorem
for first-order logic.

Corollary 4.4 A countable set of formulas is satisfiable if and only if every finite
subset is satisfiable.

Proof Let I' be a countable set of formulas. We prove that I' is unsatisfiable if
and only if there exists a finite subset of I' that is unsatisfiable. Clearly, if there
exists a finite subset of I' that is not satisfiable, then I' is not satisfiable either.
So suppose I is not satisfiable. By Theorem 4.2, T" is inconsistent. That is, I' F_L

152 Properties of first-order logic

for some contradiction L. Since formal proofs are finite, A -1 for some finite
subset A of I'. By Theorem 3.4, A =1 and A is unsatisfiable. 0

The following corollary is a countable version of the Completeness theorem
for first-order logic.

Corollary 4.5 For any countable set of formulas I', I' F ¢ if and only if ' |= ¢.

Proof If ' - ¢, then ' = ¢ by Theorem 3.4. Conversely, suppose that T’ = .
Then I' U {—¢} is unsatisfiable. By Theorem 4.2, I' U {-p} is inconsistent.
That is,

Fru{-¢}FL

for some contradiction L. By Contrapositive,
TU{T}F -,

where T is the tautology — L. Finally,
'

by the Tautology rules and Double negation. [J

All of the results of this section can be extended to include uncountable
sets of sentences. We state and prove both the Compactness theorem and
the Completeness theorem in their full generality in Section 4.3. This requires
familiarity with cardinal numbers.

4.2 Cardinal knowledge

We return to our discussion of infinite sets. In Section 2.5, we defined what
it means for two sets to have the “same size.” We now introduce numbers to
represent the size of a set. These numbers are called cardinals and the size of
a set is called the cardinality of the set. If a set is finite, then its size is some
natural number (or zero if the set is empty). So each natural number is a cardinal.
The Hebrew letter X (aleph) is used with subscripts to denote infinite cardinals.
The smallest infinite cardinal is Rg. This is the cardinality of the set N and,
therefore, of every countably infinite set.

The cardinality of set A is denoted |A|. In Section 2.5 we made the assump-
tion that for any sets A and B, either |A| < |B| or |B| < |A|. This assumption
allows us to list the cardinals in ascending order as follows:

0,1,2,3,...,R0, Ny, No, ...

Properties of first-order logic 153

The cardinals Ry, N5, and beyond are uncountable cardinals. We showed that
the set of real numbers is uncountable in Section 2.5. This raises a new question:
where in the above list does |R| fall? Is it equal to Ry or some other uncountable
cardinal? We address this question and state some surprising results at the end
of the present section. As we shall see, it is possible that the cardinality of the
reals is bigger than R,, for each natural number n. The above list of cardinals is
only a partial list. To extend this list we must discuss ordinal numbers.

4.2.1 Ordinal numbers. There are two types of numbers: cardinals and ordin-
als. Whereas cardinals regard quantity, ordinals regard the length of an ordered
list. The difference between cardinals and ordinals is the difference between 7 and
7th. This distinction is mere pedantry for finite numbers. For infinite numbers,
however, the distinction between cardinals and ordinals is essential.

Example 4.6 Consider the following ordered lists of natural numbers:

A=1{1,2,3,..}
B={2,3,4,.. YU {1}
C={3,4,5,..}U{1,2}
D=1{1,3,5,7,..}U{2,4,6,8,...}.

As sets, each of these is identical to N. The cardinality of each of these
sets is Ng. However, the order in which these sets are listed differs. In B, the
number 1 follows infinitely many numbers. In this sense, B is longer than A.
Likewise C' is longer than B and D is the longest of the four lists. Ordinal
numbers recognize this distinction. The ordinal number w describes the length
of the natural numbers with the usual order. So w describes the ordered set A.
The length of B is denoted w+ 1. Likewise, the ordinal w42 describes C. Finally,
the ordinal representing the length of D is w + w.

Whereas every set has a cardinality, not every set has an ordinality. Ordin-
ality is defined only for sets that are well ordered. A linearly ordered set is a
set X with a binary relation < so that

1. for all @ and b in X, exactly one of the following hold: either a < b, b < a, or
a =10, and

2. for all a, band cin X, if a < b and b < ¢ then a < c.

That is, a linearly ordered set is a set equipped with a notion of “less than”
by which any two nonequal elements can be compared. A well-ordered set is a
linearly ordered set that is ordered in such a way that every nonempty subset
has a least element.

154 Properties of first-order logic

Example 4.7 The natural numbers N with the usual ordering is a well ordered
set. Any given set of natural numbers must contain a smallest number. The
rational numbers Q with the usual ordering is a linearly ordered set that is not
well ordered. To see this, consider the set {1/n|n € N}. This subset of the
rational numbers does not contain a smallest element.

Any finite linearly ordered set is well ordered. The ordinality of a finite
set does not depend on the particular order of the set. If ten people are stand-
ing in a queue, then, regardless of their arrangement, one thing is certain: the
tenth person is last. As Example 4.6 demonstrates, the same cannot be said for
infinite sets.

Definition 4.8 Let A be a finite well ordered set. The ordinality of A is the same
as the cardinality of the set.

So the ordinals, listed in ascending order, begin with the finite ordinals
0,1,2,3,.... To continue the list we apply the following rule.

Given any nonempty set of ordinals, there exists a least ordinal greater than
each ordinal in that set.

All ordinals are generated by repeated application of this single rule. The
least ordinal greater than each finite ordinal is denoted by the Greek letter
w (omega). So w is the smallest infinite ordinal. This is the ordinality of N
with the usual ordering. The least ordinal greater than w is denoted w + 1.
The least ordinal greater than w + 1 is w + 2. These ordinals were illustrated in
Example 4.6.

For any ordinal «, the least ordinal greater than « is called the successor of
« and is denoted o + 1. Let A be a well ordered set having ordinality «. Then
a + 1 is the ordinality of the well ordered set A U {b} where b is a new element
(not in A) that is greater than each element of A. Every ordinal has a successor,
but not every ordinal has an immediate predecessor. An ordinal that has an
immediate predecessor is called a successor ordinal. A nonzero ordinal that is
not the successor of any ordinal is called a limit ordinal. For example, w is the
smallest limit ordinal.

The ordinals have a natural order. For any ordinal «, the successor of o and
all subsequent ordinals are greater than a. We let < denote this order and refer
to this as the usual order for the ordinals.

Proposition 4.9 Any set of ordinals with the usual order is a well ordered set.

Proof Let A be a set of ordinals. It is clear that A is a linearly ordered set. To
show that it is a well ordered set, we must show that any nonempty subset X
of A contains a least element. If X happens to contain 0, then X certainly has
a least element. So suppose that 0 ¢ X. Let L be the set of all ordinals that are

Properties of first-order logic 155

less than every ordinal in X. Since 0 ¢ X, L is nonempty. So there exists a least
ordinal greater than each ordinal in L. This is the least ordinal in X. [J

Since the set of all ordinals less than « is well ordered, it has an ordin-
ality. We naturally define the ordinality of this set to be «. For example, the
set {0,1,2,3} of ordinals less than 4 has ordinality (and cardinality) 4. More
generally, we now define the ordinality of an arbitrary well ordered set.

Definition 4.10 The well ordered set A has ordinality « if there exists a one-to-
one correspondence f from A onto the set {# |8 < a} that preserves the order.
By “preserves the order” we mean that, for any « and y in A, x < y if and only

if f(z) < f(y).

This is an unambiguous definition of ordinality that agrees with all of the
facts we have previously stated about ordinality. (In particular, the reader can
verify the ordinalities stated in Example 4.6.)

The ordinal « is identified with the set {38 < a}. Clearly, any ordinal «
uniquely determines the set {38 < a}. Conversely, given {5 |8 < a}, we can
define « as the least ordinal greater than each ordinal in this set. In light of this
association, we consider « and {3| 3 < a} to be interchangeable entities. So the
ordinal 4 is the set {0, 1,2, 3}. The purpose of this is to facilitate our notation. In
particular, we write |a| to denote the cardinality of the set {3| 3 < a}. We refer
to a as being countable or uncountable depending on whether |a| is countable or
uncountable.

Whereas there is only one countably infinite cardinal, there are many count-
ably infinite ordinals (see Exercise 4.21). We proceed now to list some countable
ordinals. The first ordinal is 0. After 0, we have the successors 1,2,3. .. followed
by the limit ordinal w. This is then followed by w+ 1, w4+ 2, w+ 3, and so forth.
The least ordinal greater than each ordinal in the set {w +n|n € N} is the limit
ordinal w4+ w also known as w- 2. This has successor w -2+ 1 which has successor
w24 2. Continuing in this manner we arrive at the limit ordinals w-3, w -4, and
so forth. The least ordinal greater than each ordinal in the set {w-n|n € N} is
the ordinal w - w also known as w?. Likewise, w3, w?, and the limit w* are each
ordinals as are w*” and

w@
w®
w

w

Each of these ordinals is countable. The least ordinal greater than each countable
ordinal is denoted w;y. The cardinal X; is defined as |w;|. Likewise, wy denotes
the least ordinal greater than each ordinal of cardinality X;. We define Ny as |ws].
Whereas N is the cardinal immediately following N1, wo does not immediately
follow wy. Rather, w; is followed by w1 + 1, w1 + 2, and so forth.

The list of ordinals cannot be exhausted. Given any set of ordinals, there
exist ordinals greater than all of those in that set. So it is nonsense to speak

156 Properties of first-order logic

of the totality of all ordinals. When we refer to the list of ordinals, it should
be understood that this is not a complete list. There necessarily exist ordinals
beyond those in any list, no matter how extensive. In particular, we forbid
ourselves from referring to the set (or list) of all ordinals. Although it is alluring
terminology, “the set of all ordinals” does not make sense.

We conclude our discussion of ordinal numbers by introducing the Well
Ordering Principle. Consider the set Q. With its usual order, this set does not
have an ordinality. As demonstrated in Example 4.7, this is not a well ordered
set. With another order, however, Q is a well ordered set. Since Q has the same
size as N, we can enumerate Q as {q1, g2, ¢3, . . . }. The rational numbers with this
order has ordinality w. As Example 4.6 shows, Q may have different ordinalities
when arranged in a different order. Likewise, we can impose a well ordering on
any set. This is the Well Ordering Principle

Proposition 4.11 (Well Ordering Principle) Any set X can be enumerated as
{z3| B < a} for some ordinal «. Moreover, we may require that o be the least
ordinal such that |a| = |X].

Proof First we show that there exists an order < that makes X a well ordered
set. Since there exist arbitrarily large ordinals, there exists an ordinal + with
|X| < |vy|. By the definition of |X| < |v|, there exists a one-to-one function
f from X into {#|8 < ~v}. For any z and y in X, we define z < y to mean
f(z) < f(y). Since {B]5 < v} is well ordered, so is X with this order. Let o be
the ordinality of this well ordered set.

Now consider the set of all ordinals § with |§] = | X|. Since it contains o/, this
is a nonempty set of ordinals. By Proposition 4.9, there exists a least ordinal
a in this set. Since |a| = |X]|, there exists (by Theorem 2.39), a one-to-one
correspondence g from {3|3 < a} onto X. For each ordinal 3 < «, let x5 denote
g(B). This provides the required enumeration {zg|8 < a} of X. O

The Well Ordering Principle is in fact equivalent to the statement that every
set has a cardinality. It is also equivalent to our earlier assumption that, for any
sets A and B, either |A| < |B| or |B| < |A|. Each of these statements is equivalent
to an axiom of mathematics known as the Axiom of Choice. This axiom can be
stated as follows: the Cartesian product of nonempty sets is nonempty. We view
this as a reasonable axiom and employ it without further comment.

4.2.2 Cardinal arithmetic. The list of cardinal numbers begins with
0,1,2,3,..., R0, Ny, No, ...

We extend this list indefinitely by using ordinal numbers as subscripts.
We define the infinite cardinals by induction on the ordinals. Prior to stat-
ing this definition, we discuss what we mean by “induction on the ordinals.”

Properties of first-order logic 157

This version of induction, known as transfinite induction, can be used to show
that some property P holds for each ordinal «. Like other forms of induction,
transfinite induction consists of two steps: the base step and the induction step.
First, we show that P holds for 0. This is the base step. Second, we show that
if P holds for all 8 < «, then it holds for « as well. This is the induction step.
If we successfully complete these two steps, then we can rightly conclude that P
does, in fact, hold for each ordinal « (since there is no least ordinal for which
property P does not hold).

Definition 4.12 We define the infinite cardinals by transfinite induction. First
we define (again) Ng to be |N|. Let a be a nonzero ordinal. Suppose that X, has
been defined for each ¢ < . Let v be the least ordinal such that |y| > R, for all
t < a. We define X, to be |7].

Having defined the cardinal numbers, we now define arithmetic operations
for these numbers. Cardinal arithmetic must not be confused with ordinal arith-
metic. Previous reference was made to w+w, w-2, and w“. Since w is an ordinal,
these are expressions of ordinal arithmetic (each represents a countable ordinal).
We turn now to cardinal arithmetic.

Definition 4.13 Let x and A be cardinals. Let A and B be disjoint sets with
|A| = k and |B| = A.

o Addition: Kk + X =|AU B].

o Multiplication: k- A = |A x B].

o Exponentiation: k* = |F(B, A)| where F(B, A) is the set of all functions
f:B — A having B as a domain and a subset of A as a range.

Note that these definitions are independent of our choice of A and B. The
requirement that A and B are disjoint is needed only for adding finite cardinals.

If kK and X\ are finite cardinals, then these definitions correspond to the
familiar notions of addition, multiplication, and exponentiation. We demonstrate
(but do not prove) this fact with an example.

Example 4.14 Let A = {a1,a2,a3} and let B = {by, ba, b3, bs}.

Addition. We have AU B = {aj,a2,a3,b1,b2,b3,bs}. Clearly |A| + |B| =
3+4=7=|AUB

Multiplication. Recall that A x B is the set {(a;,b;)|1 <1 < 3,1 <j <4}
We list the elements of this set as follows:

(a1,01) (a1,b2) (a1,b3) (a1,b4)

(a2,b1) (az,b2) (a2,b3) (az,b4)
(az,b1) (asz,b2) (a3, b3) (as,ba).

158 Properties of first-order logic

Observing the above arrangement of the elements in A x B, we see that the size
of AxBis3-4=12.50 |A|-|B|=3-4=12=|A x B].

Ezxponentiation. The set F(B, A) consists of all functions f: B — A. Each
function is determined by the values of f(b) for b € B. For each of the four
elements in B, there three possible values for f(b) in A. It follows that there are
3-3-3-3 = 3* functions in F(B, A). We see that |A|Pl = 3* =81 = |F(B, A)|.

So for finite cardinals, addition, multiplication, and exponentiation are noth-
ing new. We now consider these operations for infinite cardinals. It turns out that
adding and multiplying two infinite cardinals are remarkably easy tasks (easier
than adding and multiplying finite cardinals). In contrast, exponentiation for
infinite cardinals is remarkably hard. We deal with the two easier operations first.
All there is to know about the addition and multiplication of infinite cardinals
stems from the following result.

Theorem 4.15 Let x be an infinite cardinal. Then & - kK = k.

Proof We prove that this holds for kK = R, by transfinite induction on «. If
a = 0, then this follows from Example 2.35 where it was shown that [NxN| = |N|.

Suppose now that kK = R, for o > 0. Our induction hypothesis is that A-\ =
A for all infinite cardinals A smaller than .

Let ¢ be the least ordinal such that |§| = k. We regard d as the set of ordinals
less than §. By the definition of cardinal multiplication, & -« is the cardinality of
the set § x § of ordered pairs of ordinals less than §. We show that |6 x §| = |0]
by arranging the elements of § x ¢ into a well ordered set having ordinality 0.

Now, § x § is well ordered by the lexicographical order defined as follows:
(61, B2) precedes (v1,72) lexicographically if and only if either 8; < 1 or both
01 = 71 and B2 < 72 where < is the usual order for ordinals. This order is
analogous to the alphabetical order of words in a dictionary. The ordinality of
this well ordered set is 62 which is bigger than §.

We now impose a new order on § x §. We claim that the new order makes
0 x 6 a well ordered set having ordinality 6. We denote this order by < and define
it as follows:

(B1,B2) < (v1,72)
if and only if
either (81, B2) precedes (v1,72) lexicographically
OR
7o is larger than both §; and fs.

Properties of first-order logic 159

The set § xd with the order < is a well ordered set. We leave the verification of
this as Exercise 4.18. This is also true of the lexicographical order. The crucial
feature of « is that, with this order, each element of § x § has fewer than
predecessors. This is not true of the lexicographical order.

Let (B1,02) be an arbitrary element of § x 4. To see that this element
has fewer than k predecessors, first note that (51,032) < (8, 0) where [is the
larger of 51 and (2. Further, (y1,72) does not preceed (3, 3) if either 1 or 7,
is larger than 3. Because of this, the predecessors of (1, 32) are contained in
(B+1) x (84 1). For example, suppose (01, 52) = (1,3). Then (81, 52) < (3, 3).
The set of all elements of § x ¢ that preceed (3, 3) are contained in the following
square:

Note that this is the set 4 x 4 (recalling that the ordinal 4 is identified with
{0,1,2,3}). So, with the order «, there are fewer than |4 x 4| = 16 predecessors
of the ordered pair (3, 3). Likewise, for any 5 < §, there are fewer than (8 + 1)
X (B + 1)| elements of § x § that preceed (3, 3) in the order <.

Since ¢ is least such that |§| = k and § < J, we have |+ 1| = |5] < k.
By our induction hypothesis, [(5 + 1) x (6 +1)| = |8 + 1]. It follows that each
element of § x ¢ has fewer than k predecessors in the order < as was claimed.

Let v denote the ordinality of § x § with <. If v were larger than §, then
there would necessarily exist elements with x = |0| predecessors. Since we have
shown that this is not the case, we conclude that v < §. It follows that x - k =
|6 x 8| = |y| < |8] = k. Since it is clear that k < k- K, we have k- K = Kk as was
desired. By induction, this holds for k = R, for each ordinal o«. [

Corollary 4.16 Let x and X be nonzero cardinals. If either £ or A is infinite, then
A - K is the larger of x and A.

Proof Suppose that « is infinite and A < k. We have kK < A - k < Kk - k. Since,
k -k = Kk by Theorem 4.15, we conclude that A - k = k. Likewise, if A is infinite
and kK < A\, then A-k=A. 0O

Corollary 4.17 Let x and A be cardinals. If either x or A is infinite, then A + &
is the larger of x and .

Proof If one of x and) is infinite and the other is finite, then this corollary
follows from Exercise 2.36. So suppose that x and A are both infinite. If A < &,

160 Properties of first-order logic

then A + k < A -k (this is true for any x and A with 2 < A). We have
E<A+E< AN r<K-K=K.

We conclude that each of these inequalities must in fact be equalities. In
particular, A + k = A - Kk = k. The proof is identical for k < A. [

We already know how to add and multiply finite cardinals. The previous
corollaries tell us how to add and multiply infinite cardinals: simply take the
larger of the two numbers. So cardinal addition is easy:

54+2=17, 24Ny =Np, Ny +7=0NRy, and N7 + Ng3 = Nog3.
Cardinal multiplication is equally easy:
5‘2:10,2'N0:N0, N1'7:N1, andN7~N23:N23.

Note that the same result is obtained either by adding or by multiplying two
infinite cardinals. This is also true for any finite number of infinite cardinals. If we
have n cardinals (for n € N) at least one of which is infinite, then whether we add
them together or multiply them, we obtain the largest of the n cardinals. This
is no longer true if we have infinitely many cardinals. We extend the definitions
of addition and multiplication to infinite sums and products in an obvious way.

Definition 4.18 Let o be an infinite ordinal and let {k, |t < a} be a set of
cardinals. For each « < a, let A, be a set of cardinality x,. We assume that the
A,s are disjoint from each other.

o Infinite sums: Y, k. = |U, o Al
o Infinite products: I, «ok, = |[II,cqA,| where II,, A, denotes the Cartesian
product Ag X Ay X Ay X -+ -

Just as multiplication can be viewed as repeated applications of addition,
exponentiation can be viewed as repeated applications of multiplication. That
i o.=k-dand k- K-K-.., =K
S, K+ K+ K+ K and K- K- K K

A times A times
We leave the verification of this as Exercise 4.20. Whereas an infinite sum

is as easy as multiplication, an infinite product is as difficult as exponentiation.
We turn now to cardinal exponentiation.

Proposition 4.19 For any set A, |P(A)| = 2/41.

Proof Recall that P(A) is the set of all subsets of A. Let F(A,2) denote the set
of all functions from A to the set {0,1}. We define a one-to-one correspondence
between P(A) and F(A,2). Each B in P(A) corresponds to its characteristic

Properties of first-order logic 161

function xg(z) in F(A,2) defined as follows:

_Jo ifx¢gB
XB(”:)_{1 if 2 € B.

Each set in P(A) uniquely determines its characteristic function and, in the
other direction, each function f in F'(A,2) is the characteristic function of the set
{a € A|f(a) = 1}. It follows that this is a one-to-one correspondence and P(A)
and F(A, 2) have the same size. Since |F(A,2)| = 2141, so does |P(A)| = 2141, O

Proposition 4.20 For any infinite cardinal x and any cardinal A with 2 < X\ < &,
A =g

Proof Let A be a set of cardinality x. Then x” is the cardinality of the set
of functions from A to A. The graph of any such a function is a subset of
A x A. Tt follows that k* < P(A x A). Also, since |A] = |A x A, we have
|P(A)] = |P(A x A)|. Putting this together we have

2" < NS RELS|P(A X A)| < [P(A)| =27
It follows that 2% = * =g, 0O

These two propositions reveal some basic facts regarding cardinal exponen-
tiation. Suppose we want to compute * for 2 < A < k. By the latter proposition,
A = 2% By the former proposition, this is |P(A)| where |A| = k. This tells us
that k < 2% (by Proposition 2.44), but it does not tell us precisely what 2~ is.

This brings us back to a fundamental question posed at the outset of this
section: how many real numbers are there? By Proposition 2.46, we know that
|R| > Rg. Moreover, the proof of Proposition 2.46 shows that R has the same
size as P(Ng). So |R| = 2%. But the question remains, which cardinal is this?
Does 280 equal 81 or Ny or Ny3 or what?

4.2.3 Continuum hypotheses. How many points lie on a continuous line seg-
ment? We have shown in Proposition 2.42 that the rational number line contains
only countably many points. But this line is not continuous. It has gaps. For
example, v/2 is not a rational number. So the rational numbers can be split into
the two intervals (—oo,v/2) and (v/2,00). A continuous line cannot be split in
this manner. If a continuous line is split into two sets A and B so that each ele-
ment of A is to the left of each element of B, then this split must occur at some
point of the line. We follow Richard Dedekind and take this as the definition of
continuous.

The continuum problem. Let L be a continuous line segment. We regard

L as a set of points. Does there exist an uncountable subset P of L such that
|P| < |L|?

162 Properties of first-order logic

The real number line is continuous. This is another way of saying that the
reals are order-complete (mentioned in Section 2.4.3). So we may assume that
the line segment L is an interval of real numbers. We showed in Example 2.38
that the interval (0,1) of real numbers has the same size as R. It follows that
any interval of real numbers has the same size as R. So the continuum Problem
can be rephrased as follows.

The continuum problem. Is there a subset of R that is bigger than Q and
smaller than R?

We know that |R| = 2% > R,. The previous question asks if there exist any
cardinals between Xy and 280, That is, is the following true?

The continuum hypothesis. 2% = ;.
More generally, is this how cardinal exponentiation behaves for all cardinals?
The general continuum hypothesis. For each ordinal o, 2% =R, ;.

As the word “hypothesis” suggests, this statement has neither been proved
nor disproved. Remarkably, it cannot be proved or disproved from the standard
axioms of mathematics. It is independent from these axioms. This has been
proved!

The standard axioms of mathematics are Zermeleo—Frankel set theory with
the previously mentioned Axiom of Choice. These axioms are denoted ZFC. The
study of ZFC is the subject of set theory. Set theory is one branch of logic that
we do not treat in depth in this book. We have touched on the basics of set
theory in Section 2.5 and the present section. We conclude our discussion of set
theory by stating without proof some of the subject’s striking results. References
are provided at the end of the section.

In 1937, Kurt Godel showed that the general continuum hypothesis is
consistent with ZFC. So this hypothesis cannot be disproved. In 1963, Paul
Cohen showed that there are models of ZFC in which the General Continuum
Hypothesis is false. So this hypothesis cannot be proved from the axioms in
ZFC. Cohen introduced a method known as forcing to obtain his result. Using
this method one can find models of ZFC in which 2% = R, for any finite ordinal
« (this is true for most infinite ordinals a as well). The question of whether or
not the general continuum hypothesis is true in specific standard models of ZFC
remains unanswered. Indeed, by the results of Gédel and Cohen, such questions
cannot be resolved from the axioms of ZFC alone.

So how many real numbers are there? Or equivalently, how many subsets of
N are there? Although this appears to be a precise and fundamental question,
we cannot provide a definite answer. In the wake of Cohen’s forcing, the pos-
sibilities are endless. Godel showed that the hypothesis 28 = X, is consistent.

Properties of first-order logic 163

Cohen’s methods show that the hypothesis 2% = R,3 is also consistent. More
generally, one can use forcing to prove the following result.

Theorem 4.21 (Easton 1970) Let ap < a; < az <--- be any increasing
sequence of natural numbers. The assertion that 2%« = R, for each finite ordinal
o is consistent with ZFC.

The possibilities are endless, but not everything is possible. Proved in 1974,
Silver’s theorem restricts the possibilities.

Theorem 4.22 (Silver) If 2% = X, for each a < wy, then 281 =R, 1.

Phrased another way, this theorem says it is impossible for the general con-
tinuum hypothesis to hold for all cardinals up to R, and to fail for 8, . Shelah
later proved that this is also true for ®,. If 2% = R, for all finite n, then
Rw — N, 4+1. Whereas Easton showed that we can choose the values of 2% t0 be
almost anything we want, these choices restrict the possible values of 28« In fact,
given any sequence ag < a1 < as < --- as in Easton’s theorem, the possible val-
ues of 2%« are bounded. Moreover, the values are uniformly bounded (regardless
of our choice of a;s) by the number R,,. This remarkable fact is due to Shelah.

Theorem 4.23 (Shelah) If 2%+ < X, for each finite n, then 2% <N, .

Not only is this statement consistent with ZFC, it can be proved from the
axioms of ZFC. To say that the proof of this theorem is not within the scope of
this book is an understatement. For proofs of these results, we refer the reader
to books dedicated to set theory. Both [18] and [25] are recommended. Kunen’s
book [25] is an excellent introduction to forcing and contains a proof of Cohen’s
result. Jech’s book [18] contains a proof of Silver’s theorem. Readers who have
a strong background in set theory are referred to Shelah’s book [44] for a proof
of theorem 4.23 (in particular, refer to the section titled “Why in the HELL is
it four?”).

4.3 Four theorems of first-order logic

In this section, we prove four fundamental results for first-order logic. We prove
the Completeness theorem, the Compactness theorem, the Upward Lowenheim—
Skolem theorem, and the Downward Lowenheim—Skolem theorem. The first three
of these four are consequences of the fact that, in first-order logic, every model
has a theory and every theory has a model. In particular, any consistent set of
sentences (any theory) is satisfiable (has a model). This was proved for countable
sets of sentences in Theorem 4.2. The first objective of the present section is to
extend this result to arbitrary sets of sentences.

164 Properties of first-order logic

Suppose that I' is an uncountable set of sentences. Since there are only
countably many sentences in any countable vocabulary (by Proposition 2.47),
the vocabulary of I' must be uncountable. Although we have not previously
encountered uncountable vocabularies, such vocabularies naturally arise in model
theory.

Example 4.24 Given any structure M, we may wish to consider the expansion
Me of M to a vocabulary V(M) containing a constant for each element of the
underlying set of M. If M is uncountable, then so is the vocabulary V(M).

In particular, consider the structure R = (R|+,-,0,1) (the real numbers in
the vocabulary V,, of arithmetic). We may want to consider a set of V,,-sentences
having parameters from the underlying set R of R. For example, we may want
to study polynomials having real coefficients. Such a set of sentences has vocab-
ulary V,(R) containing a constant for each real number. This is an uncountable
vocabulary.

Example 4.25 We may wish to consider a vector space as a first-order structure.
One basic way of doing this is to use a vocabulary containing the constant 0,
the binary function +, and a unary function m, for each scalar r. Let the set of
vectors serve as the underlying set. Let V' be the structure having this underlying
set and interpreting 0 as the zero vector, + as vector addition, and m,. as scalar
multiplication by 7.

In particular, consider the vector space R? of ordered pairs of real numbers.
For this vector space, the scalars are real numbers. Let V,s be the vocabulary
consisting of the constant 0, the binary function +, and a unary function m,.
for each real number r. In this case, V is the V,s-structure having R? as an
underlying set and interpreting 0 as the vector (0, 0), (a, b)+(c,d) as (a+c, b+d),
and m,(a,b) as (ra,rdb) for all real numbers a,b, ¢, d, and r. This is an example
of a basic mathematical structure that requires an uncountable vocabulary.

For any vocabulary V, let ||V|| denote the cardinality of the set of
V-formulas. In Proposition 2.47, it was shown that ||V|| = X for any countable
V. The following proposition extends this result to uncountable vocabularies.

Proposition 4.26 For any vocabulary V, ||V|| = |V| + No.

Proof By Corollary 4.17, [V| + Ny is the larger of |V| and Rg. If V is countable,
then this sum is Rg. This agrees with Proposition 2.47. Now suppose |V| = k for
some uncountable k. We want to show that ||V|| = k. For each n € N, let F),
denote the set of V-formulas having length n. Then |F,,| < ™. By repeatedly
applying Corollary 4.16 we see that k™ = k. So we have

UFn:Z|Fn‘SZI€n:ZK/:N0~I{:H. O

neN neN neN neN

VIl =

Properties of first-order logic 165

We now prove that every theory has a model. We follow the same Henkin
Construction used to prove Theorem 4.2.

Theorem 4.27 If a set of first-order sentences is consistent, then it is satisfiable.

Proof Let I' be a consistent set of first-order sentences. If I" is countable, then "
is satisfiable by Theorem 4.2. We generalize the proof of Theorem 4.2 to include
uncountable T'.

Suppose that the cardinality x of I' is uncountable.

Let « be the least ordinal with |a| = k.

Let VT =V U{e,|t < a}, where V is the vocabulary of " and each ¢, is a
constant that does not occur in V.

Let C be the set {c,|¢ < a}.

By Corollary 4.17, |V*| = |V| + |C| = K+ k = k. Moreover, by
Proposition 4.26, the set of all VT -sentences also has cardinality x. By the Well
Ordering Principle, the set of all VT -sentences can be enumerated as {p, |t < a}.

As in the proof of Theorem 4.2, our goal is to define a complete V' -theory
T, with the following two properties.

Property 1 Every sentence of I is in T,.

Property 2 For every V*t-sentence in T, of the form Jz6(z), the sentence 6(c)
is also in T'* for some c € C.

Prior to defining T, we inductively define VT -theories T, for « < . Let Tj
be I'. Now suppose that, for some nonzero 3 < «, T, has been defined for each
v < . We want to define 7.

We assume that for each v < 3, T, uses at most |y| + g of the constants
in C. Since |y| + Xy < & = |C|, most of the constants in C are not used in T,
(here we are using the fact that « is uncountable). Note that Tp is a V-theory
and so contains none of these constants. We must define Tj3 so that Tz uses at
most |3] + Ng of the constants in C.

We now define Tj3. There are two possibilities: either 3 is a successor ordinal
or it is not.

If 3 is a successor ordinal, then § = «+1 for some ~y. By assumption, 7', has
been defined. Consider the V*-sentence ¢.,. We define T3 = T,4; in the same
manner that 7,,,1 was defined in the proof of Theorem 4.2.

(a) If T, U {—¢~} is consistent, then define T, 11 to be T, U {—¢4}.
(b) If T, U {—p} is not consistent, then 7., U {p,} is consistent. We divide this
case into two subcases.

(i) If ¢, does not have the form 3z6(z) for some formula #(z), then just
let T, 11 be T, U {p,}.

166 Properties of first-order logic

(ii) Otherwise ¢, has the form J20(x). In this case let T3 be T, U {¢} U
{0(c)} where c is a constant in C' that does not occur in T, U{¢~}. Since
T, contains fewer than & constants of C, such a c exists.

So if B = v+ 1, then T = T, is obtained by adding at most a sentence
or two to T’,. Since T, contains at most || + Ry of the constants in C, so does
Ts. Moreover, Tz can be shown to be consistent in the same manner that 75,41
was shown to be consistent in the first claim in the proof of Theorem 4.2.

Now suppose that § is not a successor ordinal. Then it is a limit ordinal.
In this case, define T3 as the set of all V*-sentences that occur in T, for some
v < (. Again, we claim that T is consistent and contains at most |G| + Rg of
the constants in C'.

Claim 1 Tj is consistent.

Proof Suppose T} is not consistent. Then Tz =L for some contradiction L. Since
formal proofs are finite, A L for some finite subset A of Ts. Since it is finite,
A C T, for some v < . But this contradicts our assumption that any such T,
is consistent. We conclude that T3 must be consistent as was claimed.

Claim 2 Tj contains at most |3| of the constants in C.

Proof For each v < 3, let C, be the set of constants in C that occur in T’,. Then
the constants occurring in T are {J,_5 C,. By assumption, |Cy| < |y] +Rg <
|3|+Ro. Since we are assuming that 3 is a limit ordinal, 3 is infinite. In particular,
IB] +No = |B]. So each |C,| < |3]. It follows that the number of constants from
C occurring in Tj is

Ua| <X iel<S 18l =181-18 =15

<8 7<B <B

This completes the proof of the claim.

So for each 8 < a we have successfully defined a V*-theory Tj3. These have
been defined in such a way that T, C T}, for 81 < B2 < a.

We now define T,, as the set of all V*-sentences that occur in Tz for some
B < a. Like each Tg, Ty, is a theory. This can be proved in the same manner as
Claim 1 above. Unlike T for 8 < a, T, is a complete theory. This is because
each Vt-sentence is enumerated as o, for some ¢ < a. Either ¢, or —¢, is in
T,11 and, hence, in T, as well.

Since I' = Ty C Ty, T,, has Property 1. Moreover, part (b)ii of the definition
of T',41 C T, guarantees that Ti, has Property 2. It was shown in the proof of
Theorem 4.2 that any complete theory with Property 2 has a model. Therefore
T, has a model and T is satisfiable. [

Properties of first-order logic 167

We have now established that a set of sentences is consistent if and only if
it is satisfiable (Theorems 4.1 and 4.27). Every model has a theory and every
theory has a model. With this fact at hand, we can prove the completeness and
compactness of first-order logic.

Theorem 4.28 (Completeness) For any sentence ¢ and any set of sentences I,
I' = pifand only if ' F .

Proof That I' F ¢ implies T' = ¢ is Theorem 3.4.

Conversely, suppose I' = . Then T' U {—p} does not have a model. Since
every theory has a model, TU{—¢} must not be a theory. That is, TU{—¢} kL for
some contradiction L. By the Contradiction rule (Example 1.33), we can derive
¢ from T'U {—¢p}. Since we can also derive ¢ from T'U {p} (by Assumption), we
have T' F ¢ by Proof by cases (Example 1.35). O

Theorem 4.29 (Compactness) Let I' be a set of sentences. Every finite subset
of I is satisfiable if and only if T" is satisfiable.

Proof Any model of T is a model of every finite subset of I'. We must prove
the opposite. Suppose that I" has no model. Then I' must not be a theory. This
means that we can derive a contradiction L from I'. Since derivations are finite,
we can derive | from a finite subset of I'. So if I" is unsatisfiable, then some
finite subset of I' must be unsatisfiable. [

Theorem 4.30 (Upward Loéwenheim—Skolem) If a theory T has an infinite
model, then T" has arbitrarily large models.

Proof Let M be an infinite model of T'. Let x be any cardinal. We show that
there exists a model N of T with |N| > . To do this, we expand the vocabulary
V of T by constants. Let C be a set of constants such that |C| = k and each
constant in C' does not occur in V. Let V* denote V U C.

Let T be the set of all V*-sentences having the form —(c = d) where ¢ and
d are distinct constants from C. Any V*-structure that models I' must have at
least x elements in its underlying set.

We claim that T'U T is satisfiable.

If x < |M]|, then T UT is satisfiable by an expansion of M. If M* is any
expansion of M that interprets the constants of C' as distinct elements of the
underlying set of M, then M+ |= T UT. In particular, if & is finite, then, since
M is infinite, such an M ™ exists.

If x is bigger than | M|, then no expansion of M can model I'. Tt is still the
case, however, that T'UT is satisfiable. Any finite subset of T U ' will contain
only finitely many constants from C. It follows that any finite subset of TUT is
satisfiable by an expansion of M. By compactness, T'U T is satisfiable.

Let N model TUT. Since N =T, [N| > k as was required. [0

168 Properties of first-order logic

The Downward Lowenheim—Skolem theorem, wunlike the Upward
Lowenheim—Skolem Theorem, is not an immediate consequence of the Compact-
ness theorem. Rather, this theorem follows from the Tarski-Vaught criterion for
elementary substructures. This criterion along with the Downward Lowenheim—
Skolem theorem could have been stated and proved immediately following
the definition of elementary substructure in Section 2.6.2. Recall that for
V-structures M and N with M C N, M is an elementary substructure of N
means that M = p(a) if and only if N = ¢(a) for any V-formula ¢(z) and
tuple @ of elements from the underlying set of M. We use M < N to denote this
important concept. The Tarski-Vaught criterion states that, to show M < N, it
suffices to only consider formulas ¢(z) that begin with 3.

Proposition 4.31 (The Tarski-Vaught criterion) Let M and N be V-structures
with N C M. Suppose that for any V-formula ¢(Z, y) and any tuple a of elements
from the underlying set of N, the following is true:

M = 3yd(a,y) implies N = Jyy(a,y).

Then N < M.
Proof To show that N < M, we must show that, for every V-formula ¢(z) and
every tuple a of elements from the underlying set Uy of N:

N E p(a) if and only if M |= ¢(a).

This can be done by induction on the complexity of . It is true for atomic ¢
since N C M. Clearly, if it is true for ¢, then it is true for any formula equivalent
to . Now suppose it is true for formulas ¢ and 6. That is, suppose

N E¢(a) if and only if M | v¥(a), and
N E6(a) if and only if M = 6(a)

for any tuple a of elements of Uy. This is our induction hypothesis. We must
show that this is also true for ¢ A 6, =0, and Jyf. The first two of these follow
from the semantics of A and —. Now suppose that ©(Z) has the form Jyb(Z, y).

Suppose that N = Jyd(¢, y) for some tuple ¢ of elements from Uy.

By the semantics of 3, N |= 6(¢, b) for some b € Uy.

By the induction hypothesis, M = 0(c,b).

Again by the semantics of 3, M |= Fyb(c, y).

We must also show that the reverse is true: that if M = 3yd(c,y), then
N E Fyb(c,y). But this is exactly the condition stipulated in the proposition.
If this condition holds, then we can complete the induction step and conclude
that N = ¢(a) if and only if M = ¢(a) for all V-formulas ¢(Z) as we wanted to
show. [

Properties of first-order logic 169

The Tarski—Vaught criterion, as stated in the previous proposition, can be
strengthened. We do not need N C M in the hypothesis. That N is a substructure
of M follows from the other hypotheses of Proposition 4.31.

Corollary 4.32 Let M be a V-structure. Let U be a subset of the underlying set
Uy of M. Suppose that for any V-formula ¢(Z,y) and any tuple a of elements
from U, if M | Jye(a,y), then M = ¢(a,b) for some b € U. Then U is the
underlying set of an elementary substructure of M.

Proof Recall that not every subset of Uy; may serve as the universe for a sub-
structure of M. We must show that U contains each constant and is closed under
each function of V. Given any constant ¢ in V, M |=3z(zx = ¢). It follows from our
hypothesis on U that M = (b=c) for some b € U. Now let f be an n-ary function
in V and let @ be any n-tuple of elements from U. Since M = Jz(f(a) = =),
M = (f(a) = b) for some b € U. So it makes sense to define N as the structure
having underlying set U that interprets the symbols of V in the same manner as
M. Since it interprets the constants and functions as well as the relations of V, NV
is a V-structure. Moreover, since N C M, we have N < M by the Tarski—Vaught
criterion. [

Theorem 4.33 (Downward Léwenheim—Skolem) Let M be a structure hav-
ing vocabulary V and underlying set Ups. For any X C Uy, there exists an
elementary substructure NV of M such that

1. X is a subset of the universe of N, and
2. [N < [X[+[]VI].

Proof We define a sequence X1 C Xo C X3 C --- of subsets of Uy,.

Let X; = X.

Now suppose X,, has been defined for some m € N. Suppose that | X,,| <
| X |+ [|V||- Let V(X,,) be the expansion of V obtained by adding new constants
for each element of X,,. Let M, be the natural expansion of M to this vocab-
ulary. Let E,, be the set of all V(X,,)-sentences of the form Jxp(x) such that
M, E Jzp(x).

Let o be the least ordinal such that |a] = |E,,|. By the Well Ordering
Principle, E,, can be enumerated as {3zy, ()|t < a}. For each ¢ < «, there
exists an element a, in Uy such that M | ¢(a,). Let A = {a,|¢ < a}. Note that
4] < |E| < IV

Let X,,4+1 be X, UA. We have

[Xmpa] = [Xm UA] < [Xop| + [A] < (IX[+ [VI)) + (IVI)) = [X[+ [[VI].
Now let U = ,,, <., Xm-

170 Properties of first-order logic

Claim 1 U] < |X]|+[]V]].
Proof We have

U an

m<w

Ul = < DXl < D0 (XTI = (XD -Ro = 1X |+

m<w m<w

Claim 2 For any V-formula ¢(Z,y) and any tuple @ of elements from U, if
M = Jye(a,y), then M = (a,b) for some b € U.

Proof Let ¢(Z,y) be any V-formula. Suppose that M = Jyp(a, y) for some tuple
a of elements from U. Then @ must be a tuple of elements from X,,, for some m.
It follows that Jyp(a,y) is in E,,. By the definition of X,,1, M = ¢(a,b) for
some b€ X,,41 CU.

By Corollary 4.32, U is the underlying set of an elementary substructure N
of M. We have both X C U and |N| < |X|U||V|| as was required. [

Corollary 4.34 Let T be a theory having an infinite model. Then 7" has a model
of size k for each infinite cardinal k with x > |T|.

Proof We want to show that there exists a model M of T with |[M| = &.
By the Upward Lowenheim—Skolem theorem, there exists a model N of T with
|N| > . Let X be a subset of the universe of N with |X| = . By the Downward
Lowenheim—Skolem theorem, there exists an elementary substructure M of N
such that X is contained in the universe of M and |[M| < |X| + ||V|| where V is
the vocabulary of T'. Moreover, ||V|| < |T| by Exercise 4.17. Since |T| < &, we
have ||V|| < k = |X]|. It follows that | X |+ [|V|| = | X| and [M| < |X|. Since X is
a subset of the universe of M, |M| =|X|=«x. O

4.4 Amalgamation of structures

In first-order logic, we can amalgamate many structures into one. By
“amalgamate” we simply mean to combine in some manner. There are vari-
ous ways to make this idea precise. An amalgamation theorem of first-order logic
is a theorem that can be diagramed as follows:

In this diagram, M; and My are given first-order structures, C' is a set, and
f1:C — My and fy:C — M, are one-to-one functions having C as a domain.

Properties of first-order logic 171

An amalgamation theorem states that given these structures, sets, and functions,
there exists structure D and functions g;: M7 — D and go: Ms — D so that
91(f1(c)) = g2(f2(c)) for each ¢ € C. That is, given the bottom half of this
diagram, an amalgamation theorem asserts the existence of the top half.

We prove several amalgamation theorems in this section. The above dia-
gram depicts each of these theorems. Different amalgamation theorems arise
from the various restrictions we may place on the structures, sets, and func-
tions in this diagram. For example, in Theorem 4.38 we require that C' is a
structure and f; and f; are elementary embeddings. We refer to this theorem
as Elementary Amalgamation over Structures. The conclusion of this theorem
states that the functions g, and g5 in the diagram are in fact elementary embed-
dings. This theorem, as with all of the amalgamation theorems, is a consequence
of compactness. We repeatedly use the following corollary of compactness.

Definition 4.35 A set of sentences I is said to be closed under conjunction if for
any sentences ¢ and v in I', the sentence ¢ A) is also in I

Corollary 4.36 Let I" be a set of sentences that is closed under conjunction. Let
T be any consistent set of sentences. The set T"U T is inconsistent if and only if
T + = for some ¢ in T

Proof Clearly, if T entails the negation of a sentence that is in I'; then T UT
is not consistent. The converse is a direct consequence of compactness. If TUT
inconsistent, then, by compactness, there exists an inconsistent finite subset A
of TUT. Since T is consistent, there must exists sentences from I' in A. Let ® be
the conjunction of the sentences in both A and I'. Then T'U {®} is inconsistent.
By Proof by Contradiction, we have T'+ —®. Since I is closed under conjunction,
® is a sentence in I' as was required. [J

This corollary provides an alternative version of compactness. From now on,
when we say that something is true “by compactness” we mean that it follows
either from the Compactness theorem 4.29 or, equivalently, from Corollary 4.36.

Our first amalgamation theorem is known as the Joint Embedding lemma.
This lemma states that any two models of a complete theory can be element-
arily embedded into some other model of the same theory. This is a basic way
to amalgamate many structures into one. In the above diagram, M; = Moy,
g1 and go are elementary embeddings, and C is the empty set.

Lemma 4.37 (Joint Embedding) Let M and N be V-structures that model a
complete V-theory T'. There exists a model D of T" such that both M and N can
be elementarily embedded into D. Moreover, if M or N is infinite, then we can
take D so that |D| is the same as the larger of |[M| and |N]|.

172 Properties of first-order logic

Proof Consider the elementary diagrams ED(M) and ED(N). We may assume
that the added constants in each of these sets are distinct. That is, we assume
that the only constants occurring in both ED(M) and ED(N) are those constants
occurring in V. We show that ED(M) U ED(N) is consistent.

Suppose not. Suppose that ED(M) U ED(N) is contradictory. By compact-
ness, ED(M) F = for some sentence ¢ € ED(N). As a sentence in ED(N), ¢
has the form v(b) where 9(Z) is a V-formula and b is an n-tuple of constants
not in V. Since M and N are elementarily equivalent V-structures, n must be at
least 1.

Since the parameters b do not occur in ED(M), we have ED(M) F Vz—)(T)
by V-Introduction. We have

M = Vz—(z) which implies
M = —3z¢(Z) which implies
N E —-3z¢(Z) since M = N.

But this contradicts the fact that ¥(b) € ED(N). We conclude that our supposi-
tion must be wrong and ED(M) UED(N) is consistent. By Theorem 4.27, there
exists a model D of ED(M) U ED(N). By Proposition 2.80(b), both M and N
can be elementarily embedded into D as required.

The “moreover” clause in this lemma is a direct consequence of the
Downward Lowenheim—Skolem theorem. [

In fact, any number of models of a theory can be elementarily embedded
into a single model of that theory. We leave this generalization of the Joint
Embedding lemma as Exercise 4.23.

We now prove the previously mentioned Elementary Amalgamation over
Structures theorem.

Theorem 4.38 (Elementary Amalgamation over Structures) Let M;, Ms and
N be V-structures that model a complete V-theory T. Let f1: N — M; and
fo: N — M, be elementary embeddings. There exists a model D of T such that
both M; and M, can be elementarily embedded into D in a manner that agrees
on N. That is, there exists D = T and elementary embeddings g1 : M1 — D and
g2: My — D such that fa(f1(c)) = g2(g91(c)) for each ¢ in the universe of N.

Proof Let V(N) be the expansion of V that includes a constant ¢, for each
element a of the underlying set of V.

Let M be the expansion of My to a V(N)-structure that interprets each ¢,
as fi(a).

Let M}, be the expansion of My to a V(N)-structure that interprets each ¢,

as fa(a).

Properties of first-order logic 173

Since M; = My and f; and fy are both elementary, M{ = MJ}. Let T" be
the complete theory of these structures. By the Joint Embedding lemma, there
exists a model D of 7" such that both M| and M} can be elementarily embedded
into D. O

From the proof of Theorem 4.38, we see that something stronger is true.
Nowhere in this proof did we use the fact that N is a model of T. In fact, N
does not even have to be a structure. We need only that M] = M} where the
primes denote expansions by constants representing elements of V. This suffices
to show that D and the two elementary embeddings exist.

Theorem 4.39 (Elementary Amalgamation over Sets) Let M; and M; be V-
structures that model a complete V-theory T'. Let C be a set of constants not
in the vocabulary V of M; and Ms. Let V(C) be V U C. Let M;(C) be an
expansion of M to a V(C)-structure and let M2(C) be an expansion of My to
a V(C)-structure. If M;(C) = M3(C), then there exists a V(C')-structure D(C)
into which both M;(C) and M3(C') can be elementarily embedded.

Proof The proof is the same as the proof of Theorem 4.38. [

If we do not require the two embeddings into D to be elementary, then we
can relax the condition that the two structures are elementarily equivalent. The
following lemma is a modified version of the Joint Embedding lemma. Instead of
requiring that M; models every sentence that My models, we require only that
M; models every existential sentence that Ms models. Under this hypothesis,
we still obtain a structure D and embeddings of M; and Ms into D, but now
only one of these embeddings is elementary.

Lemma 4.40 Let M and N be V-structures. Suppose that for any existential
V-sentence ¢, if N = ¢ then M &= ¢. Then there exists a V-structure D
such that N can be embedded into D and M can be elementarily embedded
into D.

Proof Consider the literal diagram D(N) and the elementary diagram ED(M).
We may assume that the added constants in each of these sets are distinct. That
is, we assume that the only constants occurring in both ED(M) and D(N) are
those constants occurring in V. We show that ED(M) U D(N) is consistent.

Suppose not. Suppose that ED(M)UD(N) is contradictory. By compactness,
ED(M) + —p for some sentence ¢ € D(N). As a sentence in D(N), ¢ has the
form 1 (b) where ¢(Z) is a literal and b is an n-tuple of constants that do not
occur in ED(M).

174 Properties of first-order logic

Since the parameters b do not occur in ED(M), we have ED(M) F Vz—)(T)
by V-Introduction. We have

M = Vz—)(z) which implies
M &= -3z¢(z).

Since ¥(Z) is a literal, 3T (Z) is existential. So, by the hypothesis of the theorem,
if N = 3z¢(Z), then M |= 3Z¢(Z). Since this is not the case, N | -3¢ (Z).
But this cannot be the case either. It contradicts the fact that ¥(b) € D(N). We
conclude that our supposition must be wrong and ED(M) U D(N) is consistent.

By Theorem 4.27, there exists a model D of ED(M) U D(N). By Propos-
itions 2.79 and 2.80, N can be embedded into D and M can be elementarily
embedded into D. [

The following theorem follows from Lemma 4.40 just as Theorem 4.39 follows
from the Joint Embedding lemma.

Theorem 4.41 (Existential Amalgamation over Sets) Let M;, Ms be
V-structures and let C' be a set of constants not in V. Let V(C) be YV U C. Let
M;(C) be an expansion of M to a V(C)-structure and let M>(C) be an expan-
sion of M; to a V(C)-structure. If M5(C') models every existential V-sentence
that M;(C) models, then there exists a V(C')-structure D into which M; (C) can
be embedded and Ms(C') can be elementarily embedded.

Proof Apply Lemma 4.40 with M;(C) as N and M2(C) as M. O

4.5 Preservation of formulas

If a formula is equivalent to an existential formula, then it is preserved under
extensions by Proposition 2.72 of Section 2.6.2. Using Theorem 4.41, we prove
the converse.

Proposition 4.42 If a formula is preserved under extensions, then it is equivalent
to an existential formula.

We in fact prove something stronger.

Definition 4.43 Let T be a theory (not necessarily complete). We say that a
formula ¢(Z) is preserved under supermodels of T if for any two models M and
N of T with M C N and any tuple a of elements from the universe of M,

M E ¢(a) implies N = ¢(a).
If instead

N k= p(a) implies M = ¢(a),
then we say that ¢(Z) is preserved under submodels of T

Properties of first-order logic 175

Definition 4.44 Formulas ¢(x1,...,2,) and ¥(x1,...,x,) are said to be
T-equivalent if T |= Va1 ... Vo, (o(x1, ..., Tn) < (21, .., 20)).

In this section, we prove that a formula ¢ is preserved under supermodels of
T if and only if ¢ is T-equivalent to an existential formula. In particular, taking
T to be the empty set of sentences, Proposition 4.42 holds. As a corollary to
this, a formula is preserved under submodels of T if and only if it is T-equivalent
to a universal formula. In the second part of this section, we define the notion
of a chain of models and prove a preservation theorem regarding formulas of the
form Vzdgye for quantifier-free ¢.

4.5.1 Supermodels and submodels. Let T be a theory. We show that a formula
@ is preserved under supermodels of T if and only if ¢ is T-equivalent to an
existential formula. First, we show this is true in the case where ¢ is a sentence.
Note that this is only interesting if neither ¢ nor —¢ is in 7. Otherwise, ¢ is
T-equivalent to either the existential tautology Jx(x = z) or the contradiction
Jz—(x = z).

Proposition 4.45 Let T be a theory. If a sentence is preserved under supermodels
of T, then it is T-equivalent to an existential sentence.

Proof Suppose that ¢ is a sentence that is preserved under supermodels of 7.
Let V be the vocabulary of T'U {¢}.

Let C be the set of all existential V-sentences ¢ such that T'U {¢} F 1. We
want to show that T'UC U {—¢} is inconsistent.

Let D be the set of all existential V-sentences that are not in C. So C U D
equals the set of all existential V-sentences. Let I' be the set of all V-sentences
that are equivalent to the negation of some sentence in D.

Our goal is to show that T U C U {—p} is inconsistent. It suffices to show
that TUT U {p} is consistent.

Claim If T UT U {¢} is consistent, then T'U C U {—¢} is inconsistent.

Proof Suppose that TUT'U{¢} is consistent. Let N be a model. Then N models
each existential sentence in C (since these are consequences of ¢) and N models
none of the existential sentences in D (since these are equivalent to the negation
of sentences in T').

Suppose for a contradiction that T'U C U {—} is also consistent. Let M
be a model. Since the only existential sentences that N models are in C, M
models every existential sentence that N models. By Theorem 4.41, there exists
a structure D into which N can be embedded and M can be elementarily
embedded.

Since M can be elementarily embedded into D and M =T, D is a model
of T. Since M = —p, D = —p.

176 Properties of first-order logic

Since N can be embedded into D, D has a substructure N’ that is isomorphic
to N. Since N models ¢, so does N'.

We have N'C D, N' |= ¢, and D |= —¢. But D and N’ are both models
of T'. This contradicts the assumption that ¢ is preserved under extentions of
models of T'. This contradiction proves the claim.

Claim TUT U {¢} is consistent.

Proof Note that I is closed under conjunction. If TUT'U{y} is inconsistent, then
TU{p} - —y for some v € T (If p is contradictory, then this is the Contradiction
rule. Otherwise, this is Corollary 4.36.) By the definition of ", —y is T-equivalent
to a sentence ¥ in D. Since T U {p} I 9, ¢ € C. This contradicts the fact that C
and D are disjoint sets of sentences. We conclude that TUT U {¢} is consistent
as claimed.

By the two claims, TUC U{—} is inconsistent. So TUC F ¢. By compact-
ness, TU {¢)1 Apa A--- App} b o for some t,...,1, in C. Since each 1; is
existential, their conjunction is equivalent to an existential sentence W. Since
T U {p} F 9, for each 9;, T U {¢} - ¥. By —-Introduction, we have both T+
p—=Vand TH ¥ — ¢. So ¢ is T-equivalent to the existential sentence ¥. [

Using Proposition 4.45, we now prove two preservation theorems for formu-
las. Note that the sentence ¢ in Proposition 4.45 is not necessarily in the same
vocabulary as T'.

Theorem 4.46 Let T be a V-theory. A V-formula ¢(x1,...,x,) is preserved
under supermodels of T if and only if ¢(x1,...,2,) is T-equivalent to an
existential formula.

Proof If p(z1,...,x,) is T-equivalent to an existential formula, then it is pre-
served under extensions by Proposition 2.72. We must prove the other direction
of the theorem.

Suppose that ¢(x1,...,x,) is preserved under supermodels of T. If n = 0,
then ¢ is a sentence and we may apply Proposition 4.45. Otherwise, for n € N,
let ¢1,...,¢, be constants not contained in V. Let V(C) be the expansion
VU{er,...,cn} of V.

Consider the V(C)-sentence ¢(cy, ..., cp). Since the formula (x4, ..., z,)
is preserved under supermodels of T, so is the sentence ¢(cq,...,cp).
By Proposition 4.45, ¢(ci1,...,¢,) is T-equivalent to a universal sentence
¥(e1, ..., ¢n) (This sentence may or may not contain each constant ¢;). We have

TEo(cr,...,cn) < (el ... cn).

Properties of first-order logic 177

Since the constants ¢; do not occur in T,

TEVay .. Ve (e(x1, ..o 2n) < W(x1,...,2,)) by V-Introduction.
O

Theorem 4.47 Let T be a V-theory. A V-formula ¢(x1,...,x,) is preserved
under submodels of T" if and only if ¢(x1,...,x,) is T-equivalent to a universal
formula.

Proof A formula ¢ is preserved under submodels of T' if and only if its neg-
ation —y is preserved under supermodels of T'. If this is the case, then, by
Theorem 4.46, - is T-equivalent to an existential sentence. Finally, —¢ is
T-equivalent to an existential sentence if and only if ¢ is T-equivalent to a
universal sentence. [J

We now turn our attention to quantifier-free formulas. These formulas
are preserved under both supermodels and submodels (this follows from
Proposition 2.71). Conversely, suppose that a given formula ¢ is preserved under
both supermodels and submodels of T'. Then, by the previous two theorems, ¢
is T-equivalent to both an existential formula and a universal formula. This does
not necessarily mean that ¢ is T-equivalent to a quantifier-free formula as the
following example shows.

Example 4.48 Let Vg be the vocabulary consisting of a single binary relation.
Consider the Vg-structure Zg = (Z|S). This structure has the set of integers as
its underlying set and interprets S as the successor relation. That is, for any
integers a and b, Zg = S(a,b) if and only if b =a + 1. Let T be Th(Zg).

Consider the formula 3z(S(z, z) A S(z,y)). This formula says that y is the
successor of the successor of x. We claim that this existential formula is not
only preserved under supermodels of 7', but also under submodels of T'. To see
this, consider the universal formula Vz1Vz2(S(z, 21) A S(22,y) — 21 = 22). This
formula says that there is at most one element between x and y. Since the theory
T says that every element has a unique successor and no element is a successor
of itself, this formula implies that there is exactly one element between x and y.
So 3z(S(x,z) A S(z,y)) is T-equivalent to this universal formula.

We now argue that 3z(S(x, z) A S(z,y)) is not T-equivalent to a quantifier-
free formula. Consider the ordered pairs (0,2) and (4,7) in Z2. Since the only
atomic Vg-formulas are S(x,y) and x = y, each of these pairs satisfy the same
atomic formulas in the structure Zg. It follows that

Zs E(0,2) if and only if Zg = 4(4,7)

178 Properties of first-order logic

for any quantifier-free Vg-formula ¢ (by induction on the complexity of).
However,

Zs = 32(5(0,2) A S(2,2)) and Zs = —32(S(4,2) A S(z,7)).

This shows that the formula 3z(S(z, z) A S(z,y)), although it is preserved under
both submodels and supermodels of T', is not T-equivalent to a quantifier-free
formula.

The following theorem provides a sufficient criterion for a formula to be
T-equivalent to a quantifier-free formula (provided T is complete). As the previ-
ous example shows, the property of being preserved under both submodels and
supermodels of T is not sufficient.

Theorem 4.49 Let T be a complete V-theory and let ¢(z1,...,2,) be a V-
formula. The following are equivalent:

(i) The formula ¢(z1,...,xz,) is T-equivalent to a quantifier-free formula.

(ii) Let M be a model of T. Let @ and b be n-tuples from the universe of M such
that @ and b satisfy the same atomic V-formulas in M. Then, M = ¢(a) if
and only if M = ¢(b).

Proof Clearly (i) implies (ii). We must prove the converse. Suppose (ii) holds.
We want to show that ¢(z) is T-equivalent to a quantifier-free formula.

Let € = (e1,...,¢n) be a tuple of constants that are not in V. Let V(C) be
VU{er,...,ent. Let Q be the set of all quantifier-free V(C)-sentences v such
that T U {p(2)} 4.

Claim T U Q F ¢(¢).

Proof Suppose not. Then TUQU{—¢(¢)} is consistent. By Theorem 4.27, there
is a model M’ of this set of V(C')-sentences. Let P be the set of all quantifier-free
V(C')-sentences that hold in M’. Note that P is closed under conjunction and
QCP.

Subclaim TUP U {p(¢)} is consistent.

Proof Otherwise, by compactness, T'U {¢(¢)} F =t for some 1) € P. By the
definition of @ we have) € Q. Since Q C P, — is in P. But v is also in P.
This contradicts the fact that P has a model M’. This contradiction proves the
subclaim.

By Theorem 4.27, there is a model N’ of T'U P U {¢(€)}. Both M’ and N’
are V(C)-structures. Let @ = (aq,...,a,) be the n-tuple of elements from the

Properties of first-order logic 179

underlying set of M’ that M’ interprets as the constants ¢. Let b = (by,...,b,)
be the n-tuple that N’ interprets as ¢. Let M and N be the reducts of M’ and
N’ to the vocabulary V.

Since both M and N model the complete theory T', we can apply the Joint
Embedding lemma 4.37. There exists a model D of T' and elementary embeddings
f:M — D and g: N — D. Consider the two n-tuples f(a) = (f(a1), ..., f(an))
and g(b) = (g(b1),...,g(bn)) of elements from the universe of D. Each of these
tuples satisfy the same atomic formulas in D, namely those from P. However,
D = —p(f(a)) and D = o(g(b)). This contradicts (ii). This contradiction proves
the claim.

By compactness T'U {1} F ¢(¢) for some ¢ € Q (since Q is closed under
conjunction). Moreover, v, like every V(C')-sentence, has the form) (¢) for some

V-formula 1o (Z). We have
T + o (¢) — ¢(¢) by —-Introduction.

Since ¢ € Q, we also have
T F o(e) = ¢o(0).

And so T F ¢(¢) < ¢o(c)
and T+ Vz(p(Z) < 1o(Z)) by V-Introduction. O

4.5.2 Unions of chains.

Definition 4.50 A sequence My C My, C My C --- of V-structures is called a
chain. The length of the chain is the least ordinal « such that § < « for each
Mg in the sequence.

Proposition 4.51 Let My C M; C My C --- be a chain of V-structures of
length « (for some ordinal). Suppose that, for some 8 < «, @ is an n-tuple of
elements in the universe of Mg that are not in the universe of M, for ¢« < 3. For
any quantifier-free V-formula ¢(x1, ..., 2,),

M, E ¢(a) for some «y such that § <~ < a if and only if
M, = ¢(a) for all v such that § <~y < .

Proof This follows immediately from the fact that quantifier-free formulas are
preserved under both extensions and substructures (Proposition 2.55). O

Definition 4.52 We define the union of a chain of V-structures My C M; C
My C ---. Let a be the length of this chain. The union of the chain is the
V-structure M defined as follows. The underlying set of M is J,_,, U where Up
is the underlying set of Mgz. Given any atomic V-formula ¢(z1,...,2,) and any
n-tuple (ay,...,a,) of elements from the universe of M, M = p(aq,...,a,) if

180 Properties of first-order logic

and only if Mg |= ¢(a1,...,ay) for all Mg containing each a; in its universe (by
the previous proposition, we can replace “all” with “some”). This describes how
M interprets the vocabulary V and completes our definition of this structure.

Example 4.53 Let V. be the vocabulary consisting of a single binary relation <.
We define a chain of V-structures of length w. For each finite ordinal 4, let M;
be the V.-structure that has underlying set {—i, —i+1,—i+2,—i+3,...,} and
interprets < as the usual order.

So the underlying set of My is {0,1,2,...},
the underlying set of My is {—1,0,1,2,...},
the underlying set of My is {—2,-1,0,1,2,...}, and so forth.

This forms a chain of V_-structures. The length of this chain is w. The union
of this chain is the V.-structure M that interprets < as the usual order on the
integers (that is, M is the structure Z. from Section 2.4.3).

Note that each M; is necessarily a substructure of the union M. However,
the structure M can be quite different from the M;s. In the previous example,
each M; is isomorphic to the structure N. = (N, <), but the union M is not
even elementarily equivalent to this structure (this was shown in Section 2.3.4).

Definition 4.54 An elementary chainis a chain of the form My < My < My < - --

Unlike the situation in Example 4.53, if a chain is an elementary chain, then
the union of the chain is elementarily equivalent to each structure in the chain.

Proposition 4.55 The union of an elementary chain is an elementary extension
of each structures in the chain.

Proof Let My < M; < My < --- be an elementary chain of length «. Let M
be the union of this chain. Given § < «, we apply the Tarski—Vaught criterion
(Corollary 4.31) to show that Mg < M.

Let ¥(x1,...,2,,y) be an V-formula and let @ be an n-tuple of elements
from the underlying set of Mg. Suppose that M = 3y (a,y). It suffices to show
that M3 | Jyy(a,y). By the semantics of 3, M = 1(a,b) for some b in the
universe of M. By the definition of M, b must be in the universe of M, for some
v < a. So, M, = Jyi(a,y). Since the chain is elementary, Mg = Jy(a,y) as
was required to show. [

Definition 4.56 A formula ¢(x1,...,2,) is said to be preserved under unions of
chains if for any chain My C M; C My C --- and any n-tuple a of elements
from the universe of My, if each M; models (@), then so does the union M of
this chain.

If My < My < My < --- is an elementary chain, then each M; models ¢(a)
if and only if the union M models ¢(a) for any n-tuple of elements from the

Properties of first-order logic 181

universe of My. For the formula ¢(Z) to be preserved under unions of chains,
this must be true for arbitrary chains. We want to determine which formulas have
this property. Clearly, by the definition of the union of a chain, every atomic for-
mula is preserved under unions of chains. Moreover, every existential formula
is preserved under unions of chains since they are preserved under extensions
(Proposition 2.72). Example 4.53 demonstrates that not all formulas are pre-
served under unions of chains. In that example, each M; in the chain models the
sentence JxVy—(y <), but the union M does not.

Definition 4.57 A formula is said to be Vs if it has the form Vzy ---Va,3y; - --
Jymp for some quantifier-free formula .

More generally, we can define a hierarchy for all formulas in prenex normal
form. A formula is V; if it is universal and 3J; if it is an existential formula. For
each n € N, we define the V, 1 formulas inductively. A formula is V, 41 if it has
the form Vzj - - -V, for some 3, formula . Likewise, a formula is 3,41 if it
has the form Jz; - - -z, for some V,, formula ¢.

Example 4.58 Let ©(Z) be a quantifier-free formula.

Jzq1 Voo JesVaeyJosVaesIorVese(Z) is a g formula, and
Va1 VaegdrsIwy JosVagVaVeso(Z) is a V3 formula.

Note that for m < n, a 3,, formula is equivalent to both a V,, formula and a
3, formula. The V5 formulas were singled out in the previous definition because
these are the formulas of immediate interest. The following proposition shows
that these formulas are preserved under unions of chains. As demonstrated by
the sentence 3zVy—(y <), the same cannot be said of Iy sentences nor for V,
formulas for n > 2.

Proposition 4.59 V, formulas are preserved under unions of chains.

Proof Let ¢(x1,...,2,) be a Vs formula. Let My C My C My C --- be a chain
and let M be the union of this chain. Let @ be an n-tuple of elements from the
universe of My. Suppose that each M; = ¢(a). We must show that M | ¢(a).

Since it is a Vo formula, ¢(Z) has the form Vz; ---Vz, 3y - - - Jymeo (T, 7, Z)
where ¢ is quantifier-free. Let ¢ = (cy, .. ., ¢;) be an arbitrary I-tuple of elements
from the universe Uy; of M. Each of these elements is contained in the universe
of some structure Mgz in the chain. Since ¢(a) holds in Mg, Mg = ¢o(a, b, é) for
some m-tuple b of elements from its universe. Since quantifier-free formulas are
preserved under extensions,

M): 900(&7 Bv 6)'
By the semantics of 3,

M ’: Elyl e Elym@()(a'vgv é)'

182 Properties of first-order logic

Since ¢ is arbitrary,
M): vZl o V213y1 e Elymso()(dv ga 2)

by the semantics of V. Thus, we have shown that M = p(a). O

Let T be a theory. Let My C M; C My C --- be a chain of models of T.
If a formula is T-equivalent to a Vs formula, then, by Proposition 4.59, it is
preserved under the union of this chain. We next prove that the converse of this
also holds. If a formula is preserved under unions of chains of models of T', then
that formula must be T-equivalent to a Vo formula. The following proposition
shows that this is true for sentences. As with Proposition 4.45, this is only
interesting for sentences that are not in 7.

Proposition 4.60 Let T be a theory. If a sentence is preserved under unions of
chains of models of T, then it is T-equivalent to a V5 sentence.

Proof Suppose that the sentence ¢ is preserved under unions of chains of models
of T. Let C be the set of all V5 sentences 1 such that T'U {¢} F 1.

Claim TUCF o.

Proof Suppose not. Then T'U C U {—¢} has a model M.
We aim to construct a chain My C Ny C My C Ny C My C --- such that,
for each i € N

[i—1 < M;, and
e cach N; models T'U {¢}.

The existence of such a chain suffices to prove the claim. To see this, suppose
that we have successfully constructed this chain and let M be the union. Then,
by the definition of the union of a chain, M is also the union of both the chain
Mo C My € My C --- and the chain Ny C Ny C N3 C ---. Since the former
chain is an elementary chain and My models —¢, the union M models —p by
Proposition 4.55. Since each N; models ¢ and ¢ is preserved under unions of
chains of models of T', M models . This is a contradiction and this contradiction
proves the claim.

So we must describe how to construct a chain My C Ny C M; C Ny C -+
possessing the above properties. We have already defined Mj. Suppose that, for
some i € N we have defined M;_; so that My < M;_1. Then M, E T U {—¢}.

We must show that there exists an extension N; of M;_; that models TU{x}.
Let EDy(M;—_1) be the set of all universal sentences in prenex normal form that
are in ED(M;_1).

Subclaim EDy(M;_1) UT U {y} is consistent.

Properties of first-order logic 183

Contrarily, suppose that this set is inconsistent. Note that, for any ¢; and
o in EDy(M;_1), there exists a sentence ¢’ in EDy(M;_1) that is equivalent to
©1 A 2. So although EDy(M;_1) is not closed under conjunction, the conclusion
of Corollary 4.36 holds. If £EDy(M;—1) UT U {p} is not consistent, then 7" U
{¢} F -0 for some sentence § € D(M;_1). As a sentence in EDy(M;_1), the
sentence 6 has the form Vi ...Va,¥(z1,..., 25, c1,. .., ¢n) for some quantifier-
free V formula ¢ (z1,...,Zn,¥1,- .-, Ym) and constants ¢; not in V.

Since T U {p} F =V .. Ve, (z1,...,Zn,C1,...,Cm), we have

TU{p}tF 3xy ... Jz,(21,..., 20,1, ., Cm), and
TU{p} VY1 ... YymIr ... Jzn (21, ..., Tn, Y1, -, Ym) by V-Introduction.

Since Vy3z—)(Z,y) is a Vo sentence, it is in C. Since My E C and My <
M;_1, M;—1 &= Vy3z—1(Z,y). This contracts the assumption that Vzy(z,¢) €
D(M;_1). This contradiction verifies the subclaim.

By Theorem 4.27, EDy(M;_1) UT U {p} has a model N;. Since D(M;_1) C
EDy(M;_1), we may assume that N; is an extension of M;_; by Proposition 2.79.

Next, we must show there exists an extension M; of N; that is an element-
ary extension of M;_ 1. We apply Lemma 4.40 to the structures M;_; and N;.
Since N; = EDy(M;_1), N; models every universal sentence that M;_; mod-
els. It follows that M;_; models every existential sentence that N; models. By
Lemma 4.40, there exists a structure M; such that N can be embedded into M;
and M;_1 can be elementarily embedded into M;. By Proposition 2.79, we may
assume that M; is an extension of both N; and M;_1.

Thus we construct the chain My € Ny C My C --- As we have shown, this
construction proves the claim. By compactness, it follows from the claim that
T F ¢ < 1 for some sentence v in C. This proves the proposition. [

Theorem 4.61 Let T be a V-theory. A V-formula is T-equivalent to a Vo formula
if and only if it is preserved under unions of chains of models of T

Proof This theorem follows from Proposition 4.60 in the same manner
that Theorem 4.46 follows from Proposition 4.45. We leave the proof as
Exercise 4.24. [

Corollary 4.62 The formulas that are preserved under unions of chains are
precisely those formulas that are equivalent to a V5 formula.

Proof Take T to be empty in Theorem 4.61. [

4.6 Amalgamation of vocabularies

In Section 4.4, we discussed various ways to amalgamate many structures into
one. In each case, the given structures had the same vocabularies. For example,

184 Properties of first-order logic

the Joint Embedding lemma 4.37 states that any two models M and N of a com-
plete V-theory T can be elementarily embedded into a single model of T'. Here it
is understood that M and N have the same vocabulary as T'. In this section, we
show that this remains true even if M is a V;-structure and N is a Vs-structure
where V; and Vs, are different expansions of V. The primary result of this section
is Robinson’s Joint Consistency lemma. From this lemma, we are able to deduce
results that are analogous to the amalgamation theorems of Section 4.4. We are
also able to deduce the Craig Interpolation theorem and the Beth Definability
theorem for first-order logic.

Lemma 4.63 (Robinson’s Joint Consistency) Let T} be a V;-theory and let T
be a Vo-theory. Let VA =V NV, and let YV, = V; U Vs, If T) NT5 is a complete
Vn-theory, then Ty U T is a V-theory.

Proof We show that there exists a Vh-structure D that has expansions Dy = T
and Dy = Ty. If such a D exists, then we can define Dy to be the V-structure
having the same underlying set as D that interprets V; in the same manner as
D1 and V5 in the same manner as Ds. Since Dy, is a model of both T; and T5,
we can conclude that T7 UT5 is a theory as the lemma states.

To prove the existence of D, we construct elementary chains

My < My < My < M3 < --- of models of T; and
Ng < N1 < Ny < N3 < --- of models of T5.

Let Mi and Ni denote the reducts of M; and N; to the vocabulary V4. Since Th
is a complete theory, M; = 1\73- for any ¢ and j. We want to construct the two
chains in such a way that M; elementarily embeds into N; and N; elementarily
embeds into Mi.ﬂrl for each 7. We diagram the desired situation as follows:

My < My < My < My =<--

I A /
Ng < Ny < Ny < N3 <---.

The arrows in this diagram represent embeddings that are elementary with
respect to the vocabulary VA. Let f; : M; — N; denote the embeddings rep-
resented by | in the diagram, and let g; : N; — ~Z-+1 denote the embeddings
represented by . We want to define these embeddings in such a way that
gi(fi(a)) = a for any a in the underlying set of M; and f;11(g;(b)) = b for any b
in the underlying set of ;.

Before constructing these chains, we show how their existence proves the
lemma. Suppose that we have successfully defined two chains as described in
the previous paragraph. Our goal is to find a V-structure D that has two
expansions that model each of T} and T5. Let M be the union of the chain
My < My < My < --- and let D be the reduct of M to a Vn-theory (so D is

the union of the chain of Mls) By Proposition 4.55, the expansion M of D

Properties of first-order logic 185

models T7. To complete the proof of the lemma, we must define an expansion of
D that models T5.

Let N be the union of the chain Ny < Ny < ---. Then N | T by Pro-
posmon 4.55. Let N be the reduct of N to a Vn- theory We claim that D and
N are isomorphic Vh-structures. Let f:D — N be defined by f (a) = b if and
only if f;(a) = b for some i. Note that f;(a) = b implies f;(a) = b for all j > i
(since g;(fi(a)) = a and fi11(g:(b)) =b). So f is a well defined function. Since
each f; is elementary, so is f. Moreover, f is also one-to-one and onto. So f is an
isomorphism as claimed. Let Dy be the expansion of D to a Vs-structure defined

as follows. For any Vs-formula ¢(z1,...,2,),
Dy = p(a1,...,a,) ifand only if N = o(f(a1),..., f(an))
for any n-tuple (ai,...,ay) of elements from the underlying set of D. Since N

models Tb, so does Dsy. So given two chains as described above, we can define
the Vn-structure D having expansions M = T and Do = T, as was required to
prove the lemma.

It remains to be shown that the two desired chains can be constructed.
We carry out this construction by repeatedly applying Claim 2 below. As
a stepping-stone toward Claim 2, we prove the following:

Claim 1 For any M = T; and N = T; there exists an elementary extension
N7 of N such that M can be elementarily embedded into N where the tildes
denote the reduct to the vocabulary Vn.

Proof We show that the set ED(M)UED(N) is consistent. We assume that the
only constants occuring in both ED(M) and ED(N) are those constants in V.
If ED(M) U ED(N) is not consistent, then, by compactness, ED(N) k= = for
some 0 € ED(M). As a sentence in ED(M), 0 has the form ¢(a) for some V-
formula ¢(Z) and n-tuple a of constants not in ED(N). If, ED(N) + —p(a), then
ED(N) F ¥Z—¢(Z) by V-Introduction. Since the theory T5 contains the complete
Vn-theory T, the Vn-sentence VZ—¢(Z) must be in 7. This contradicts the facts
that M = T and (@) € ED(M). This contradiction proves the claim.

Now suppose that we are given M = T; and N | T5 and an elementary
embedding g : N — M. By Claim 1, there exist elementary extension N* of N
and elementary embedding f: M — N*. Moreover, we claim that we can find
such NT and f so that f(g(a)) = a for any a in the underlying set of N.

Claim 2 Suppose that M = T, N = T, and g: N — M is an elementary
embedding (where the tildes again denote the reduct to the vocabulary Vn).
There exist elementary extension Nt of N and elementary embedding f : M —
N+ such that f(g(a)) = a for any a in the underlying set of N.

Proof Let C = {cq|a € Uy} be a set consisting of constants for each element a in
the underlying set Uy of N. For any vocabulary V, let V(C') denote the expansion

186 Properties of first-order logic

VUC. Let N(C) be the expansion of N to a V;(C)-structure that interprets each
Cq as the element a. Let M (C) be the expansion of M to a Vn(C)-structure that
interprets each ¢, as the element g(a). Since g : N — M is elementary, N(C) =
©(€) if and only if M(C) |= () for any Va-formula (21, .. .,2,) and n-tuple
¢ of constants from C. Tt follows that N(C) and M(C) are models of the same
complete VA (C)-theory. By Claim 1, there exist elementary extension N (C) of
N(C) and elementary embedding f: M(C) — NT(C). Since embeddings must
preserve constants, f(g(a)) = a for each a € Uy. Let Nt be the reduct of N (C')
to a Vs-structure.

Since T7 and T are theories, they have models. To begin the construction
of the chains, we can use any models M, of 77 and N_; of T5. By Claim 1, there
exist elementary extension Ny of N_; and elementary embedding fo : My — No.
Having successfully defined My, Ny, and fj, we proceed to define the rest of the
two chains inductively.

Suppose that, for some i, we have defined M; = T, N; = T» and elementary
embedding f; : M; — N;. By claim 2, there exist elementary extension M;; of
M; and elementary embedding g; : N; — Mi+1 such that g;(f;(a)) = a for each a
in the underlying set of M;. (Here we have applied Claim 2 with M; playing the
role of N and N; playing the role of M.) Applying Claim 2 yet again, there exist
elementary extension N1, of N; and elementary embedding fiq : M1 — Nijy
such that f;11(g;(b)) = b for any b in the underlying set of N;. (Here N; plays
the role of N and M, plays the role of M.) Repeating this process produces
the two desired chains. [J

The following generalization of the Joint Embedding lemma is an immediate
consequence of Robinson’s Joint Consistency lemma.

Corollary 4.64 Let M be a Vi-structure and N be a Vs-structure such that
M and N are elementarily equivalent as (V4 N Vy)-structures. There exists a
(V1 UVy)-structure D such that M can be V;-elementarily embedded into D and
N can be Vs-elementarily embedded into D.

Proof Let T} be ED(M) and T> be ED(N). By Robinson’s Joint Consistency
lemma, there exists a model D of Ty UTy. [

Note that if V; = Vs, then the previous corollary is identical to the Joint
Embedding lemma. Likewise, we can generalize the Elementary Amalgamation
Over Structures theorem 4.38. We leave this as Exercise 4.34. We now turn our
attention to the theorems of Craig and Beth.

Theorem 4.65 (Craig Interpolation) Let ¢ be a V; sentence and 1 be a
V,-sentence. If = ¢ — 1), then there exists a sentence 6 that is both a V;-sentence
and a Vs-sentence such that = ¢ — 6 and = 60 — .

Properties of first-order logic 187

Proof Let Vo = V1 N V5. Let C be the set of all V4 consequences of ¢. That is
C is the set of all Vh-sentences 6 such that = ¢ — 6. We want to show that v is
a consequence of C.

Suppose for a contradiction that M is a V1 U V,-structure that models both
C and —. Let T be the Vn-theory of M.

Claim T U {} is consistent.

Proof Otherwise, T F —p. Since T is closed under conjunctions, {6} F —¢ for
some 6 € T (by compactness). So the contrapositive {¢} F —6 also holds (by
Example 1.34). So —f is a consequence of ¢ and so =0 € C. Since C C T, we
have both 6 and —0 in T. Since M is a model of T, this is a contradiction.

The consistency of TU{y} leads to another contradiction. Let 77 = TU{p}
and 7o = T U {—}. If both T} and T» are consistent, then so is T3 U Ty by
Robinson’s Joint Consistency lemma. But since = ¢ — 1, T3 U T» cannot be
consistent. The assumption that C U {—} is satisfiable must be incorrect. It
follows that C I 1. Since C is closed under conjunctions, {6} - 1 for some 6 € C.
It follows that = 6 — 1 as was required. [

In order to state the Beth Definability theorem concisely, we introduce some
terminology. We distinguish between two ostensibly different notions of defin-
ability. Beth’s Definability theorem states that, for first-order logic, these two
notions are the same.

Definition 4.66 Let 7" be a V-theory and let R be an n-ary relation in V. For
any V' C V, we say that R is explicitly defined by T in terms of V' if there exists
a V'-formula ¢(z1,...,2,) such that

TEo(x,...,2n) < R(z1,...,2).

Example 4.67 Let V = {<,+,-,0,1} and let V' = {+,-,0,1}. Let R, = (R| <,
+,+,0,1) be the structure that interprets V in the usual way on the real numbers.
Let T'= Th(R,,). Then the binary relation < is explicitly defined by T" in terms
of V. To see this, let p(x,y) be the V'-formula 3z(z+(z-z) = y). Since (z-2) >0
for any real number z, T F p(z,y) < = < y.

Definition 4.68 Let 7' be a V-theory and let R be an n-ary relation in V. For
any V' C V, we say that R is implicitly defined by T in terms of V' if the
following holds. Given any V'-structure M and two expansions N1 and Ny of M
to V-structures that model T,

N; E R(a) if and only if Ny = R(a)

for any n-tuple a of elements from the underlying set of M.

188 Properties of first-order logic

If R is explicitly defined by 7" in terms of V, then it is implicitly defined as
well. So the binary relation < from Example 4.67 is implicitly defined by T in
terms of V'. We now give a nonexample.

Example 4.69 Let M be the structure (Z|B) that interprets the binary relation
B as a symmetric successor relation. By this we mean that M |= B(a,b) if and
only ifa=b+1orb=a+1. Let Ny = (Z|B, <) be the expansion of M that
interprets < as the usual order on the integers. Let N3 be the expansion of M
that interprets < backwards. That is, No = a < b if and only if the integer a is
greater than b.

Let T'= Th(N7). Since Ny and Nj are distinct expansions of M that model
T, the relation < is not implicitly defined by T in terms of {B}.

If we replace the relation B with the successor relation S from Example 4.48,
then the same conclusion holds. The relation < is not implicitly defined by
Th(Z|S, <) in terms of {S}. We leave the verification of this as Exercise 4.37.

Proposition 4.70 A relation R is implicitly defined by T in terms of V if and
only if for any V-structure M, there is at most one expansion N of M to a
V U {R}-structure such that Th(N) C T.

Proof Exercise 4.29. [

Example 4.71 Let Ty be the theory of the rational numbers in the vocabulary
Var =1{0,1,4+,-}. Let ¥V =V, U{R} where R is a ternary relation. Let T be the
theory Tg U {¢} for some V-sentence .

If ¢ has the form VzVyVz(v(x,y,z) < R(z,y,z)) for some V,,.-formula
¥(x,y, z), then, by definition, R is explicitly defined by T over V,,.. In this case,
there is exactly one way to expand a given model of Ty to a model of T'.

Conversely, suppose there is exactly one way to expand any given model of
Tq to a model of T'. Then, by Proposition 4.70, R is implicitly defined by T" over
V.. In this case, ¢ may not have the form VzVyvz(v¥(z,y, z) < R(z,y, z)). For
example, suppose that ¢ is the V-sentence

VavVyVzIuFvIw(u-v = 1A (R(z,y,2) V(e +2x+y =2+ v+ u)
ANw+y=0A(R(z,y,2) »x+x=2+w).

There is exactly one way to expand a model of Ty to a model of this sentence.
So this sentence implicitly defines the ternary relation R.

Beth’s Definability theorem states that R is defined implicitly if and only
if it is defined explicitly. This means that the above sentence ¢ must be Tp-
equivalent to a sentence of the form VaVyVz(¢¥(x,y, z) < R(x,y, z)). Indeed, we
can take ¥(z,y,z) to be 2z + y = z. We leave the verification of this to the
reader.

Properties of first-order logic 189

Theorem 4.72 (Beth Definability) A relation is implicitly defined by a theory
T in terms of V if and only if it is explicitly defined by T in terms of V.

Proof Only one direction of this theorem requires proof. Suppose R is an n-ary
relation that is implicitly defined by T in terms of V. If T U {3ZR(Z)} is not
consistent, then R is explicitly defined by the formula —(x = z). So suppose that
this is not the case.

Let D be the set of all V-formulas 1 having free variables among 1, ..., x,
such that T'F R(x1,...,2,) — ¢. Let V(C) =V U {c1,...,cn}, where ¢y, ..., ¢y
are constants that do not occur in V. Let D(¢) be the set of V(C)-sentences
obtained by replacing each occurrence of x; in D with the constant ¢; (for
i=1,...,n).

Claim TUD(¢) - R(e).
Proof Otherwise, T UD(¢) U{-R(¢)} has a model M.

Let Ty be the V(C)-theory of M. We claim that Ty U R(¢) is consistent.
Otherwise, {R(¢)} F = (¢) for some ¢ (¢) € Tp. But then —)(¢) € D(C). This
contradicts the facts that D(C) C Tp and Tp is consistent.

Let T4 = Tp U R(¢) and let To = T UD(¢) U {—=5(¢)} where S is an n-ary
relation that does not occur in VU{R}. Since To U{—R(¢)} is consistent (M is a
model), so is T». By Robinson’s Joint Consistency lemma, 77 U T5 is consistent.

Let N be a model of T; U T5. So N is a structure in the vocabulary V U
{R,S,c1,...,¢n}

Let Ny be the reduct of N to a V-structure.

Let N7 be the expansion of Ny to a V U { R}-structure that interprets R in
the same manner as V.

Let N3 be the expansion of Ny to a ¥V U {R}-structure that interprets R as
N interprets the relation S.

Let a be the n-tuple from the underlying set of Ny that IV interprets as the
constants ¢. Then Ny = R(a) and Ny = —R(a). This contradicts the assumption
that R is implicitly defined by T" C Tp in terms of V. This contradiction proves
the claim.

Since TUD(¢) - R(¢), T F ¢(¢) — R(¢) for some V-formula ¢(z) € D.
Since p(Z) € D, we have
T+ (p(z) < R(z)),

and so R is explicitly defined by T by the V-formula . O

4.7 The expressive power of first-order logic

First-order logic, as any logic, is a language equipped with rules for deducing the
truth of one sentence from that of another. These rules may be formulated as

190 Properties of first-order logic

systems of deduction such as resolution and formal proofs discussed in Chapter 3.
In this chapter, we have shown that the rules of deduction for first-order logic
entail many nice properties. These properties give rise to the model theory of
the next two chapters. Because of these desirable properties, the language of
first-order logic is necessarily weak. In particular, the Compactness theorem
and Downward Lowenheim—Skolem theorem impose limitations on the expressive
power of first-order logic.

We claim that every property of first-order logic discussed in this chapter is a
consequence of the Compactness theorem and the Downward Léwenheim—Skolem
theorem. The completeness of first-order logic can be deduced from compactness
in the same manner that this is done in Theorem 1.80 for propositional logic. The
theorems of Section 4.4 stating that infinite structures M and N can be amalgam-
ated in some manner into structure D are direct consequences of compactness.
The Downward Lowenheim—Skolem theorem guarantees that there exists such D
having the same size as M or N. Inspecting the proofs, we see that Robinson’s
Joint Consistency lemma, the Beth Definability theorem, and the preservation
theorems are consequences of compactness.

By compactness, there cannot exist a sentence of first-order logic that
holds for infinite structures and only for infinite structures. By the Downward
Lowenheim—Skolem Theorem, there cannot exist a sentence of first-order logic
that holds for uncountable structures and only uncountable structures. Because
of these restrictions, there are basic concepts that first-order logic is incapable
of expressing.

Example 4.73 In first-order logic, we cannot say that two definable subsets have
the same size. To be precise, let V be a vocabulary that includes unary relations
P and @. For any V-structure M having underlying set U,

let P(M)={a€U|M = P(a)} and let Q(M) ={a € UM E Q(a)}.

There is no set of V-sentences that says P(M) and Q(M) have the same size. In
contrast, we can easily write sentences that say P(M) and Q(M) both have size
n for any particular n. We can easily define a set of sentences that say P(M)
and Q(M) are both infinite.

Note that V may contain symbols other than P and @Q. For example, V may
contain a unary function f. If this is the case, then we can write a V-sentence
@ that says f is a one-to-one correspondence between P(M) and Q(M). The
existence of such a bijection is precisely what it means for P(M) and Q(M) to
have the “same size.” So if M |= ¢y, then |P(M)| = |Q(M)|. But the converse
of this is not true. There exists N |= =y such that |[P(N)| = |Q(N)|. Likewise,
there is no V-sentence (nor set of V-sentences) that holds if and only if P and @
define subsets of equal size.

Properties of first-order logic 191

To verify this, let " be a set of V-sentences. Suppose that |P(M)| = |Q(M)]
for any model M of I'. We show that |P(N)| = |Q(N)| for some V-structure
N which does not model T'. Let Ny be any V-structure such that P(Ny) is
uncountable and Q(Ny) is denumerable. Then N7 = —y for some v € T'. Let X
be a subset of the universe U of Ny such that both X N P(N;) and X NQ(Ny)
are denumerable. By the Downward Lowenheim—Skolem Theorem, there exists
a countable elementary substructure N of N; that contains X in its universe.
Since N < Ny, we have N = —y. So N is a V-structure that does not model T
for which |P(N)| = |Q(N)| = No.

Example 4.74 Let G be a graph. Recall that a path in G from vertex a to vertex
b is a sequence of adjacent vertices beginning with a and ending with b. The
length of the path is one less than the number of vertices in the sequence (that
is, the number of edges in the path). By Exercise 2.13, there exist formulas
dy(z,y) expressing the existence of a path between vertices and y of length n.
In contrast, we claim that the concept of a path cannot be expressed in first-order
logic. Whereas we can say there is a path of some specified length, we cannot
say there is a path of arbitrary length. Suppose to the contrary that we have a
formula ¢(z,y) that holds of any vertices x and y in any graph G if and only if
there exists a path from z to y in G. Consider the following set of sentences in
a vocabulary containing R and constants a and b:

VaVyp(x,y), ~di(a,b), ~da(a,b), ~ds(a,b), . ..

The first sentence says that there is a path between any two vertices. This
sentence holds in a graph if and only if the graph is connected. Since the other
sentences assert that there is no path between a and b, this set of sentences is
contradictory. However, any finite subset of these sentences is satisfiable. This
contradicts the Compactness theorem. We conclude that the formula ¢(z,y)
cannot exist.

So there is no first-order formula that defines the concept of a path. Likewise,
there is no first-order sentence that holds in a graph if and only if it is connected.
Another basic graph-theoretic property is k-colorability. A graph is said to be
k-colorable if the vertices of the graph can be colored with k colors in such a
way that no two vertices of the same color share an edge. There does not exist
a first-order sentence @y, such that G = ¢y if and only if G is a k-colorable graph.
First-order logic cannot even say that there exists an even number of vertices in
a finite graph. This is a consequence of the 0-1 law for first-order logic that is a
subject of Section 5.4 of the next chapter.

This first-order impotence is by no means limited to graph theory. We list
some of the many fundamental concepts from various areas of mathematics that
first-order logic is incapable of expressing.

192 Properties of first-order logic

e Linear orders: there is no first-order sentence that holds for well ordered
sets and only well ordered sets.

e Group theory: there is no first-order sentence that holds for simple groups
and only simple groups.

e Ring theory: there is no first-order sentence that holds for Noetherian rings
and only Noetherian rings.

e Metric spaces: there is no first-order sentence that holds for complete metric
spaces and only complete metric spaces. In particular, the notion of a Cauchy
sequence cannot be defined

To express these and other concepts, we must extend the logic. In
Chapter 9, we consider extensions of first-order logic such as infinitary logics
and second-order logic. Infinitary logics permit as formulas infinite conjunctions
and disjunctions of first-order formulas. For example, consider the disjunction
Viendi(x,y) of the first-order formulas d;(x,y) from Example 4.74. This is a
formula of the infinitary logic L, . as is the sentence Va¥Vy\/,c di(z,y). This
sentence holds in a graph if and only if it is connected. Now suppose that we
want to say that two definable subsets have the same size as in Example 4.73.
Second-order logic can express this. This logic allows quantification over subsets
of the universe. Second-order logic is extremely powerful and can express each
of the properties mentioned above.

Extending first-order logic comes at an expense. Since it can express the
concept of a path, L, must not have compactness. Likewise, since second-
order logic can say that two definable sets have the same size, the Downward
Lowenheim—Skolem theorem must fail for this logic. Moreover, both compactness
and completeness fail for second-order logic. Unlike first-order logic, we cannot
list a set of rules from which we can deduce all truths of second-order logic. In
this sense, the expressive power of second-order logic is too great.

The Compactness theorem and the Downward Lowenheim—Skolem theorem
make first-order logic the primary language of model theory. Model theory con-
siders the relationship between a set of sentences T and the set of structures
Mod(T') that model T. Just as first-order logic can describe any finite struc-
ture up to isomorphism (by Proposition 2.81), infinitary logics and second-order
logic can describe any countable structure up to isomorphism. This makes for
an uninteresting model theory. If T is the second-order theory of a countable
structure M, then M is the only structure in Mod(T'). Moreover, by the failure
of completeness, we have no way to determine which sentences are in 7.

Although there are basic concepts that cannot be defined in first-order logic,
there are many concepts that can be defined. Moreover, we claim that those

Properties of first-order logic 193

properties that are first-order definable form a natural class of mathematical
objects. The language of first-order logic, containing 3, V, A, and — is a natural
mathematical language to consider. First-order theories, which are the topic of
the next two chapters, are natural objects of study. Since the Compactness and
Downward Lowenheim—Skolem theorems are central to model theory, we should
consider the most powerful logic possessing these properties. By Lindstrém’s
theorem, which we shall prove in Section 9.4, first-order logic is this logic. This
theorem states that any extension of first-order logic for which both the Com-
pactness and Downward Lowenheim—Skolem theorems hold must be equivalent
to first-order logic itself. So in some precise sense, first-order logic is the most
powerful logic that possesses the properties discussed in this chapter.

Exercises

4.1. Let T be an incomplete countable theory. For each of the following, either
prove the statement or provide a counter example.
(a) If T has an uncountable model, then T has a countable model.

(b) If T has arbitrarily large finite models, then T has a denumerable
model.

(¢) If T has finite models and a denumerable model, then T has
arbitrarily large finite models.

4.2. Let T be an incomplete theory in an uncountable vocabulary. Repeat (a)
and (b) from Exercise 4.1.

4.3. Let T1 be a complete V;-theory and let T5 be a complete Va-theory. Show
that 77 U Ty is consistent if and only if @1 A @9 is satisfiable for every
Y1 € T, and Y2 € Ts.

4.4. Let ¢ be a first-order sentence that is not contained in any complete theory.
Show that {¢} F —¢.

4.5. Let p(z) be a quantifier-free V-formula. Let C = {c1,ca,c3,...} be a
denumerable set of constants that do not occur in V. Let V(C) =V U C.
Show that the sentence Jxp(x) is a tautology if and only if the sentence
o(t1) Vo(ta) V-V o(t,) is a tautology for some n € N and V(C)-terms
et

4.6. Let V be a vocabulary containing denumerably many constants
{c1,c2,c3,...}. Let T be a V-theory having the following two properties.
o If T |= 3z6(x), then T |= 0(c;) for some i € N.
o T'|=c; #cj for any 4,7 € N with i # j.
Show that T" is complete.

194

4.7.

4.8.

4.9.

4.10.

Properties of first-order logic

Let T be an incomplete V-theory and let 6 be a V-formula. Suppose that
for each M |= T there exists a V-formula ¢y such that M = 6 < pp.
Show that there exists finitely many V-formulas 1, ..., @, such that T F
Vi1 (0 < ¢i).

Let V be a vocabulary that contains only constants (and neither functions
nor relations). Let M and N be two infinite V-structures. Using the Tarski-
Vaught Criterion, show that if M C N, then M < N.

Let R be the structure (R|+,-,0,1,<) having the real numbers as an

underlying set that interprets the vocabulary in the usual manner.

(a) Show that there exists an elementary extension M of R that has
infinitesimals (an element ¢ is an infinitesimal if 0 < ¢ < 1/n for
each n € N).

(b) Let Uy be the underlying set of M. Show that the set of infinites-
imals in Uy, has the same size as the set of infinite elements in Uy,
(an element c is infinite if n < ¢ for each n € N).

Let N be the V-structure (N|+,-,1) from Exercise 2.7. By part (c) of

Exercise 2.7, there exists a V-formula A(z,y) such that, for any a and b in

N, N = A(a,b) if and only if a < b. By the Upward Léwenheim—Skolem

theorem, IN has an elementary extension M of cardinality N;.

(a) Let ¢ be in the universe of M. Show that ¢ is not in N if and only if
M = A(n, c) for each n € N. Call such an element ¢ “infinite.”

(b) Show that there is no least infinite number in the universe of M.
(That is, for every infinite ¢, there exists an infinite d such that
M E Xd,c).)

(¢c) By part (b) of Exercise 2.7, there exists a V-formula m(x) such that,
for any n € N, N E 7(n) if and only if n is prime. Show that
M = w(c) for some infinite c¢. Call such a ¢ an “infinite prime.”

(d) Show that there cannot be two consecutive infinite primes in the
universe of M. (a and b are consecutive if a +1 =b.)

(e) Let ¢(z) be a V-formula. Show that the following are equivalent:

(i) N [¢(n) for infinitely many n € N.
(i) M = ¢(c) for some infinite c.
(ili) There exists an elementary extension M; of M such that

M, E p(a) for Ro3 many elements a in its universe.

. A graph is said to be k-colorable if the vertices can be colored with k

different colors in such a way that no two vertices of the same color share
an edge.

A graph is said to be planar if it can be drawn on the Euclidian plane
in such a way that no two edges cross each other. The Four Color Theorem
states that any planar graph is four-colorable. This famous theorem was

4.12.

4.13.

4.14.
4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.
4.22.

Properties of first-order logic 195

proved by Appel and Haken in 1976. Assuming that this theorem is true
for finite graphs, prove that it is true for infinite graphs.

(Hint: Given an infinite planar graph G, consider the union of D(G) and a
suitable set of V’-sentences where V' an expansion of Vg containing unary
relations representing each of the colors.)

The relation < is a partial order on a set A if

1. for all @ and b in X, at most one of the following hold: either a < b,
b <a,ora=>b, and

2. forall a,band cin X, if a < b and b < ¢ then a < c.

If it is also true that either a < b or b < a for distinct a and b in A, then

the partial order is a linear order. Using the compactness of first-order

logic, show that any partial order on a set A can be extended to a linear

order on A.

(Hint: First use induction to show that this is true for finite A.)

Let T be the set of all sentences in the vocabulary Vg that hold in every
connected graph. Show that there exists a model G of T that is not a
connected graph.

Derive the Compactness theorem from the Completeness theorem.

Let T be the set of all sentences in the vocabulary V. = {<} that hold in
every well ordered set. Show that there exists a model M of T that does
not interpret < as a well ordering of the underlying set of M.

Let M be a V-structure having underlying set U. For any n-tuple a of ele-
ments from U, let (@) be the substructure of M generated by a as defined
in Exercise 2.34. Show that M can be embedded into a model of a theory
T if and only if (a) can be embedded into a model of T for every finite
tuple @ of elements from U.

Let F be a set of formulas having an infinite vocabulary V. Show that
IF = [VI.

Show that the order <« defined in the proof of Theorem 4.15 makes § x §
a well ordered set.

For any set A of cardinals, let supA denote the least cardinal A such that
k < A for each k € A. Let a be an infinite ordinal and let {x, |t < a} be
a set of cardinals. Show that ¥,.4k, = sup{|a|, k.|t < a}.

Show that the following equalities hold for any ordinal o and any car-
dinal &,

Yocak=r-|al, and

HL<(XK’ = K/la‘ .

Prove that there are uncountably many countable ordinals.

Let a1 > ag > a3 > -+ be a descending sequence of ordinals. Show that
there can be only finitely many ordinals in this sequence.

196

4.23.

4.24.
4.25.

4.26.

4.27.

4.28.

4.29.
4.30.

Properties of first-order logic

Let T be a complete theory. Let o be a nonzero ordinal. For each (8 < «,

let Mg be a model of T'.

(a) Show that there exists a model D of T such that each Mg can be
elementarily embedded into D.

(b) Show that we can find D in part (a) so that |D| < |a|-|Mga| for each (3.
Prove Theorem 4.61.

Let T be a V-theory. Let Ty be the set of all universal sentences 1 such
that T'+ 4. Let M be a V-structure that models 7. Show that M can be
embedded into a model of T

Let T be a V-theory and let ¢(z) and ¢(z) be two V-formulas. Suppose
that, for any models M and N of T with N C M,

if M = p(a) then N = 9(a)

for any element a in the universe of .

Show that there exists a universal V-formula 6(z) such that T + ¢(z) —

O(x) and T + 0(x) — ¥(x).

Let T be an incomplete V-theory and let ¢(Z) be a V-formula having n free

variables (for n € N). Let M be a model of T having underlying set Uy,.

(a) Suppose that M |= ¢(a) if and only if M = ¢(b) for any n-tuples @
and b of elements of Uy; that satisfy the same atomic V-formulas
in M. Show that M | ¢(Z) < ¢(z) for some quantifier-free
V-formula ¢(Z).

(b) Show that ¢(Z) is not necessarily T-equivalent to a quantifier-free

formula by providing appropriate example.

Let T be a V-theory and let ¢(z1,...,2,) be a V-formula. Prove that the

following are equivalent:

(i) @(x1,...,2,) is T-equivalent to a quantifier-free formula.

(ii) For any model M of T' and any V-structure C, if f : C' — M and
g : C — M are two embeddings of C into M, then

M ': Qo(f(cl)a . 7f(cn)) if and only if M ': (p(g(cl? . 'acn))

for any n-tuple of elements from the underlying set of C.
(Hint: see Exercise 2.34.)

Prove Proposition 4.70.

For any V-theory T, let Tyg be the set of Vo V-sentences that can be
derived from T'. Prove that the following are equivalent:

(i) TyakT.

(ii) If M is the union of a chain of models of T, then M | T.

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

Properties of first-order logic 197

(iii) Let M be a V-structure having underlying set U. If for every a € U,
there exists N C M such that a is in the universe of N and N =T,
then M E=T.

Let V be a vocabulary and let R be an n-ary relation not in V. Let T be an
incomplete theory in the vocabulary VU{R}. Suppose that, for each M =
T, there exists a V-formula ¢,/ (Z) such that M = R(Z) < ¢ (Z). Prove
that R is explicitly defined by T in terms of V. (Hint: see Exercise 4.7.)

(Lyndon) Refer to Exercise 2.33. A formula is said to be positive if it
does not contain the symbols -, —, nor <. Let T be a V-theory and let
© be a V-formula. Show that the following are equivalent:

(i) ¢ is T-equivalent to a positive formula.

(ii) ¢ is preserved by every homomorphism f : M — N that is onto
where both M and N are models of T

(Lyndon) Let ¢ and ¢ be V-sentences in conjunctive prenex normal form.
A relation R is said to occur negatively in ¢ if =R occurs as subformula.
Prove that if = ¢ — ¢ then there exists a V-sentence 6 in conjunctive
prenex normal form such that = ¢ — 6, E 0 — 1, and every relation
that occurs negatively in 6 also occurs negatively in both ¢ and . (Hint:
Modify the proof of Theorem 4.65.)

Let V; and V5 be two vocabularies. Let ¥V = Vi N V. Let M be a
V;-structure, N be a Vs-structure, C' be a V-structure. Let f, : C — M
and fo : C' — N be V-elementary embeddings. Show that there exist

(V1 U Vy)-structure D,

V1-elementary embedding ¢g; : M — D, and

Vs-elementary embedding go : N — D
such that g1 (f1(c)) = g2(f2(c)) for each ¢ in the underlying set of C.
Derive Robinson’s Joint Consistency lemma from Compactness and
Craig’s Interpolation theorems.
Show that the Beth Definability theorem holds for functions as well as
relations.
Let M be the structure (Z|S) that interprets the binary relation S as
the successor relation on the integers. Let N = (Z|S, <) be the expan-
sion of M that interprets the binary relation < as the usual order. Let
T =Th(N).
(a) Show that N is the only expansion of M to a the vocabulary {5, <}

that models T

(b) Show that < is not explicitly defined by 7" in terms of {S}.

5 First-order theories

We continue our study of Model Theory. This is the branch of logic concerned
with the interplay between sentences of a formal language and mathematical
structures. Primarily, Model Theory studies the relationship between a set of
first-order sentences T' and the class Mod(T') of structures that model T'.

Basic results of Model Theory were proved in the previous chapter. For
example, it was shown that, in first-order logic, every model has a theory and
every theory has a model. Put another way, T" is consistent if and only if Mod(T")
is nonempty. As a consequence of this, we proved the Completeness theorem.
This theorem states that T F ¢ if and only if M = ¢ for each M in Mod(T). So
to study a theory T', we can avoid the concept of - and the methods of deduction
introduced in Chapter 3, and instead work with the concept of = and analyze
the class Mod(T). More generally, we can go back and forth between the notions
on the left side of the following table and their counterparts on the right.

Formal languages Mathematical structures

Theory Elementary class
T Mod(T)

Th(M) M

- =

Sentences Models

Formulas Definable subsets
Consistent Satisfiable
Syntax Semantics

Progress in mathematics is often the result of having two or more points
of view that are shown to be equivalent. A prime example is the relationship
between the algebra of equations and the geometry of the graphs defined by the
equations. Combining these two points of view yield concepts and results that
would not be possible in either geometry or algebra alone. The Completeness
theorem equates the two points of view exemplified in the above table. Model
Theory exploits the relationship between these two points of view to investigate
mathematical structures.

First-order theories 199

First-order theories serve as our objects of study in this chapter. A first-
order theory may be viewed as a consistent set of sentences T" or as an elementary
class of structures Mod(T). We shall present examples of theories and consider
properties that the theories may or may not possess such as completeness, cat-
egoricity, quantifier-elimination, and model-completeness. The properties that a
theory possesses shed light on the structures that model the theory. We ana-
lyze examples of first-order structures including linear orders, vector spaces, the
random graph, and the complex numbers. In the final section, we use the model-
theoretic properties of the theory of complex numbers to prove a fundamental
result of algebraic geometry.

As in the previous chapter, all formulas are first-order unless stated
otherwise. In particular, all theories are sets of first-order sentences.

5.1 Completeness and decidability

We demonstrate several examples of theories in this section. Variations of these
theories are used throughout this chapter to illustrate the concepts to be intro-
duced. Although any consistent set of sentences forms a theory, we typically
restrict our attention to those theories that are deductively closed.

Definition 5.1 Let I" be a set of sentences. The deductive closure of T" is the set
of all sentences that can be formally derived from I'. If T" equals its deductive
closure, then T is said to be deductively closed.

Given a deductively closed theory, we consider the question of whether or
not the theory is complete. To show that a V-theory T is complete, we must show
that, for every V-sentence ¢, either ¢ € T or ~¢ € T'. It is a much easier task
to show that T' is incomplete. To accomplish this, it suffices to produce only one
sentence ¢ such that neither ¢ nor - is in 7'. Instead of considering V-sentences,
we can consider V-structures. To show that T is incomplete, it suffices to find
two models of T that are not elementarily equivalent. This is also a necessary
condition for T" to be incomplete.

Proposition 5.2 Let T be a deductively closed theory. Then T is incomplete
if and only if there exist models M and N of T that are not elementarily
equivalent.

Proof First suppose that T is incomplete. Then there exists a sentence ¢ such
that neither ¢ nor —p is in T'. Since T is deductively closed, neither ¢ nor —¢
can be derived from 7'. This happens if and only if both T'U {¢} and T'U {—¢}
are consistent. By Theorem 4.27, if these sets of sentences are consistent, then
they are satisfiable. So if T' is incomplete, then, for some V-sentence ¢, there

200 First-order theories

exist models M =T U{¢} and N =T U {=¢p}. Clearly, such M and N are not
elementarily equivalent.

Conversely, if there exist models M and N of T that are not elementarily
equivalent, then there must be some sentence ¢ such that M = ¢ and N = —p.
If this is the case, then T must be incomplete. [

Theories shall be presented in one of two ways. We may define T to be
Th(M) for some structure M. Such theories are necessarily complete by Propos-
ition 2.86. Similarly, given a class of structures, we may define T" to be the set of
all sentences that hold in each structure in the set. In this case, T' is complete if
and only if the given structures are elementarily equivalent to one another. So if
there are two or more structures in the class, then the theory T defined in this
manner might be incomplete.

Example 5.3 Let Vi = {R} and Vg = {E'} be vocabularies consisting of a single
binary relation.

e Let T be the set of all Vr-sentences that hold in every graph. This is the
theory of graphs.

e Let Tg be the set of all Vg-sentences that hold in every structure that
interprets E as an equivalence relation. This is the theory of equivalence
relations.

Since there exist finite models of Tz and Tg of different sizes, neither of these
theories is complete.

Another way to define a theory T is to explicitly state which sentences are
contained in T. Usually, T contains infinitely many sentences and we cannot
simply list all of them. To present such a theory T, it suffices to provide a set of
sentences I' so that T is the deductive closure of I'. That is, we axiomatize the
theory.

Definition 5.4 Let T be a theory. An aziomatization of T is a subset I" of T" that
has the same deductive closure of T' (that is, I' - ¢ for each ¢ € T'). We say that
I' aziomatizes T and that T is axiomatized by T'.

Example 5.5 The theory of graphs Ts is the deductive closure of the two
Va-sentences

Ve-R(z,x) and VaVy(R(z,y) < R(y,x)).

This agrees with our previous definition of T¢. These two definitions are equi-
valent because a “graph,” by definition, is a structure that models these two
sentences. Likewise, by the definition of “equivalence relation” the Vg-theory

First-order theories 201

TE is the deductive closure of the Vg-sentences
VeE(z,x),
VaVy(E(z,y) — E(y,x)), and
VaVyVz((E(z,y) N E(y, z)) < E(z,2)).

Of course, any theory T is an axiomatization of itself. This fact is neither
interesting nor useful. An axiomatization is useful if it is somehow simpler than
T. For example, whereas the theories T and T both contain infinitely many
sentences, the axiomatizations of these theories are finite and easy to understand.

It is common practice in pure mathematics to define concepts by providing
axiomatizations. However, not all axiomatizations are first-order axiomatiza-
tions. Our definition of azriomatization is more restrictive than the colloquial use
of this word in mathematics. If we open a book on, say, real analysis, then we
might see a set of azioms or postulates from which the theory is derived. For
example, on page 17 of Ref. [42] we see the following axiom for the real numbers.

Completeness axiom. Every nonempty subset S of R that is bounded
above has a least upper bound.

We mentioned this property of the real numbers in Section 2.4.3. Although it is
a precise and formal statement, we cannot translate it to a sentence of first-order
logic. To say “for all subsets S” we must quantify over subsets (as opposed to
elements) of the set R. We can do this in second-order logic, but not first-order
logic.

Although not all axiomatizations can be translated to the language of first-
order logic, there are many that can be. Of the plethora of possible examples in
pure mathematics, we presently give three. These three examples are standard
definitions of concepts that can be found in books on algebra, geometry, and
logic, respectively.

Example 5.6 A group is defined as a set G equipped with a binary operation o,
such that the following hold:

(Closure) If a and b are in G, then so is a o b.

(Associativity) For every a, b, and ¢ in G, ao (boc) = (aob)oc
(Existence of identity) There is an element e in G such that aoe =eca =a
for every a in G.

(Existence of inverses) For any a in G, there exists an element a=! of G

such that aoa™ ' =altoa=c.

These sentences can easily be expressed as first-order sentences in the vocabulary
{o, e} where o is a binary function and e is a constant. In Exercise 2.5, they are

202 First-order theories

expressed in the vocabulary V,, = {+,0}. Let Ty, be the deductive closure of
these Vyp-sentences. This is the theory of groups. Note that we do not need to
state the closure axiom, since, for any function f, the sentence Vz3y(f(z) = y)
is a tautology of first-order logic.

Example 5.7 A projective plane is a set lines each of which is comprised of points
in such a way that any two lines intersect in exactly one point and any two
points are contained in exactly one line. Moreover, to rule out trivial examples,
a projective plane must have at least four points and four lines.

We can translate this definition to a set of first-order sentences in the
vocabulary V,, = {P,L,I}. This vocabulary contains two unary relations P
(for “points”) and L (for “lines”) and one binary relation I (the “incidence rela-
tion”). The relation I(x,y) is used to express “z is a point contained on the
line y.” We leave it to the reader to formalize the above definition as a set of
Vpg-sentences. Let T),, denote the deductive closure of these sentences. This is
the theory of projective planes. Note that the axiomatization of T}, is symmetric
with respect to P and L. That is, if we replace P with L and vice versa, then
this set of sentences remains the same. It follows that for any sentence in T},
if we swap P and L we obtain another sentence of 7},,. This is the fundamental
principle of duality for projective planes.

Example 5.8 In Section 4.2, we defined the concept of a linearly ordered set
as follows. The relation < is a linear order on structure M if M models the
V-sentences

VaVy((z <y) — ~(y <)),

Va(=(z <)),

VaVy((z <y)V(y <z)V (z=vy)), and
Vavyz(((z < y) A (y < 2)) — (z < 2)).

Let Tro be the deductive closure of these sentences. We refer to Tro as the
theory of linear orders.

So there are two ways to define a particular theory. It can be defined in terms
of a class of structures or in terms of a set of sentences. We defined the theory of
groups T, in terms of a set of sentences (an axiomatization). Equivalently, we
could define T}, as the set of all Vy,-sentences that hold in all groups. Of course,
this definition would not be helpful to a reader who is not previously familiar
with groups. Another way that this latter definition is inferior is that it does not
provide a method for determining precisely which sentences are in Ty,,. If we are
given an axiomatization I' of a theory 7', then (theoretically if not practically)

First-order theories 203

we can determine whether or not a sentence is in 1" using the methods described
in Chapter 3.

Definition 5.9 A V-theory T is decidable if there exists an algorithm that will
determine, in a finite number of steps, whether or not any given V-sentence ¢
isin 7.

Proposition 5.10 A complete countable theory is decidable if and only if it has
an axiomatization that is decidable.

Proof Let T be a complete countable V-theory. Since T is an axiomatization of
itself, only one direction of this proposition requires proof. Suppose we are given
a decidable axiomatization I' of T. We want to show that T is decidable. Let
© be an arbitrary V-sentence. We must describe a way to determine whether or
not ¢ isin 7.

Since T is countable, so is the set of all V-sentences. So the set of all V-
sentences can be enumerated as {i1,va,s,...}. Moreover, we can find such
an enumeration in a systematic way. For example, if V is finite, then we can
list the finitely many sentences that have no more than 10 symbols followed by
those that have no more that 20 symbols, and so forth. Since I' is decidable,
we can determine whether or not each ; is in I in a finite number of steps. So
there exists an enumeration {y1,7v2,7s, ...} of I" and an algorithm that, for given
n € N, produces the finite set {y1,72,...,Vn}

To determine whether or not ¢ is in T, we use the methods of Chapter 3
(either formal proofs, Herbrand’s method, or resolution) to determine whether
or not ¢ can be derived from I'. For example, we can list every formal proof that
has fewer than 1000 steps that can be derived from {~1,...,7v10}. There are only
finitely many such proofs.

If I' F ¢ occurs in one of these proofs, then we conclude “yes, ¢ is in T.”

If I' - = occurs in one of these finitely many proofs, then we conclude “no,
@ is not in T.”

Otherwise, if neither I' F ¢ nor I' - —¢ occurs, then we proceed to check
more formal proofs. We can list every formal proof that has fewer than 2000
steps that can be derived from {v1,...,720}. If that is not enough, we can
then list every formal proof that has fewer than 3000 steps that can be derived
from {71,...,730}, and so forth. Since T' is complete, either I' - ¢ or I' F —¢. By
compactness, the procedure we have described will eventually (in a finite number
of steps) find a formal proof for either I' - ¢ or I' F —¢.

This procedure is not practical, to say the least. We would not want to (nor
be able to) actually list all of these formal proofs. However, the definition of
“decidable” requires only the existence of an algorithm. It does not have to be
a good algorithm. By this definition, 7" is decidable. [

204 First-order theories

Of the two ways to define a theory, it is better to provide an axiomatization.
If an axiomatization is not given, then it is desirable to find one. However, this
is not always an easy task. In some cases, it may be difficult or impossible to
provide an axiomatization for a theory.

Example 5.11 Let T,, = Th(A) where A = (Z|+,-,0,1) is as in Section 2.4.3.
This is the theory of arithmetic. Although this is a perfectly well defined theory,
we cannot provide a decidable axiomatization for it. The theory of arithmetic is
undecidable. This is a consequence of Godel’s Incompleteness theorems that are
the subject of Chapter 8.

Structures that have undecidable theories clearly do not lend themselves well
to model-theoretic analysis. In the present chapter, we restrict our attention to
first-order theories that are most accessible and do not consider undecidable
theories.

Example 5.12 Let V, = {s} where s is a unary function. Let Z, = (Z|s) be the
Vs-structure that interprets s as the successor function on the integers. That is,
for integers a and b, Z, |= s(a) = b if and only if b = a + 1. Let Ty = Th(Z;).
This is an unambiguous definition of 7. There is only one V,-theory fitting
this description. Now suppose that we want to provide an axiomatization for
Ts. That is, from among the infinitely many sentences in Ts, we want to find a
subset that succinctly describes this theory. One way to proceed is to ask: what
are the salient features of the structure Z,?7 If you were to describe this structure
to someone who had no idea what the integers looked like, what would you say?
There is no first element. There is no last element. The successor of any element
is unique as is the predecessor. We can express these things with V,-sentences.

Let o1 be the sentence Vx3y(s(y) = =), and
let o3 be the sentence VzVy(s(z) = s(y) — z =y).

The first of these says that every element has a predecessor (there is no “first”
element). The second of these sentences implies the uniqueness of the predecessor.
We do not need to say that every element has a unique successor. Since any model
interprets s as a function, the sentences

Vazdy(s(r) =y) and VaVy(r =y — s(z) =s(y))

are tautologies.

To axiomatize the Vs-theory Ts we are merely listing some of the sen-
tences that hold in the Vs structure Zs;. The problem is knowing when we
are done. So far, we have listed the two sentences o7 and o,. Together these
sentences say that s is one-to-one and onto. This is not enough. By Pro-
position 2.86, Ts = Th(Zs) is a complete theory. The set {1,092} is not

First-order theories 205

complete. There are finite models of these two sentences. An axiomatization
of Ty must forbid finite cycles. That is, we must include sentences to say
that for all z, s(z) # =z, s(s(x)) # z, s(s(s(z))) # x, and so forth. For
each n € N, let 0, be the Vs-sentence Va—s™(z) =« where s™(x) abbreviates
s(s(s---s(x))).
—_——

n times
Let T's = {o01,09,0,|n € N}. If the deductive closure of I'y is complete, then we
are done. Otherwise, to obtain an axiomatization of Ty, we must proceed to add
more sentences to I's. We return to this example in Example 5.20 and show that
I'y is indeed an axiomatization of 7. It follows that 7T is decidable.

We need a way to verify that a given V-theory T' is complete. As we remarked
at the outset, this is a more difficult task than showing that T is incomplete. It
is not difficult to show that the theories Tz, T, Typ, and T1o are incomplete.
Throughout this chapter, we will consider examples of complete theories that
contain these theories as subsets. One of our goals in this chapter is to define
various criteria that imply completeness.

5.2 Categoricity

A theory is complete if and only if all models of the theory are elementarily
equivalent. This is a reformulation of Proposition 5.2. In particular, if all its
models are isomorphic, then the theory must be complete. If this is the case,
then we say that there is only one model up to isomorphism and that the theory
is categorical.

Theories describe structures. We distinguish two types of descriptions that
are desirable. A complete description describes its subject entirely. A categorical
description describes its subject uniquely. Let us lift our restriction to first-order
logic for the moment, and suppose that we want to describe an object using
English sentences. Suppose we are in a crowded bar and I want to describe
Dennis to you. If T tell you that Dennis is in the room, is over 2m tall, has
fuchsia hair, and is wearing sunglasses and a feather boa, then it is likely that
there will be at most one person in the room fitting this description. If there is
exactly one person fitting the description, then the description is categorical. A
categorical description provides only enough information to single out its object
and is not necessarily complete. We cannot deduce all there is to know about a
person from a categorical description. Indeed, our categorical description leaves
many unanswered questions about Dennis.

In English, a complete description is necessarily categorical, but not the
other way around. In the language of first-order logic, since it is a weak language,
this is reversed. A complete theory may not be categorical (it may have more

206 First-order theories

than one model). But, as we pointed out in the opening paragraph, if a theory
is categorical, then it must be complete.

Definition 5.13 A theory is absolutely categorical if it has only one model up to
isomorphism.

Any complete theory having a finite model is absolutely categorical. This
follows from Proposition 2.81 where it was shown that for any finite V-structure
M, there is a V-sentence @,; that describes M up to isomorphism. By the
Upward Lowenheim—Skolem theorem, these are the only examples of absolutely
categorical theories. If a theory has an infinite model, then it has arbitrarily
large models. In particular, any such theory has models of different cardinalities.
Two structures of different cardinalities cannot possibly be isomorphic.

So absolutely categorical theories are nothing new. This is merely a new
name for complete theories having a finite model. We extend the notion of
categoricity so that it applies to theories having infinite models.

Definition 5.14 Let x be a cardinal. A theory T is k-categorical if T has exactly
one model of size K up to isomorphism.

This definition circumvents the Upward Lowenheim—Skolem theorem. Let
N = T.If N is not the same size as M, then, of course, N cannot be isomorphic
to M. If T is k-categorical, then this is the only reason that N may not be
isomorphic to a model M of size k.

Among theories having infinite models, k-categoricity is a very strong prop-
erty. As we shall see, we can attain much information about a theory and the
structure of its models merely by knowing for which cardinals « the theory is
k-categorical. One basic result is the following:

Proposition 5.15 Let T be a deductively closed theory having only infinite
models. If T is k-categorical for some x > |T'|, then T is complete.

Proof We prove the contrapositive. Suppose T' is not complete. By Proposi-
tion 5.2, there exist M =T and N |= T such that N £ M. By Corollary 4.34 of
the Lowenhiem—Skolem Theorems, there exist M’ = M and N’ = N such that
|M'| = |N'| = k. Since M’" # N’, M’ and N’ cannot be isomorphic and T is not
k-categorical. [J

Definition 5.16 For any cardinal x, we say that V-structure M is k-categorical
if the V-theory Th(M) is k-categorical.

Whereas all finite structures have theories that are absolutely categorical,
relatively few infinite structures are x-categorical for some k. However, although
it is rare, many important structures have this property. Structures that are

First-order theories 207

k-categorical for infinite x play a central role in Model Theory. Examples of these
structures include the complex numbers, vector spaces, and the random graph.
We shall investigate these structures and their theories later in this chapter.
Presently, we provide some elementary examples.

Example 5.17 Recall from Section 2.4.1 that a clique is a graph that models
the sentence VzVy(—(x = y) — R(z,y)) saying that any two distinct vertices
share an edge. Let T' be the Vg-theory axiomatized by this sentence together
with the sentences that define a graph. Since any two cliques of the same size
are isomorphic, T is k-categorical for all cardinals k. Since T has finite models
of different sizes, it is not complete. Suppose that we add to this theory the
sentences

dri3dxg - - Jxy, (/\ T # xj>
i)
for each n € N. These sentences express that the underlying set contains at least
n elements for each n € N. That is, the universe is infinite. Let Ti;que denote
the set of Vi-sentences that can be derived from the union of these sentences
with the theory of cliques. Equivalently, Tique is the set of all Vr-sentences that
are true in all infinite cliques. Since Tique is K-categorical for infinite x and has
only infinite models, it is complete by Proposition 5.15.

Example 5.18 Let Tg be the Vg-theory of equivalence relations from
Example 5.3. Each model of Ty is completely determined by the number and
the sizes of its equivalence classes. We describe two models My and Ny of Tg.

Let M, have exactly two different equivalence classes each of which is
denumerable.

Let Ny have a denumerable number of equivalence classes each containing
exactly two elements.

So both My and N; have denumerable universes. Let {aj,as,as,...} and
{b1, b2, b3, ...} be the underlying sets of My and Na, respectively. We depict Mo
as tall and thin and N, as short and fat in Tables 5.1 and 5.2.

We claim that each of these structures is Ng-categorical.

Consider first Ms. Let M be a countable Vg-structure that is elementarily
equivalent to M. The Vg-sentence

JxIy(—E(x,y) A\Vz(E(z,2) V E(y, 2))

expresses that there are exactly two equivalence classes. Since Ms models this
sentence, so does M. Also, M> models the sentences saying that each element
has at least n elements in its equivalence class for each n € N. Since My = M, M
also models these sentences. So M, like Ms, has two denumerable equivalence

208 First-order theories

Table 5.1 Vg-structure Mo

as ag
as a4
ay az

Table 5.2 Vg-structure No

b2 b4 b6 b8
by b3 bs br

classes. It follows that each equivalence class M can be put into one-to-one
correspondence with either of the equivalence classes of Ms. Since they have
the same number of equivalence classes, My and M are isomorphic and My is
No-categorical.

We now show that Ns is k-categorical for any infinite k. Let x be infinite
and let N and N’ be two Vg-structures of size x that are both elementarily
equivalent to Ny. Then each equivalence class of either N or N’/ must contain
exactly two elements (since this can be expressed with a first-order sentence).
Since & is infinite, both N and N’ have x many equivalence classes. So the
equivalence classes of N can be put into one-to-one correspondence with the
equivalence classes of N’. Since all equivalence classes have the same number of
elements, N and N’ are isomorphic and Ny is k-categorical as was claimed.

We return now to M, and show that this structure, unlike N5, is not x-
categorical for uncountable k. This follows from the fact that first-order logic
cannot distinguish between one infinite cardinal and another. Whereas we can
define a set of Vg-sentences to say that each equivalence class is infinite, we
cannot say that each equivalence class has size Ny or size No3 nor specify any
other infinite cardinality. For any cardinals A and &, let M), be the Vg-structure
having one equivalence class of size A, one of size x, and no other equivalence
classes. Then My, = M, for any infinite A and k. If A < x, then M), is not
isomorphic to My,. Moreover,

[Myukl =2-k =k =K+ \=|Mg|

It follows that M> is not k-categorical for uncountable x as we claimed.

First-order theories 209

Definition 5.19 Let T be a theory having only infinite models.

T is countably categorical if it is Nyo-categorical.

T is uncountably categorical if it is k-categorical for all uncountable x.

T is totally categorical if it is k-categorical for all infinite x. That is, if it is
both countably and uncountably categorical.

The theory Th(Ms) from Example 5.18 is countably categorical but not
uncountably categorical. The theory Th(Ns) from that example is totally cat-
egorical as is the theory Tijigue from Example 5.17. We now demonstrate an
example of an uncountably categorical theory that is not countably categorical.

Example 5.20 Recall the V-theory Ty = Th(Z,) from Example 5.12. Recall too
the set I'y of Vs-sentences expressing that s is a one-to-one and onto function
having no finite cycles. We claim that I'y axiomatizes Ts. To do verify this, we
show that every model of I'y is also a model of Ty. Let us consider some specific
models of I';.

Let Z5 be a Vg-structure having underlying set

{. cey 73, 72, 71,0, 1,2,3, .. } U { ..ya_3,a4_2,a_1,00,01,02,043, .. }

Let Zs interpret s the same way as Zg on the integers. Further, suppose that
Zy = s(a;) = a; if and only if j = ¢ + 1. Then Z, interprets s as a one-to-one
onto function having no finite cycles. So Zs |= I's. We say that such Z; contains
two copies of Z. Likewise, we can define models of I'g having any number of
copies of Z. For any nonzero cardinal k, let Z,; be the Vy-structure containing
K copies of Z. (So Z; is Zs.)

Let k be an uncountable cardinal. Let N be a model of I'y of size k. For
any element agp in the universe Uy of IV, there must exist a unique successor
ay, and predecessor a_1 in Uy. There must also exist successor as of a; and
predecessor a_s of a_1, and so forth. Since N has no finite cycles, each element
ag € Uy is contained in a copy of Z. Since |N| = k, N must contain x copies
of Z. It follows that N = Z,.. So Z, is the only model of T'y of size k up to
isomorphism and Ty is x-categorical for all uncountable k. By Proposition 5.15,
the deductive closure of I'y is the complete theory T;. Since the nonisomorphic

models Zy, Zs, Z3, . .., Zy, are each countable, T is not Np-categorical.

We have demonstrated the existence of theories that are countably categor-
ical and not uncountably categorical, theories that are uncountably categorical
and not countably categorical, and theories that are totally categorical. We shall
also see examples of theories that are not k-categorical for any x. For complete
countable theories having infinite models, these are the only four possibilities.
This is a consequence of Morley’s theorem.

210 First-order theories

Theorem 5.21 (Morley) Let T be a countable theory. If T' is x-categorical for
some uncountable x, then T is k-categorical for all uncountable k.

Morley’s proof of this theorem introduced methods and concepts to model
theory that would bear fruit far beyond Morley’s theorem itself. The proof gave
rise to the subject of stability theory. We touch upon some of the ingredients of
this proof in Chapter 6 (see Exercise 6.33). However, we do not prove Morley’s
theorem. Instead, we refer the reader to books devoted solely to model theory
such as [29] and [39] and also to more advanced books on stability theory such
as [1] and [6]. Also, for the serious student of model theory, Morley’s original
proof in [32] remains essential reading.

We conclude this section by stating without proof two results regarding
categoricity and finite axiomatizability. Naturally, a theory is said to be finitely
axiomatizable if it is axiomatized by a finite set of sentences. We have seen several
examples of finitely axiomatizable theories including the theory of graphs, the
theory of equivalence relations, the theory of groups, and others. All of these
theories are incomplete. In the next section, we shall see examples of finitely
axiomatizable complete theories having infinite models. Such theories necessarily
contain a sentence that has only infinite models (see Exercises 2.37 and 2.38 for
examples of such sentences). As a rule, most complete theories having infinite
models are not finitely axiomatizable. If we restrict our attention to totally
categorical theories, then we can be more precise.

Theorem 5.22 (Zil'ber) Totally categorical theories are mnot finitely
axiomatizable.

Recall that the theory of cliques from Example 5.17 is finitely axiomatizable
and k-categorical for all k. Since this theory has finite models, it is not totally
categorical. In contrast, the theory T¢i;que of infinite cliques is totally categorical,
but is not finitely axiomatizable. To axiomatize T¢;;que We must include sentences
saying that there exist more than n elements for each n € N. Using counting
quantifiers as defined in Exercise 2.20, we can express each of these sentences as
32"z (x =). This is an example of a quasi-finite axiomatization.

Definition 5.23 A theory T is quasi-finitely axiomatizable if there exists a finite
set F' of formulas in one free variable such that T is axiomatized by sentences of
the form 32"z (z) with p(x) € F.

Theorem 5.24 (Hrushovski) If T is totally categorical and has a finite vocabu-
lary, then T is quasi-finitely axiomatizable.

Zil’ber’s and Hrushovski’s theorems are actually corollaries to results regard-
ing the general structure of models of totally categorical theories. Their proofs of
are beyond the scope of this book (these theorems are proved in [38]). We focus

First-order theories 211

on more elementary properties of these theories. In the next section, we prove a
fundamental result regarding countably categorical theories.

5.3 Countably categorical theories

We investigate some specific countably categorical structures. We consider struc-
tures in the vocabulary V. consisting of a single binary relation <. Each of the
examples we consider interprets < as a linear order. In the second part of this
section, we prove a fundamental result that holds for all countably categorical
theories.

5.3.1 Dense linear orders. Consider the closed unit interval of real numbers.
Let Ry, be the structure {[0,1]| <} having the closed interval [0, 1] of real
numbers as an underlying set and interpreting < in the usual way. We list
some V-sentences that hold in Ry). For reference, we label these sentences
as 51*57.

o1 VaVy((z <y) — ~(y < z))

dy: Va(=(z < x))

b5 VaVy((z <p)V (y <2)V (2 = 1))

b VagYa(((z <) A (y < 2) — (& < 2))
Js: VaVy((z <y) — Jz(x <zAz<y))
do: Vy((z =9V (z <))

o7t Favy((z =y) V (y <2)).

The first four of these sentences say that < is a linear order. Recall from
Example 5.8 that the theory TLo is defined as the set of all consequences of
these four sentences. The sentence d5 says that between any two elements, there
exists another element. That is, the linear order is dense (see Section 2.4.3).
Finally, d¢ says that there exists a smallest element and J7 says that there exists
a largest element.

Let Tpror denote the set of V_-sentences that can be derived from the
above seven sentences. This is the theory of dense linear orders with endpoints.
Clearly, Ryo,1) = Tpror- We claim that Th(Ryg,1)) = Tprog. To show this, we
must verify that Tprog, unlike Trp, is a complete theory. We prove something
stronger.

Proposition 5.25 T og is Ny-categorical.

Proof Let M and N be two models of Tprog of size ¥g. We show that M
and N are isomorphic. Let Up; and Uy denote the underlying sets of M and NV

212 First-order theories

respectively. Enumerate these sets as follows:
UM:{al,ag,ag,...} and UN:{bl,bQ,bg,...}.

Since M and N model §g and d7, these sets must contain a smallest and a largest
element (with respect to the order <). We may assume that a; and b; are the
smallest elements in each set and as and b are the largest elements.

We construct an isomorphism f : M — N step-by-step. In each step we
define f for two elements of Uy,:

Step 1: Let f(a1) = by and f(ag) = bs.

For n > 1, step n has two parts.
Step n: Part a. Let A, be the set of all a; € Uy for which f(a;) has been
defined in some previous step. Let j be least such that a; is not in A,,. We define
f(aj). Since A,, is finite, we can find elements ¢ and d of A,, so that no element
of A, is between these two elements and a; is (that is, ¢ < a; < dord < a; < ¢).
In this case, let f(a;) be any element of Uy that lies between f(c) and f(d).
Since N = d5, such f(a;) exists.

Part b. Let B, be the set of all b; € Uy for which f~1(b;) has been defined
in some previous step (including f(a;) from part a). Let j be least such that b;
is not in B,,. Since B,, is finite, we can find elements ¢ and d of B,, so that no
element of B,, is between these two elements and b; is (that is, ¢ < b; < d or
d < bj < ¢). In this case, let f~!(b;) be any element of Uy that lies between
f7(c) and f~1(d). Since M |= &5, such a f~'(b;) exists.

After completing step n for all n € N, the function f is completely defined.
Since f(a;) is defined in Step ¢ (part a) if not before, each a; is in the domain of
f. Moreover, f(a;) is defined exactly once. So f has domain Ujy; and is one-to-
one. Also, since f~1(b;) is defined in Step i (part b) if not before, f is onto. By
design, f preserves the order (a; < a; implies f(a;) < f(a;)). So f is a literal
embedding. By Proposition 2.57, f is an isomorphism as was desired. O

Corollary 5.26 Tp; o is complete.

Proof By Proposition 5.15, any Rg-categorical theory having only infinite mod-
els is complete. So to show that Tprog is complete, it suffices show that any
dense linear order is necessarily infinite. If a linear order is finite, then it can be
listed as a1 < as < -+ < a, for some n € N. Such a linear order is not dense
since there is no element between a; and as. So Tphrog has only infinite models
and is complete. [

It follows from this corollary that any model of ThoE is elementarily equi-
valent to Ryg,). For example, suppose that we restrict the underlying set to the
set of rational numbers in the interval [0, 1]. Let Qo1 denote the V-structure
having this set of rationals as its underlying set and interpreting < as the usual

First-order theories 213

order. This is a countable model of Tphrog. Since this theory is Ng-categorical,
it is essentially the only countable model of this theory. Any other countable
model must be isomorphic to Qo 1. Moreover, since Tprog is complete, Qo 1
and Ryjg 13, although not isomorphic, are elementarily equivalent.

Proposition 5.27 For any uncountable cardinal k, Tprog is not k-categorical.

Proof We define a model Hg 5 of Tpror that has the same size as Ryg 1], but is
not isomorphic to Rjg 1j. The structure Hyg 5] is a hybrid of Qg 1; and Ryg 1. Its
universe is the union of the set of all rational numbers in the interval [0, 1] and
the set of all real numbers in the interval [1,2]. Again, this structure interprets
< in the usual way. This structure models Tprog. Since this theory is complete,
Hjy 2 = Ryp,1)- Moreover,

o] = [Q.yl + [Rpp| = Ro + 2% = 2%,

So Hjg 9 has the same size as Ry 1). To see that it is not isomorphic to Ry 1,
note that, in Ryg 1), there exist uncountably many elements between any two ele-
ments. This is not true in Hyg 2. So an isomorphism between these two models is
impossible and Tprog is not 2N°—categorica1. By Morley’s theorem 5.21, Tpror
is not k-categorical for any uncountable k. [

Recall the V_-structures Q- and R. from 2.4.3. Since they have no end-
points, these are not models of Tpor. We define the theory Tpro of dense linear
orders without endpoints as the set of all V.-sentences that can be derived from
the sentences d1, da, 934, 95, =g, and —d7. We negate the sentences saying there
exist a smallest and largest element. Both Q. and R. are models of this theory.

Corollary 5.28 Tpro is Nyp-categorical.

Proof Any model of Tpro can be extended to a model of Tprop by adding
smallest and largest elements to the underlying set. If there were non-isomorphic
countable models of Tpro, then these could be extended to non-isomorphic
countable models of Tprog. Since Tprog is No-categorical, so is Tpro. O

Corollary 5.29 T is complete.

Proof This is the same as the proof of Corollary 5.26. Since dense linear orders
are necessarily infinite, Tpro has no finite models. By Proposition 5.15, Tpro
is complete. [J

Corollary 5.30 Q. =R..

Proof This follows immediately from the fact that Q. and R are both models
of the complete theory Tpro. O

In light of these examples, and specifically of the proof of Proposition 5.25,
we now investigate arbitrary countably categorical theories.

214 First-order theories

5.3.2 Ryll-Nardzewski et al. Categoricity is a property of theories that is
defined in terms of the models of the theory. A theory T is countably categor-
ical if and only if there is exactly one countable model (up to isomorphism) in
Mod(T). As we shall prove, there is a purely syntactic characterization of these
theories. We show that a theory T is Ny-categorical if and only if there are only
finitely many formulas in n free variables up to T-equivalence. Equivalently, a
V-structure M having universe U is Rg-categorical if and only if, for each n € N,
only finitely many subsets of U™ are V-definable.

Proposition 5.31 Let T be a complete V-theory. If there are only finitely
many formulas in n free variables up to T-equivalence for each m, then T is
No-categorical.

We prove this proposition using a back-and-forth argument. This method of
proof constructs an isomorphism between two structures by alternating back and
forth between the elements of each of the two underlying sets. An example of a
back-and-forth argument is provided by the proof of Proposition 5.25, where it
was shown that any two countable models of Tp o are isomorphic. The proof of
Proposition 5.31 resembles the proof of Proposition 5.25. In fact, Proposition 5.25
is a special case of this proposition.

Proof of Proposition 5.31 Suppose that there are only finitely many for-
mulas in n free variables up to T-equivalence for each n. We show that T is
Ny-categorical.

Let M and N be two models of T of size Ny. Let Up; and Uy denote the

underlying sets of M and N respectively. Enumerate these sets as

Uy ={a1,a9,as3,...} and Uy = {b1,bo,bs,...}.

We construct an isomorphism f : M — N step-by-step. In each step, we
define f(a;) for two elements a; of Up;.

For n € N, let A,, be the set of all a; € Uy, for which f(a;) has been defined
in some step prior to step n. Since A, is finite, we may regard it as a tuple of
elements of Uy;. There are many ways to arrange the elements of a large finite
set into a tuple. For any a; and a; in A,,, one of the two elements f(a;) and f(a;)
of Uy must have been defined before the other. Let a,, be the tuple obtained by
arranging the elements of A,, in the order in which f was defined. Likewise, let
B,, be the corresponding set of all f(a;) € Uy for a; € A,,. Let b, be the tuple
obtained by arranging the elements of B,, in the order in which f was defined.

Note that A; = By = (0. Note too that, since T is complete, N | ¢ if and
only if M = ¢ for any V-sentence .

For n € N, assume that A, and B, have been defined in such a way that

M E ¢(a,) if and only if N |= ¢(b,,) for any V-formula ¢ in |A4,,| free variables.

First-order theories 215

Step m: Part a. Let j be least such that a; is not in A,,. We define f(a;).

Let k = |A,| = 2(n — 1). By hypothesis, there exists a finite set F of V-
formulas in k+1 free variables so that every V-formula having k+1 free variables
is T-equivalent to a formula in F.

Let ®(Z,y) be the conjunction of those formulas ¢(Z,y) in F such that
M = ¢(an, a;j). Then M |= Jy®(a,,y).

This formula has |A,| = k free variables. By the definitions of A,, and B,
N = Jy®(b,,,y). It follows that N = Jy®(b,,, b;) for some b; € Uy.

Let f(aj) = bz

Part b. Let al, be the tuple (a,,a;) and let b], be the tuple (b,,b;), where
aj and b; are as defined in part (a). Let [be least such that b; is not in b},. As
in part (a), we can find an element a; of Ups so that M = p(al,, a;) if and only
if N |= (b, b;) for any ¢ in 2n free variables.

Define f(a;) to be b;.

After completing step n for each n € N, the function f is completely defined.
Since f(a;) is defined in Step ¢ (part a) if not before, each a; is in the domain of
f. Moreover, f(a;) is defined exactly once. So f has domain Uy; and is one-to-
one. Also, since f~1(b;) is defined in Step i (part b) if not before, f is onto. By
design, f preserves all V-formulas and is an isomorphism as was desired. [

We now have two ways to show that a given theory is countably cat-
egorical. We can give a back-and-forth argument as we did for Tprop in
Proposition 5.25. Alternatively, we can show that there are only finitely many
formulas in n free variables up to T-equivalence for each n. This may not
seem practical. However, in Section 5.5 we discuss quantifier elimination and
provide a systematic approach to understanding the definable subsets of certain
structures.

The converse of Proposition 5.31 is also true. The countably categorical the-
ories are precisely those theories that are complete and have few formulas (finitely
many in n free variables for each n). Since this was proved by Ryll-Nardzewski
in a 1959 paper, it is commonly referred to as the Ryll-Nardzewski theorem.
Since it also appeared in 1959 in separate papers by Engeler and Svenonius, it is
sometimes referred to as the Engeler—Ryll-Nardzewski—Svenonius theorem. We
opt for brevity and refer to it as Theorem 5.32.

Theorem 5.32 A complete theory T is Ng-categorical if and only if, for
each n € N, there are only finitely many formulas in n free variables up to
T-equivalence.

One direction of this theorem was proved as Proposition 5.31. We postpone
the proof of the other direction until Chapter 6 where we shall see several
equivalent characterizations of Ry-categorical theories.

216 First-order theories

5.4 The Random graph and 0-1 laws

A random graph is a graph constructed by some random process such as rolling
a die or flipping a coin. The idea of implementing random processes in graph
theory was conceived by Paul Erdos and has served as a powerful tool for this
and other areas of discrete mathematics. In this section, we discuss this idea and
show how it gives rise to a complete first-order theory Trs in the vocabulary of
graphs. We prove that Tgra is Ng-categorical. Whereas there are many possible
finite random graphs, there is only one denumerable random graph. From this
fact we deduce a 0-1 law for first-order logic.

We assume basic knowledge of probability.

Suppose that we have a set of vertices and want to build a graph. For
example, suppose that we have five vertices vy, va, vs, vg4, and vs. To define the
graph, we must decide which pairs of vertices share an edge. Let us take the
random approach and flip a coin to make our decisions. Given any two vertices
(v1 and ve, say) we flip a coin. If the coin lands heads up, then v, and v share an
edge. If the coin lands tails up, then they do not share an edge. We repeat this for
every pair of vertices. Since there are five vertices, there are (5-4)/2 = 10 pairs
of vertices to consider. After flipping the coin 10 times, we will have completed
the graph.

Any graph having vertices v, v, v3, v4, and v is a possible outcome of
this process. Since each of the ten flips of the coin has two possible outcomes,
there are 2'0 possible graphs. If the coin is fair (landing heads up as frequently
as tails up), then each of these 2! graphs is equally likely. However, two or more
of the outcomes may be isomorphic graphs. So, up to isomorphism, some graphs
are more likely than others. For example, the 5-clique is an unlikely outcome.
To obtain this result, each of our 10 flips of the coin must land heads up. The
probability of this happening is 1/21°. Tt is more likely that the outcome will
have exactly one edge. The probability of this happening is 10/2'° (so this will
happen roughly 1% of the time).

There are two ways to compute the probabilities in the previous paragraph.
Suppose we want to compute the probability that the resulting graph has exactly
m edges for some m < 10. Using the formula for binomial probability distribu-
tions, this probability is (1172) (3)'° (where (13) = (1071731!)!771! is the number of
ways that m of the 10 edges can be chosen). Alternatively, since each of the
210 graphs are equally likely, this probability can be computed by counting the
number of graphs having exactly m edges and dividing this number by 2!°. For
example the 5-clique is the only one of the 2'° possible outcomes that has 10
edges. So the probability that this happens is 1/21°.

More generally, suppose that we randomly construct a graph having vertices
{v1,v2,...,v,} for some n € N. There are n(n—1)/2 pairs of vertices to consider.
To ease notation, denote n(n — 1)/2 by e(n) (this is the number of edges in

First-order theories 217

the n-clique). If we construct this graph by flipping a fair coin as before, then
there are 2¢(") possible outcomes each of which is equally likely. Let ¢ be a
Vg-sentence. Let P, () be the probability that our randomly constructed graph
models the sentence . This probability can be computed by counting the number
of outcomes that model ¢ and dividing by the total number of possibilities 2¢(").

Example 5.33 Let ¢ be the sentence VaVy(x = y V R(x,y)). For each n € N,
this sentence holds in only one of the 2¢(") graphs having vertices {vi,..., 00}
(namely, the n-clique).

So P,(p) = 1/2¢(),

(In particular Ps(p) = 1/2°0®) = 1/2'0 as previously noted.)
If n is big, then this probability is close to zero.

Example 5.34 Let ¢ be the Vg-sentence saying that the graph has exactly one
edge. For each n € N, the number of graphs having vertices {v1,...,v,} that
model this sentence is the number of possible edges e(n).

So P, () = e(n)/2¢M™.

If n is big, then this probability is close to zero.

For any V-sentence ¢ and any n € N, P,(¢) + P,,(—¢) = 1. This is because
every graph either models ¢ or =¢ (and not both). So P,(—¢) =1 — P,(¢). In
the previous two examples, since P,(p) approaches zero, P,(—y) approaches 1
as n gets large. We express this by using limit notation:

lim P,(p) =0 and lim P,(—¢) = 1.

The 0-1 Law for Graphs states that, for every Vg-sentence 6, either
lim,, o0 Pn(0) = 0 or lim, o P,(f) = 1. So either # or its negation almost
certainly holds in any large finite graph. This fact imposes limitations on what
can be expressed by a Vg-sentence. For example, the 0-1 Law for Graphs implies
that there is no Vg-sentence that holds only in those finite graphs having an even
number of vertices.

We have verified the 0—1 Law for Graphs for a couple of particular sentences
in the above examples. To prove this law, we must consider some other (more
complicated) Vg-sentences. For each m € N, let p,,, be the Vg-sentence

m m

Vay Ve, Yy - Yym /\ /\xl#yj

i=1 \j=1

= (R(z,y5) V2 =y;)

=

!
— 3z /\ R(z,2) A
i=1 1

J

218 First-order theories

This sentence asserts that given any two sets of vertices X = {x1,...,2,,} and
Y = {y1,...,Ym} such that X NY = (), there exists a vertex z not in X UY
that shares an edge with each vertex in X and with no vertex in Y. Note that
Pm, implies p,,, for m; < my. We examine p,, for various values of m.

m = 1: The sentence p; states that, for any vertices z and y there exists a
vertex z that shares an edge with = but not y. Since x and z share an edge, they
cannot be equal. Moreover, p; asserts there exists such a z that is not equal to
y. So any model of p; must have at least three vertices corresponding to x, y,
and z. Moreover, reversing the roles of z and y, there must exist a vertex w that
shares an edge with y but not x. So any graph that models p; must have at least
four vertices. In fact, the smallest example has five vertices (take the sides of a
pentagon as edges).

m = 2: Let G be a graph that models p;. Let a and b be two vertices of
G. Then, there must exist a vertex ¢ that shares and edge with a but not b and
a vertex d that shares an edge with b but not a. Moreover, there must exist a
vertex e that shares a vertex with both a and b and a vertex f that shares a
vertex with neither a nor b. So there must be at least six vertices, but we are
not done. There must also exist a vertex g that shares an edge with both e and
d and with neither ¢ nor d, and so forth. In contrast to p1, it is not an easy task
to draw a graph that models ps (nor is it easy to determine the minimal number
of vertices for such a graph).

m > 2: It becomes increasingly difficult to demonstrate a finite graph that
models p,, as m gets larger. We will not attempt to compute the precise value
for P, (pm) for given m and n. However, there are some things that we can say
with certainty regarding this value. As a first observation, a graph that models
pm must have many vertices. In particular, P,(p;,) = 0 for n < m. So if m is
small, then so is P, (p.,). Less obvious is the fact that, for big m, P, (p,,) is close
to 1. That is,

lim P, (pm) = 1.

n— oo

So although it is hard to give a concrete demonstration of a finite graph that
models, say, ps, we have a process that will produce such a graph with high
probability. If we construct a graph on the vertices {v1,...,v,} by flipping a
coin, then we will most likely obtain a graph that models pg provided that n is
sufficiently large. We prove this key fact as the following lemma.

Lemma 5.35 For each m € N, lim,, . P,(pm) = 1.

Proof Fix m e N.
Given N € N, we compute P, (—py,) where n = N + 2m.
Let G be a graph having n vertices. Let X = {z1,...,z,} and ¥ =
{y1,--.,Ym} be two sets containing m vertices of G such that X NY = 0. If

First-order theories 219

G = pm, then there exists a vertex z not in X or Y such that z shares an
edge with each vertex in X and with no vertex in Y. We want to compute the
probability that this is not the case.

For any vertex z of G that is not in X or Y, say that z “works” for X
and Y if z shares and edge with each vertex of X and no vertex of Y. For this
to happen, each flip of the coin must land heads up for the m pairs of vertices
(z,x;) and tails up for the m pairs of vertices (z,y;). The probability of this
happening is 1/22™. So given a particular z, it is unlikely that z works for X
and Y. However, there are N possible vertices we may choose for z. Whereas the
probability that any one of these does not work is (1 — 1/22™), the probability
that all N of the vertices do not work is (1 — 1/22™)V.

Let k = (1 —1/2%™). Since k is between 0 and 1, limy_.o k¥ = 0. So if N
is large, then it is likely that there exists a vertex z that works for X and Y even
though the probability that any particular z works is small.

This indicates that it may be likely that a large graph will model p,,. How-
ever, we have not finished the computation. For the graph G to model p,,, there
must exist a vertex z that works for X and Y for all possible X and Y. Since
there are n = N 4 2m vertices in G, there are (27;1) ways to choose the vertices
in X UY. There are then (27;”) ways to choose m of these vertices for the set X
(and the remaining m for set Y'). In total, there are

n 2m n! n?m om
= < <n
2m m N!m!m! ~ m!m! —

possible choices for X and Y. For each choice, the probability that no z works

for X and Y is only k%V. For G to model —p,,, this must happen for only one of
these choices. Thus,

Pn(_‘pm) S n2mkN — n2mkn/k2m.

Since many of the possible choices for X and Y overlap, this is defin-
itely an overestimate of this probability. However, this estimate serves our
purpose.

Fact lim n?mk™ = 0.

n—oo

This fact follows solely from the fact that & < 1. Using calculus,
it is easy to see that the function z?>™k® reaches a maximum at =z =
—2m/Ink. To see that this function then decreases to zero, repeatedly apply
L’Hopital’s rule (2m times) to the expression z>™/k~% having indeterminate
form .

Finally, since lim,, o0 Py (—pm) =0, limy, o0 Pr(pm) =1. O

220 First-order theories

We now define the Vi-theory Tre. This is the theory of graphs that model
pm for all m € N. That is, Trg is the Vg-theory axiomatized by:

VJ,‘_\R(Jj, Jf),
VaVy(R(z,y) < R(y,z)),
Jzdy—(x = y), and

pm for each m € N.

Let A be a finite subset of this infinite set of sentences. By Lemma 5.35, A is
satisfied by a preponderance of the finite graphs of size n for sufficiently large
n. Since every finite subset is satisfiable, Tr¢ is satisfiable by compactness. So
Tre is indeed a theory. We show that it is a complete theory.

Proposition 5.36 Trq is Ng-categorical.

Proof Let M and N be two denumerable models of Trg. Let Uy and Uy denote
the sets of vertices of M and N respectively. Enumerate these sets as follows:

UM = {al,ag,ag,...} and UN = {bl,bg,bg,...}.

We construct an isomorphism f : M — N using a back-and-forth argument.

Step 1: Let f(ay) = b;.
Step (n + 1): (Part a) Let A, be the set of vertices in Uy, for which f has
been defined in some previous step. Let j be least such that a; is not in A,.
Since N = py, for arbitrarily large m, there exists a vertex f(a;) such that
N = R(f(a;), f(a;)) if and only if M = R(a;,a;) for any a; € A,,.
(Part b) Let B, = {f(a;)|a; € A} U{f(a;)}. Let j be least such that b; is
not in B,. By the same argument as in part a, we can find f~*(b;) as desired.
The function f defined in this manner is a one-to-one function from M onto
N that preserves the edge relation R. It follows that f is an isomorphism and
Tre is Ng-categorical. [

Definition 5.37 The random graph, denoted by Gg, is the unique countable
model of Tgrg.

Proposition 5.38 Any finite graph can be embedded into any model of Tgg.

Proof Let G be a finite graph. Let M be an arbitrary model of Trg. We show
that G embeds into M by induction on n = |G|. Clearly this is true if n = 1.
Suppose that any graph of size m embeds into M for some m € N. Let G
be a graph having vertices {vi,...,vm,41}. By our induction hypothesis, the
substructure G’ of G having vertices {vy, ..., v, } can be embedded into M. Let

First-order theories 221

f + G" — M denote this embedding. Since M models pj, for arbitrarily large k,
there exists a vertex f(an4+1) of M such that M |= R(f(a;), f(an+1)) if and only
if G = R(a;,apt1) fori =1,...,n. Thus G is embedded into M. By induction,
any finite graph can be embedded into M. O

Proposition 5.39 T is complete.

Proof It follows from the previous proposition that Trg has only infinite mod-
els. By Proposition 5.36, Trg is Ng-categorical. By Proposition 5.15, Trqg is
complete. [

Theorem 5.40 (0-1 Law for Graphs) For every Vg-sentence 6, either
lim,, o P () = 0 or lim,,_, P,(0) = 1.

Proof Recall the axiomatization that was given for Trg. By Lemma 5.35,
lim,, .o Pn(¢) = 1 for each sentence ¢ in this axiomatization. It follows that
lim, o Pn(¢) = 1 for every sentence ¢ in Tgrg. Since Tre is complete,
either Trg F 0 or Trg F —0 for every Vg-sentence 6. It follows that either
lim, oo Pp(f) =1 or lim, o Pp(—0) =1. O

This result can be generalized. A vocabulary is relational if it contains no
functions. So relational vocabularies may contain constants as well as relations.
Let M,, be the set of all V-structures having underlying set {1,2,3,...,n}. Let
P} (8) be the number of structures in M,, that model 8 divided by |M,|.

Theorem 5.41 (0-1 Law for Relations) Let V be a finite relational vocabulary.
For any V-sentence 6, either lim,, . P}(#) = 0 or lim, o P}}(8) = 1.

5.5 Quantifier elimination

Suppose that we want to analyze a given first-order structure M. We could begin
by trying to find an axiomatization for Th(M). Suppose we have accomplished
this and Th(M) is decidable. Then, for any sentence ¢ in the vocabulary of M, we
can determine whether M = ¢ or M | —p. However, understanding the theory
Th(M) is only a first step toward understanding the structure M. To analyze
M further, one must be familiar with the definable subsets of the structure.

For example, suppose that we are presented with a rather complicated
graph G. We are given the set of vertices {v1,va,vs,...} along with the set
of all pairs of vertices that share edges in G. Suppose too that we are given a
decidable axiomatization of Th(G). Then for any Vg-sentence ¢, we can determ-
ine whether or not ¢ holds in G. In some sense, this data represents all there is
to know about the structure G. But suppose we want to determine which pairs
of vertices (z1,x2) satisfy the Vg-formula ¢ (z1, z2) defined by

Vy3zVuIv(R(x1,y) A R(y, 2) A R(z,u) A R(u,v) A R(v, z3)).

222 First-order theories

If neither Va;Vaay(xy,x2) nor Va1 Ves—p(x1,22) hold in G, then it may be a
difficult task to determine whether or not a given pair of vertices satisfies this
formula. In the terminology of Section 4.5.2, ¥(z1,x2) is a V4 formula. If you
find the formula ¢ (x1,x3) easy to comprehend, then consider a Va3 formula or
a d45 formula. In Chapter 9, we shall introduce a technique that helps us get a
handle on such complicated formulas (pebble games). In the present section, we
study a property that allows us to utterly avoid them.

Definition 5.42 A V-theory T has quantifier elimination if every V-formula
p(x1,...,2y) (for n € N) there exists a quantifier-free V-formula ¢(z1,...,zy)
such that T F p(z1,...,2,) < ¥(z1,...,2,).

Quantifier elimination is a purely syntactic property that greatly facilitates
the study of certain mathematical structures. If a V-theory has this property,
then every V-definable subset of every model is defined by a quantifier-free
formula.

For example, suppose G is a graph that has quantifier elimination. Since
all vertices of a graph satisfy the same quantifier-free formulas (namely = = =
and —R(z,x)), any Vg-formula in one free variable either holds for all vertices
or no vertices of G. For a pair of distinct vertices 1 and xo of GG, there are
two possibilities: either R(xy,23) or =R(z1,22) holds in G. In particular, we
can determine whether or not the above V4 formula 9 (x1,z2) holds merely by
checking whether or not z; and zo share an edge. One of the following two
sentences must be in the Vgr-theory of G:

Va1 Vao(R(x1, x2) — ¥(x1,x2)) or Va1 Vee(R(x1,x2) — —(x1, 22)).
Likewise, any graph having quantifier elimination must model either
Vo Voo (R(x1, 2) — (21, 22)) or Ya1Vae(—R(x1, 2) — —p(z1,22)).

The goal of this section is to formulate methods that determine whether or
not a given complete theory has quantifier elimination.

5.5.1 Finite relational vocabularies. Let T be a complete theory, and suppose
that we want to determine whether or not 7" has quantifier elimination. We make
two initial observations.

e Theorem 4.49 provides a sufficient criterion for a formula to be T-equivalent
to a quantifier-free formula.

e To show that T has quantifier elimination, it suffices to check this criterion
only for existential formulas having only one occurences of “3.”

We elaborate and verify the latter point.
Let T be a V-theory. To show that T has quantifier elimination, we must
show that ¢(Z) is T-equivalent to a quantifier-free formula for every V-formula

First-order theories 223

©(Z) having at least one free variable. One way to do this is to proceed by induc-
tion on the complexity of ¢(Z). If ©(Z) is quantifier-free, then there is nothing
to show. Suppose that both ¥ and 8 are T-equivalent to quantifier-free formu-
las. If o(Z) is T-equivalent to either of these formulas, their negations, or their
conjunction, then ¢(Z) is T-equivalent to a quantifier-free formula. Now suppose
©(Z) is equivalent to Jyy(Z,y). To show that T has quantifier elimination, it
suffices to show that this formula is T-equivalent to a quantifier-free formula. In
this way, the problem of showing that T has quantifier elimination reduces to
the problem of showing that formulas of the form 3y (Z,y) are T-equivalent to
quantifier-free formulas.

Proposition 5.43 A V-theory T has quantifier elimination if and only if for every
quantifier-free V-formula ¢(x1,...,2,,y) (for n € N), there exists a quantifier-
free V-formula ¢ (z1,...,x,) such that T+ Jyp(z1, ..., 25, y) < Y(x1,. .., Tys).

Proof Suppose that Jyp(Z,y) is T-equivalent to a quantifier-free formula for
every quantifier-free V-formula ¢ having at least two free variables. Then we
can show that every V-formula 6 is T-equivalent to a quantifier-free formula by
induction on the complexity of 8 as in the preceeding paragraph. Conversely, if T’
has quantifier elimination, then Jyp(Z,y), like every V-formula, is T equivalent
to a quantifier-free formula. [

So to eliminate all of the quantifiers from a formula like
Vy3zVuIv(R(x1,y) A R(y, 2) A R(z,u) A R(u,v) A R(v,z3)),

we need only be able to eliminate one occurrence of the quantifier 3 at a time.
For complete T', Theorem 4.49 gives us a criterion for determining whether a
given formula is T-equivalent to a quantifier free formula. This yields a method
for showing quantifier elimination. We first consider theories that have finite
relational vocabularies. These vocabularies are particularly simple because of
the following fact.

Proposition 5.44 The vocabulary V is finite and relational if and only if there
are only finitely many atomic V-formulas.

Proof If V contains a function f, then we have the atomic formulas f(z)

F(f(@) =y, f(f(f(Z)) =y, and so forth. O

Proposition 5.45 Let T be a complete theory in a finite relational vocabulary.

Y,

The following are equivalent.

(i) T has quantifier-elimination.

(ii) For any model M of T and any n € N, if (ay,...,a,) and (by,...,b,) are
n-tuples of Uy, that satisfy the same atomic formulas in M,

224 First-order theories

then for any a,+1 € Uy there exists b,11 € Upy such that (ag,...,an,ant1),
and (b1, ..., by, byy1) satisfy the same atomic formulas in M (where Uj; denotes
the underlying set of M).

Proof Suppose first that T has quantifier elimination.

If (a1,...,a,) and (by,...,b,) satisfy the same atomic formulas, then
they satisfy the same quantifier-free formulas. This can be shown by induc-
tion on the complexity of a given quantifier-free formula. Given a,1 € Uy,
let ®(zq,...,2,41) be the conjunction of all of the atomic and negated
atomic formulas that hold of (a,...,an,an+1) in M. Such a formula ® exists
since there are only finitely many atomic formulas. By quantifier elimination,
y®(x1,...,2n,y) is T-equivalent to a quantifier-free formula 6(xq,...,z,).
Since M models 6(ay,...,a,), M also models 0(by,...,b,). It follows that
M = Jy®(by,...,bn,y). Let b1 € Ups be such that M | @ (by, ..., by, bpg1)-

Conversely, suppose that (ii) holds. Let ¢(x1, ..., Tn, Tnt1) be a quantifier-
free formula (for n > N). By (i), if (a1,...,an) and (by,...,b,) sat-
isfy the same atomic formulas, then M | Jyp(ay,...,an,y) if and only
if M E Jyo(bi,...,bn,y). By Theorem 4.49, Jyp(xi,...,xn,y) is T-
equivalent to a quantifier-free formula. By Proposition 5.43, T has quantifier
elimination. [

Example 5.46 Recall the Vg-structure Zg = (Z|S) from Example 5.51. This
structure interprets the binary relation S as the successor relation on the integers.
As was pointed out in Example 4.48, the ordered pairs (0,2) and (4, 7) satisfy the
same atomic Vg-formulas. Let Ts = Th(Zg). If Ts had quantifier elimination,
then, by condition (ii) of Proposition 5.45, for every integer x there would exist
an integer y such that (0,2, z) and (4,7,y) satisfy the same atomic formulas. To
show that this is not the case, let x = 1. Then both S(0,z) and S(x,2) hold.
Clearly, there is no y that bears these relations to 4 and 7. We conclude that
Ts does not have quantifier elimination. In particular, the formula 3z(S(z, z) A
S(z,y)) is not Ts-equivalent to a quantifier-free formula (this was also shown in
Example 4.48).

Example 5.47 We show that Thror does not have quantifier elimination. The
only two atomic V.-formulas are x < y and x = y. Any two n-tuples of elements
listed in ascending order will satisfy the same atomic formulas. In particular,
this is true if n = 1. Consider the two elements 0 and 0.01 from the underlying
set of Qo). These two elements satisfy the same atomic V_-formulas in Qg ;-
However, since 0 is the smallest element, there is no y so that (0,y) satisfies
the same atomic formulas as (0.01,0.001). By Proposition 5.45, Tpror does
not have quantifier elimination. In particular, the formula Jy(y <) is not
Tprog-equivalent to a quantifier-free formula.

First-order theories 225

Using condition (ii) of Proposition 5.45, we can quickly show that some
theories do not have quantifier elimination as in the previous examples. To show
that a theory T does have quantifier elimination, (ii) requires us to consider all
pairs of tuples from all models of T'. If T' is complete and has a finite relational
vocabulary, then this condition can be simplified as the following corollary states.

Corollary 5.48 Let T be a complete theory. If T has a finite relational vocabu-
lary, then T has quantifier elimination if and only if condition (ii) from
Proposition 5.45 holds in some model M of T.

Proof This follows from the assumption that T is complete. Let ® and 6 be
as in the proof of Proposition 5.45. Let M be some model of T. If M models
FyP(x1,...,2n,y) < O(x1,...,2,), then, since T is complete, so does every
model of T. [

Proposition 5.49 The theory Tpro of dense linear orders without endpoints has
quantifier elimination.

Proof By the previous corollary, it suffices to verify condition (ii) of Proposi-
tion 5.45 for only one model. Let Q. be the V.-structure that interprets < as
the usual order on the rational numbers.

Let @ = (ay,...,a,) and b = (by, .., b,) be two n-tuples of rational numbers.
With no loss of generality, we may assume that a; < as < - -+ < a,,. Suppose that
a and b satisfy the same atomic V.-formulas. Then we have by < by < --- < by,.
Let a,41 be any rational number. We must show that there exists a rational
number by, 41 so that (b, ..., by, b, 1) satisfies the same atomic V.-formulas as
(a1, y0n, Gpg1)-

There are four cases:

If apy1 = a; for some i =1,...,n, then we can just let b1 = b;.

If a4+1 < a; for each 4, then, since Q has no smallest element, we can find
bn4+1 € Q that is smaller than each b, 1.

Likewise, if a,,+1 is greater than each a;, then we can find b,11 € Q that is
greater than each b;.

Otherwise, a; < an+1 < a;41 for some i. Since Q is dense, we can find
brt+1 € Q between b; and b; 1.

In any case, we can find b, as desired. So Tphro has quantifier elimination
by Corollary 5.48. [

Proposition 5.50 The theory Tgre of the random graph has quantifier
elimination.

226 First-order theories

Proof Since Tr¢ has a finite relational vocabulary, we can apply Corollary 5.48.
Let U be the set of vertices of the random graph Ggr. Let (ay,...,a,) and
(b1,...,by) be two n-tuples of U that satisfy the same atomic formulas in Gg.
We must show that for any « € U, there exists y € U such that (ay,...,an,x)
and (b1, ..., by, y) satisfy the same atomic formulas in G g. This follows from the
fact that Gg models the Vg-sentence p,, for arbitrarily large m. O

Example 5.51 Let V* = {<, P, P,} be an expansion of T« that includes two
unary relations Ps and P,. Let Tb"LOE be the expansion of Tpror to a V-
theory that interprets Ps(z) as the smallest element and Py(x) as the biggest
element in the order. Then this theory has quantifier elimination. Recall from
Example 5.47 that Tpror does not have quantifier elimination. It was shown
in that example that Jy(z < y) is not Tprog-equivalent to a quantifier-free
formula. This formula is T}, , z-equivalent to the quantifier-free formula =P, ().
To show that ng Log has quantifier elimination, we can use an argument similar
to the proof of Proposition 5.49.

Example 5.52 Let T be an Vg-theory that says E is an equivalence relation
having infinitely many infinite classes. We show that 7" has quantifier elimination.
Let M be the Vg-structure having denumerably many equivalence classes each
of which is denumerable. Let (ay,...,a,) and (b1,...,b,) be two n-tuples of
elements from the universe Uy; of M that satisfy the same atomic Vg-formulas in
M. Let a,41 be any element of Uy,. Since there are infinitely many equivalence
classes in Ujp; and each is infinite, we can surely find b,11 € Ujps such that
M = E(b;,bp41) if and only if M | E(a;, ant1).

So T has quantifier elimination. Now suppose that we expand the vocabulary
by adding a unary relation P. Let Tp be the expansion of T to the vocabulary
{<, P} that says that P(z) holds for exactly one element x. Let Ny | Tp.
Let a be the unique element such that Ny = P(a). Let b be an element that
is equivalent, but not equal, to a. Let ¢ be an element that is not equivalent
to a. Then b and c satisfy the same atomic formulas in Ny (since —P(b) and
—P(c) both hold). Since there is no element y so that (b,a) and (c,y) satisfy
the same atomic formulas, T does not have quantifier elimination. In partic-
ular, the formula Jy(P(y) A E(x,y)) is not Tp-equivalent to a quantifier-free
formula.

Now expand the vocabulary again to include the constant u. Let Tp(,) be
the expansion of T to the vocabulary {<, P,u} that interprets u as the unique
element for which P(u) holds. Since we have merely provided a name for an
element that was already uniquely defined, Tp(,) is essentially the same as Tp
(the models of Tp can easily be viewed as models of T/p(,) and vice versa).
However, in contrast to Tp, Tp(,) does have quantifier elimination. The formula
Jy(P(y) A E(z,y)) is Tpu)-equivalent to the atomic formula F(x,u).

First-order theories 227

The previous examples demonstrate that quantifier elimination is a purely
syntactic property. The theories Tprog and Tg rLop (like the theories Tp and
T'p(w)) have very similar models. Given any model M of one of these theories,
we can find a model N of the other theory so that M and N have the same
underlying set and the same definable subsets.

Definition 5.53 Let M; be a Vi-structure and M, be a Vs-structure having
the same underlying set. If the V;-definable subsets of M; are the same as the
Vs-definable subsets of My then M; and My are said to be bi-definable.

Two theories T7 and Ty are bi-definable if every model of T} is bi-definable
with some model of T5 and vice versa.

The theories Tprog and Tg Lo are bi-definable as are Tp and Tp(y)- How-
ever, Tg ror and Tp,) have quantifier elimination whereas Tpror and Tp do
not. The following proposition states that any theory has a bi-definable theory
with quantifier elimination.

Proposition 5.54 Let T be a V-theory. There exists a theory T, that is bi-
definable with T" and has quantifier elimination.

Proof For each V-formula ¢(z1,...,z,) (with n € N), let R, be an n-ary
relation that is not in V. Let V,,, = VU {R,|¢ is a V-formula}. Let T}, be the
expansion of T' to a V,-theory that contains the sentence ¢(z) < R, (z) for
each V-formula ¢. Since each relation R, is explicitly defined by 7}, in terms
of V, T, and T,, are bi-definable. Since every V,,-formula is T;,-equivalent to a
quantifier-free formula, T, has quantifier elimination. [

The theory T, in the previous proof is called the Morleyization of T. Mor-
leyizations demonstrate that the property of quantifier elimination is not always
useful. To analyze a structure M, we should choose an appropriate vocabu-
lary. Ideally, we want to find a vocabulary V' so that M is bi-definable with
some V'-structure M’ where Th(M’) has quantifier elimination. We must also
require that the atomic V’-formulas (and the relations between these formulas)
are readily understood. The Morleyization of T, is often of no use in this regard.
If the atomic V’'-formulas are too complicated, then the quantifier elimination of
Th(M') does not lend insight into the structure M.

We have restricted our attention in this section to examples of theories that
are particularly nice. With the exception of T from Example 5.46, each theory
we have considered is bi-definable with a theory in a finite relational vocabulary
that has quantifier elimination. This is a severe restriction. The astute reader
may have anticipated the following fact.

Proposition 5.55 Let T be a complete theory in a finite relational vocabulary.
If T has quantifier elimination, then T is Ny-categorical.

228 First-order theories

Proof This follows immediately from Proposition 5.44 and Theorem 5.32. [J

Corollary 5.48 provides a method for determining whether or not certain
theories have quantifier elimination. By the previous proposition, this method
can only be used to show that Rg-categorical theories have quantifier elimination.
To show that other theories have quantifier elimination, we must devise other
methods.

5.5.2 The general case. Let T be a complete V-theory, and suppose that
we want to determine whether or not 7" has quantifier elimination. We have
described a method that is useful for finite relational V. If V is not both finite
and relational, then this method may fail in one of two ways. We demonstrate
these failures with two examples.

Example 5.56 Let Tx = Th(Msy) where M, is the countable Vg-structure
defined in Example 5.18.
Let Ts = Th(Z,) where Z; is the Vg-structure defined in Example 5.12.
We define a theory T that contains both of these theories. Let V be the
vocabulary {E, s}. Let T be the set of all V-sentences that can be derived from
the set

T UTs U{VaVy((s(z) =y — E(z,y))}.

The models of T have two infinite equivalence classes. The sentence VaVy((s(z) =
y — E(z,y)) implies that every element is in the same equivalence class as
its successor, its successor’s successor, and so forth. So each equivalence class
contains copies of the structure (Z,s). As in Example 5.20, each equivalence
class may contain any number of copies of Z.

Let M be the model that has two copies of Z in one equivalence class and
one copy in the other. This structure can be depicted as follows:

(---a—2,a_1,a0,a1,az,...)

(-ooyb_2,b_1,b0,b1,b2,...) (...c—2,c-1,c0,C1,C2,...)

The underlying set of M is Ups = {a;, b;,¢;]i € Z}. The two boxes repres-
ent the two E equivalence classes. The successor of a; is a;y1. Likewise for b;
and ¢;.

First-order theories 229

The elements ag and by satisfy the same atomic formulas in M (as does
each element of Uys). However, there is no element y so that (ag,y) and (bg, ¢o)
satisfy the same atomic formulas.

If the vocabulary of T were finite and relational, then we could con-
clude that it does not have quantifier elimination. However, the vocabulary
of T contains the function s. In fact, T is both complete and has quantifier
elimination.

Example 5.57 Let V = {E, P,|i € N} be the vocabulary consisting of a binary
relation F and denumerably many unary relations P;. Let M be a countable
V-structure that interprets E as an equivalence relation that has infinitely many
equivalence classes of size 1, infinitely many equivalence classes of size 2, and no
other equivalence classes. Moreover, each P; holds for exactly two elements that
are in the same equivalence class. So if a is in a class of size 1, then —FP;(a) holds
for each i € N. To complete our description of M, if M = E(b,¢) A—(b = ¢) then
M = P;(b) A P;(c) for exactly one i.

Let Ups be the underlying set of M. If two tuples of elements from Uy,
satisfy the same atomic V-formulas in M, then they satisfy the same V-formulas
in M. However, Th(M) does not have quantifier elimination. The formula
Jy(—(x = y) A E(x,y)) is not Th(M)-equivalent to a quantifier-free formula.

Proposition 5.45 provides a necessary and sufficient condition for a complete
theory T in a finite relational vocabulary to have quantifier elimination. We
restate this condition.

(ii) For any model M of T and any n € N, if (a1,...,a,) and (by,...,b,)
are n-tuples of Uy, that satisfy the same atomic formulas in M, then for
any any+1 € Uy there exists b,y1 € Uy such that (aq,...,a,,an4+1) and
(b1,...,bpn,byy1) satisfy the same atomic formulas in M (where Ujps denotes
the underlying set of M).

Corollary 5.48 states that, if the vocabulary V of T' is finite and relational,
then T has quantifier elimination if and only if condition (ii) holds for some
model M of T. If V is not finite and relational, then, as Example 5.57 demon-
strates, we must verify (ii) for more than one model. So Corollary 5.48 fails for
vocabularies that are not finite and relational. Example 5.56 demonstrates that
one direction of Proposition 5.45 also fails for vocabularies that are not finite
and relational. Condition (ii) does not necessarily hold for all theories that have
quantifier elimination.

It is still true that (ii) implies quantifier elimination. The proof that (ii)
implies (i) in Proposition 5.45 makes no use of the hypothesis that the vocabulary
is finite and relational. So (ii) is a sufficient condition for quantifier elimination,

230 First-order theories

but, if the vocabulary is not finite and relational, it is not a necessary condition.
The following Proposition provides two necessary and sufficient conditions for
an arbitrary theory to have quantifier elimination. Note that (i4)" is a modified
version of condition (ii).

Proposition 5.58 Let T be a complete V-theory. The following are equivalent:

(i) T has quantifier elimination.

(ii)" For any model M of T and any n € N, if n-tuples @ and b satisfy the same
atomic formulas in M, then for any a,41 € Ujps there exist an elementary
extension N of M and an element b, 1 in Uy such that (ai,...,an,ant1)
and (by,...,bn,byt1) satisfy the same atomic formulas in NV
(where Ups and Uy denote the underlying sets of M and N).

(iii) For any V-structure C, if f: C — M and g : C — M are two embeddings
of C into a model M of T, then M = Jyp(f(c1),. .., f(cn),y) if and only
if M |=3ye(gler), ..., 9(cn),y)
for any quantifier-free V-formula ¢(x1,...,2,,y) and any n-tuple
(c1,...,¢p) of elements from the underlying set of C.

Proof By modifying the proof that (i) implies (ii) in Proposition 5.45, it can be
shown that (i) implies (ii)’. We leave this as Exercise 5.18.

That (i)’ implies (iii) follows from the fact that the tuples (f(c1),..., f(cn))
and (g(c1),...,9(cy)) satisfy the same quantifier-free formulas in M (by the
definition of “embedding”).

It remains to be shown that (iii) implies (i). We assume that (i) does not
hold and show that (iii) does not hold.

Suppose that T does not have quantifier elimination. By Proposi-

tion 5.43, there exists a quantifier-free V-formula ¢(z1,...,z,,y) such that
Jyo(z1,...,Tn,y) is not T-equivalent to a quantifier-free formula. By The-
orem 4.49, there exists a model M of T and n-tuples a = (ay,...,a,) and

b= (by,...,b,) from the universe Uys of M such that @ and b satisfy the same
atomic V-formulas in M but

M | 3ye(a,y) and M = —Jyp(b,y).

Now if {a1,...,a,} happens to be the universe of a substructure of M, then we
can take this to be C'in (iii). Otherwise, we must consider the substructure (a) of
M generated by a (as defined in Exercise 2.34). This is the smallest substructure

of M that contains {ai,...,a,}. Likewise, let (b) be the smallest substructure
of M that contains {b1,...,b,}.

Claim (a) = (b).

First-order theories 231

Proof By Exercise 2.34, this claim follows from the fact that a and b satisfy the
same atomic formulas (and, therefore, the same quantifier-free formulas) in M.
For readers who have not completed this exercise, we sketch the idea.

Let Ag be the union of {a1,...,a,} together with the set of all elements in
Uy that interpret constants of V. Let A be the closure of Ay under all functions
in V. Then (a) is the substructure of M that has A as an underlying set. The
key point is that each element in (@) can be represented by a quantifier-free V-
term having parameters among {ai,...,a,}. Let f be the function defined by
g(a;) = b; fori = 1,...,n. Since @ and b satisfy the same quantifier-free formulas,

and the elements of (a) and (b) can be expressed with quantifier-free terms, f
can be extended to an isomorphism g : (@) — (b).

To see that (iii) does not hold, let C = (a), let f : C — (a) be the identity

function, and let g : C' — (b) be as defined above. [

Let T be a complete theory. To determine whether or not 7" has quantifier
elimination we can use either condition (ii)’ or (iii) from the previous proposition.
However, depending on how much information we have regarding T, verifying
these conditions may or may not be practical. It may not be easy to consider
arbitrary elementary extensions in (i)’ or arbitrary substructures in (iii).

In specific cases, when T is known to have certain properties, there are meth-
ods for determining quantifier elimination that are easier than (ii)’ and (iii). For
example, if T has a finite relational vocabulary, then, as we have discussed,
it suffices to consider property (ii). If T' is a small theory, then, regardless of
whether the vocabulary is finite or relational, we only need to consider condition
(ii) for the countable saturated model of T. However, this fact will not be imme-
diately useful to those who are not reading this book backwards. Small theories
and saturated model are defined and discussed in Chapter 6 (see Exercise 6.17).
Another property that allows for a practical method for determining quantifier
elimination is the isomorphism property.

Definition 5.59 We say that a structure M has the isomorphism property if any
isomorphism between substructures of M can be extended to an isomorphism
between submodels of M. If every model of T has the isomorphism property,
then T is said to have the isomorphism property.

Example 5.60 Recall the Vg-structure Zg and the theory Ts = Th(Zg) from
Examples 4.48 and 5.46. Since Vg is relational, any subset of Z serves as the
underlying set of a substructure of Zg. Let M; be the substructure having uni-
verse {0, 2} and let My be the substructure having universe {4, 7}. Since both of
these structures model the sentence VaVy—S(z,y), M7 and My are isomorphic.
This isomorphism cannot be extended to submodels of Zg. So the theory Tg
does not have the isomorphism property.

232 First-order theories

Example 5.61 Recall the Vi-structure Z; and the theory Ty = Th(Zs) from
Examples 5.12 and 5.20. This theory is bi-definable with the Vg-theory Ts from
the previous example. We show that T, unlike Tg, has the isomorphism prop-
erty. Let A and B be substructures of a model M of Ty. Since substructures
must be closed under the function s, the underlying set of each of these sub-
structures is a union of sets of the form {a,s(a), s(s(a)),...}. With no loss of
generality, we may assume that {a, s(a),s(s(a)),...} is the underlying set of A
and {b, s(b),s(s(b)),...} is the underlying set of B. There is exactly one iso-
morphism between these V,-structures. This isomorphism can be extended to an
isomorphism between submodels of M by mapping the predecessor of a to the
predecessor of b, and so forth.

If T has the isomorphism property, then we can simplify condition (iii) of
Proposition 5.62. Instead of dealing with substructures, we can focus on
submodels of models of T

Proposition 5.62 Let T be a complete V-theory that has the isomorphism
property. The following are equivalent:

(a) T has quantifier elimination.

(b) For any quantifier-free V-formula (21, ..., z,,y) and any models M and N
of T with N € M,

if M = 3yp(a,y), then N = Jyp(a, y)
for any n-tuple a from the universe of V.

Proof If (a) holds, then, since quantifier-free formulas are preserved under sub-
models, (b) holds. We must prove the opposite direction. Suppose that (b) holds.
We show that (iii) from Proposition 5.58 holds.

Let C' be a V-structure C' and let f : ¢ — M and g : C — M be two
embeddings of C' into a model M of T. Let C be the range of f and let Cy
be the range of g. Then Cj and Cs are isomorphic substructures of M. Since T
has the isomorphism property, the isomorphism g(f~!) : C; — Cs extends to an
isomorphism A : N; — Ny between submodels N1 and N2 of M. To verify (iii),
we must show that for any quantifier-free V-formula ¢

M = 3yp(f(er), .- flen),y) if and only if M = Jyp(g(cr),-- -, g(cn),y)

for any n-tuple (ci,...,¢c,) of elements from the universe of C. Since existential
formulas are preserved under supermodels,

it Ny |=3ye(f(er), -+, fen),), then M= 3yp(f(er), .-, fen),y).

Condition (b) provides the converse:

it M): Ely(p(f(cl)v ey f(cn)ay)v then Nl ’: Ely(p(f(cl)’ ey f(cn),y)

First-order theories 233

So we have

M = 3yp(f(c1), ..., fen),y) if and only if Ny |= 3yp(f(er), ..., flen),y).

Likewise,

M = 3yp(g(cr), -, g(cn),y) if and only if Ny = Jyp(g(cr), ..., g(en),y).

Since h : N7 — Ns is an isomorphism that extends g(f~1),

Ny E Jyo(f(er),. .., flen),y) if and only if No = Jyp(g(er),...,9(cn),y).

‘We conclude

M | 3yp(f(er), ..., flen),y) if and only if M = Jyp(g(cr), .-, g(cn),y)

as desired. [
Proposition 5.63 T has quantifier elimination.

Proof Since T, has the isomorphism property, it suffices to verify condition
(b) of Proposition 5.62. Let ¢(x1,...,Zn,y) be a quantifier-free V,-formula. Let
N C M be models of Ty and suppose N = —Jyp(a,y) for some n-tuple a of
elements from the underlying set of N. Any elementary extension of N also
models =Jyp(a, y). Let N’ be an elementary extension of N that contains many
copies of Z. Then N’ = —p(a,b) for some b that is not in the same copy of Z
as any of the a;s. Since any two such bs bear the same atomic relations to each
a; (namely —s™(a;) = b and —s™(b) = a; for m € N) any extension of N must
model —3Jyp(a,y). In particular, M = —Jyp(a,y). This verifies condition (b).
We conclude that T has quantifier elimination. [J

5.6 Model-completeness

In this section, we discuss a property closely related to quantifier elimination.
As we shall see, there are many equivalent ways to define this property. The
following is the standard definition.

Definition 5.64 A theory T is model-complete if, for any models M and N of T,
N C M implies N < M.

Example 5.65 Let Ny = {N|s} be the V,-structure that interprets the binary
relation s as the successor function on the natural numbers. Let N4 be the
substructure of Ny having underlying set {4,5,6,...}. Then Ny = N, and N4 C
N;. Since Ny | Jx(s(x) =4) and Ny = —Jx(s(x) = 4), Ny is not an elementary
substructure of Ng. It follows that Th(Ny) is not model-complete. If we expand
N, to include a constant for the first element, then we obtain a structure that
does have a model-complete theory.

234 First-order theories

The following proposition perhaps explains why this property it is called
“model-complete.”

Proposition 5.66 A theory T is model-complete if and only if, for any model M
of T, TUD(M) is complete.

Proof Exercise 5.24. [
The Tarski—Vaught criterion 4.31 for elementary substructures yields the
following criterion for model-completeness.

Proposition 5.67 Let T be a V-theory. The following are equivalent:

(i) T is model-complete.
(ii) For any models M and N of T with N C M,

M = 3yy(a,y) implies N |= Jyy(a, y)
for any V-formula 9(Z,y) and any tuple a of elements from the universe of N.

Proof It follows immediately from the definition of “model-complete” that (i)
implies (ii). The converse follows from the Tarski-Vaught criterion 4.31. O

The following proposition shows that, in some sense, model-complete
theories “almost” have quantifier elimination.

Proposition 5.68 Let T be a V-theory. The following are equivalent:

(i) T is model-complete.

(ii) Every V-formula is preserved under submodels and supermodels of T'.
(iii) Every V-formula is T-equivalent to an existential formula.
)

(iv) Every V-formula is T-equivalent to a universal formula.

Proof

(i) implies (ii) by the definition of “model-complete.”
(ii) implies (iii) by Proposition 4.45.

Suppose that (iii) holds. Let ¢(Z) be a V-formula. By (iii), —p(Z) is T-
equivalent to an existential formula. It follows that ¢(Z) is T-equivalent to a
universal formula. So (iii) implies (iv).

Finally, suppose that (iv) holds. Suppose that M and N are models of T
and N C M. Let ¥(Z,y) be a V-formula and let a be a tuple of elements from
the underlying set of N. Since Iy (Z,y) is T-equivalent to a universal formula
and universal formulas are preserved under submodels,

if M |=3yy(a,y), then N | 3yy(a,y).

By Proposition 5.67, T is model-complete. [

First-order theories 235

It follows from Proposition 5.68 that every theory with quantifier elimination
is an example of a model-complete theory. We next demonstrate some examples
that do not have quantifier elimination.

Example 5.69 Let Ts be the Vg-theory from Examples 4.48 and 5.46. Recall
that every Vg-formula is preserved under submodels and supermodels of Ts. By
Proposition 5.68, Tg is model-complete. As was shown in Example 5.46, Ts does
not have quantifier elimination.

Example 5.70 Recall the V_-theory Tpror of dense linear orders with end-
points. As was shown in Example 5.51, Tpror does not have quantifier
elimination. To see that Tprog is not model-complete, let Ry denote the
model having universe [a, b] for any real numbers a and b with a < b. Then
Rc.q) is a submodel of Ry, p) whenever [c, d] is a subinterval of [a, b]. But Ry g
is not an elementary submodel unless both a = ¢ and b = d. (If a # ¢, then,
Ric,q) models ¥, ~(y < ¢) and Ry, p) does not). In contrast, the expansion THom
of Tprog to the vocabulary {<, P, P} is model-complete. This follows from
the fact that it has quantifier elimination as was discussed in Example 5.51.
This illustrates that model-completeness, like quantifier elimination, is a purely
syntactic property.

Example 5.71 We state, but do not verify, some facts regarding the real
numbers. We refer the reader to [16] or [29] for proofs of these facts. Let
R = (R|+,-,0,1). Let Ry, be the expansion of R to the vocabulary {<,+,-,0,1}.
Then Th(R) is model-complete. By Proposition 5.68, every formula in the vocab-
ulary {+.-,0,1} is Th(R)-equivalent to an existential formula. In particular,
the relation < is explicitly defined by Th(R,,) as 3z(z + (z - z) = y). It follows
that Th(R,,) too is model-complete. In fact Th(R.,,.) has quantifier elimination
(but Th(R) does not).

Definition 5.72 Let T be a V-theory and let M | T. We say that M is
existentially closed with respect to T if, for any model N of T' with M C N

if N =@ then M = p(a)

for any existential V-formula ¢(Z) and any tuple a of elements from the
universe of M.

Proposition 5.73 A theory T is model-complete if and only if every model of T
is existentially closed with respect to T'.

Proof It follows from the definitions that any model of a model-complete theory

T is existentially closed with respect to T'. We must prove the converse.
Suppose every model of T is existentially closed with respect to T'. Let V

be the vocabulary of T'. To show that T" is model-complete, we show that every

236 First-order theories

V-formula is T-equivalent to a universal formula. It suffices to show that every
existential V-formula is T-equivalent to a universal formula (see Exercise 3.2).

Let ¢(Z) be an existential V-formula. If M and N are models of T" with
M C N, then, since M is existentially closed with respect to T', N | ¢(a)
implies M |= ¢(a) for any tuple a of elements from the universe of M. That is,
©(Z) is preserved under submodels of T. By Theorem 4.47, ¢(Z) is T-equivalent
to a universal V-formula. By Exercise 3.2, every V-formula is T-equivalent to a
universal formula. By Proposition 5.68, T' is model-complete. [

Proposition 5.73 improves Proposition 5.67. Instead of verifying condition
(ii) of Proposition 5.67 for every V-formula v, it suffices to verify this condition
only for existential 1.

Definition 5.74 A theory is said to be Vy-axiomatizable if it has an axiomatiz-
ation consisting of V, sentences.

Proposition 5.75 If T" is model-complete, then T is Vy-axiomatizable.

Proof Use Exercise 4.30. [

Lindstrom’s theorem states that if T" is k-categorical for some &, then the
converse of Proposition 5.75 holds. To prove Lindstrom’s theorem, we shall use
the following result.

Proposition 5.76 If T is Vs-axiomatizable, then any model of T" can be extended
to a model that is existentially closed with respect to T'.

Proof Let M be a model of T having underlying set U. We assume that both
T and M are denumerable. For uncountable T or M, the proof is similar.

Let V be the vocabulary of T. Let £ be the set of existential formulas
having parameters from U and no free variables. That is, £ consists of formulas
of the form 3Zp(z,a) where ¢ is a quantifier-free V-formula and @ is a tuple of
elements from U. Since both U and V are countable, so is £. Enumerate £ as
{61,602,05,...}. (In the case where M is uncountable, invoke the Well Ordering
Principle.)

We inductively define a sequence of V-structures as follows.

Let A() =M.

Suppose now that A,, has been defined. To define A,, 11, consider the formula
0n+1 in the enumeration of £. Let A,1; be any extension of A, that models
T U 6,,41. If no such extension exists, then just let A,11 = A,. (In the case
where M is uncountable, let A, = J;_,, Ag for limit ordinals a.)

Let B; be the union of the chain M = Ag C Ay C Ay C ---. Since each A;
models T and V5 sentences are preserved under unions, B is a model of T. We
claim that, for any extention N of By that models T', if N = 6;, then By = 0; for
each 6; € £. If such an N exists, then A;1 = 6;. If this is the case, then By [6;
since A;41 C Bp and existential formulas are preserved under supermodels.

First-order theories 237

To obtain an existentially closed extension of M, we must repeat this pro-
cess. Given B, for some ¢ € N, construct B;y; in the same way that B; was
constructed (with B; playing the role of M). Let ¢(Z) be an existential V-formula
and let b be a tuple of elements from the universe of B;. If B; has an extension
that models 7 U ¢(b), then B;,; models ¢(b).

Let Mg be the union of the chain Bi € By C ---. Since T is V-
axiomatizable, Mg models T. Let () be an existential V-formula and let b
be a tuple of elements from the universe of Mg. Then b is a tuple from the

universe of B; for some 4. If Mp has an extension that models T'U ¢(b), then

Bi+1 models ¢(b). Since existential formulas are preserved under supermodels,
Mpg = (b). This shows that Mg is existentially closed with respect to 7. [

Theorem 5.77 (Lindstrdom) Let T be a k-categorical for some £ > |T'|. If T is
Vq-axiomatizable, then 7' is model-complete.

Proof Suppose that T is Vs-axiomatizable and not model-complete. We show
that T is not k-categorical.

Let V be the vocabulary of T

If T' is not model-complete, then there exists a model M of T that is
not existentially closed with respect to T (by Proposition 5.73). So there
exists an extension N of M and an existential V-formula ¢(z) such that
N ETUy(ay,...,a,) and M = —p(ay,...,a,) for some n-tuple (a1, ...,ay) of
elements from the universe of M.

Let V' = VU{ey, ..., ¢, } where each ¢; is a constant not in V. Let M’ be the
expansion of M to a V’'-structure that interprets each ¢; as the element a;. By
Proposition 5.76, there exists an extension M; of M’ that is existentially closed
with respect to Th(M'). By this same proposition, there exists an extension M
of M that is existentially closed with respect to T'. Since it is existentially closed,
M, = ¢(a). Since M = Th(M"), M{ & —¢(a).

By the Downward Lowenheim—Skolem theorem, there exist V-structure M
and V'-structure M| both of size |T| such that My < M; and M} < M. By
the Upward Lowenheim—Skolem theorem, there exist V-structure Ms and V-
structure M} both of size x such that My < My and M} < Mj. Since M} models
—p(a), the reduct of M) to V is not existentially closed. This reduct along with
M are two models of T of size k. Since one is existentially closed and the other
is not, they cannot be isomorphic and T is not k-categorical as we wanted to
show. O

Example 5.78 We demonstrate a countable complete theory T} that is Vs-
axiomatizable but not model-complete. By Lindstrém’s theorem, 77, cannot be
k-categorical for any k. To find such T, we expand upon Example 5.65. Recall
that Th(Ny) from Example 5.65 is not model-complete. This theory is also not
Vo-axiomatizable. We cannot say that there exists an element with no predecessor

238 First-order theories

using a V5 Vs-sentence. To express this with a V5 sentence, we can expand to
the vocabulary {s,1}. Let Ng; = {N]s,1} be the expansion of N, that inter-
prets 1 as 1. Then Th(Ny;) is Va-axiomatizable. However, as was pointed out in
Example 5.65, this theory is also model-complete.

We now define a structure Ny that contains infinitely many copies of Ng;.
The vocabulary for Ny, is Vi, = {r,u, ¢;|i € Z} containing two unary functions r
and u and a denumerable set of constants. The underlying set of Ny is N x Z.
Each constant ¢; is interpreted as (0,4) in Ny,. The functions are interpreted as
follows. For each (a,b) € N x Z, Ny, interprets r(a,b) as (a + 1,b) and u(a,b)
as (a,b+ 1). If we visualize Ny, in a plane with N as a horizontal axis and Z
as a vertical axis, then Ny, interprets r as the “right-successor” and u as the
“up-successor.”

Let Ty, be Th(Nyg).

There exist infinitely many elements of Ny, that are not the right-successors
of any element. Each is named by a constant. By compactness there exists an ele-
mentary extension N of Ny, that has elements with no right-predecessor that are
not named by constants. For the same reason that Th(N;) is not model-complete,
T}, is not model-complete. Moreover, T, is complete and Vs-axiomatizable. We
leave the verification of these facts to the reader.

We conclude this section by providing methods for showing quantifier
elimination that involve model-completeness.

Proposition 5.79 If T' has the isomorphism property, then T is model-complete
if and only if 7" has quantifier elimination.

Proof This follows immediately from Proposition 5.62 and the definition of
“model-complete.” [

For any theory T, let Ty denote the set of universal sentences that can
be derived from T. By Theorem 4.47, a sentence ¢ is T-equivalent to some
sentence in Ty if and only if ¢ is preserved under substructures of models of T
It follows that the models of Ty are precisely the substructures of models of T
(see Exercise 4.25).

Definition 5.80 A theory T has the amalgamation property if the following holds.
For any models A, B, and C of T' and embeddings f, : C — A and f;, : C — B,
there exists a model D and embeddings g, : A — D and ¢, : B — D such that
9a(fa(€)) = gu(fp(c)) for each ¢ in the underlying set of C.

Proposition 5.81 If T"is model-complete and Ty has the amalgamation property,
then T has quantifier elimination.

Proof To show that 7' has quantifier elimination we verify condition (iii) of
Proposition 5.58. Let M =T and C E Ty. Let f : C > M and g: C — M

First-order theories 239

be two embeddings of C' into M. Since Ty has amalgamation, there exists a
model D of Ty and embeddings f' : M — D and ¢ : M — D such that
f'(f(c)) = ¢'(g(c)) for each ¢ in the underlying set of C. Since D models Ty,
there exists an extension N of D that models T' (by Exercise 4.25). Since T
is model-complete, the embeddings f' : M — N and ¢’ : M — N are ele-
mentary embeddings. Let ¢(z1,...,z,) be any formula in the vocabulary of T
We have

M E= o(f(c1),..., f(en)) if and only if

N Eo(f'(f(er)),- -, f'(f(en))) if and only if
N = o(g'(gler)), -, 9'(9(cn))) if and only if
M = 3ye(g(cr), - - 9(en),y),

and T satisfies condition (iii) of Proposition 5.58 as we wanted to show. O

5.7 Minimal theories

We define and discuss strongly minimal theories. In some sense, strongly minimal
theories are the most simple of first-order theories. They are also among the most
important and interesting theories. Strongly minimal theories have an intrinsic
notion of independence that allows us to define, in an abstract setting, such
concepts as basis and dimension. After discussing strongly minimal theories,
we turn briefly to o-minimal theories. Like strong minimality, o-minimality is
defined in terms of the definable subsets of models of a theory. Before giving
these definitions, we must first define definable.

Let M be a V-structure having underlying set U. Recall that “D is a V-
definable subset of M” means that D is a subset of U™ for some n and D is defined
by some V-formula ¢(x1,...,2,). That is, d € D if and only if M = ¢(d). For
A C U, we say that D is an “A-definable subset of M” if D is defined by
some formula ¢(Z,a) having parameters a € A™ for some m (where ¢(Z,7) is a
V-formula). We restate this important definition as follows.

Definition 5.82 Let A be a subset of the universe U of V-structure M. Let V(A)
be the expansion of V that contains a constant ¢, for each a € A. Let M(A) be
the expansion of M to a V(A)-structure that interprets each ¢, as the element
a € U. A V(A)-definable subset of M(A) is said to be an A-definable subset of
M. A subset of U™ is said to be a definable subset of M if it is A-definable for
some A C U.

When using this terminology, it is assumed that the vocabulary V is under-
stood. Note that, for V-structure M having universe U, ()-definable means the
same as V-definable and U-definable means the same as definable.

240 First-order theories

Proposition 5.83 Let M be a V-structure having underlying set U. Every finite
subset of U is definable.

Proof Let D = {di,...,d;} be a finite subset of U. Then D is definable since
it is V(D)-definable by the formula \/i-c:l(ac =d;). O

A subset C of U is said to be co-infinite in U if there are infinitely many
elements of U that are not in C. Likewise, C' is said to be co-finite in U if its
complement U — C' is finite. Since finite subsets of are definable, so are co-finite
subsets (take the negation of the formula saying « € (U — C)).

Definition 5.84 Let M be an infinite V-structure having underlying set U. If the
only definable subsets of U are finite or co-finite, then M is said to be a minimal
structure.

Note that the definition of a minimal structure only considers definable
subsets of U and not of U™ for n > 1. For any infinite structure M, the formula
(x = y) defines a subset of U? that is both infinite and co-infinite.

Example 5.85 Let V. = {<}. Let Q< be the V_-structure that interprets <
as the usual order on the rationals. Every V-formula ¢(z) either holds for all
elements or no elements of the underlying set Q. However, this is not true if
we consider formulas having parameters from Q. The formula (z < 2) is clearly
both infinite and co-infinite. So Q~ is not minimal. Likewise, no infinite model
of the theory of linear orders Ty is minimal.

Example 5.86 The random graph Gp is not minimal. Every Vg-formula o(z)
either holds for no vertices or all vertices of Gg. However, the formula R(x,a)
(having some vertex a of G as a parameter) defines a subset of G that is both
infinite and co-infinite.

Definition 5.87 An infinite structure M is said to be strongly minimal if
every structure N that is elementarily equivalent to M is minimal. A the-
ory is said to be strongly minimal if all of its models are infinite and strongly
minimal.

Strongly minimal structures (like minimal structures) are minimal in the
sense that the definable subsets (definable by formulas in one free variable) are
as few as possible. See Exercise 5.17 for an example of a minimal structure that
is not strongly minimal.

The usual way to show that a given structure M is strongly minimal is to first
show that the theory has quantifier elimination in an appropriate vocabulary. If
this is the case, then it suffices to consider only atomic formulas.

First-order theories 241

Proposition 5.88 Let T be a V-theory having quantifier elimination. The
following are equivalent:

(i) T is strongly minimal.
(ii) For any model M of T and any atomic V-formula o(z,y1,...,Yn),

w(x,a) defines a finite or co-finite subset of the universe U of M for
alla e U™.

Proof It follows from the definition of “strongly minimal” that (i) implies (ii).
We show that (ii) implies (i) by induction on the complexity of formulas. Con-
dition (ii) provides the base step for the induction. Moreover, if both 6(x)
and 9(x) define a finite or co-finite subset of U, then —6(z) and 6(z) A (x)
each define either a finite or co-finite subset of U. It follows by induction that
every quantifier-free formula defines a finite or co-finite subset of U. Since T has
quantifier elimination, this suffices to prove (i). O

Example 5.89 Recall the Vi-theory T from Example 5.12. By Proposition 5.63,
Ts has quantifier elimination. Each atomic V,-formula has the form s™(z) =y
(where s"(z) denotes the n**-successor of z). Since each element of each model
of T, has a unique n'’-successor and a unique n*’-predecessor, Ty is strongly
minimal by Proposition 5.88.

We use the following convenient notation. For any structure M and formula
(), let (M) denote the subset of the universe of M defined by ¢(x). That is,
o(M) ={a € U|M [= ¢(a)} where U is the universe of M. This notation makes
sense for any formula ¢(z) that is interpreted by the structure M. If M is a
V-structure having underlying set U, then ¢(M) is defined for any V(A)-formula
o(x) with A C U.

Definition 5.90 Let M be a structure and let ¢(x) be a formula in one free
variable. If (M) is finite, then ¢(x) is said to be algebraic in M.

Definition 5.91 Let M be a V-structure having underlying set U. For any A C U
and b € U, b is said to be algebraic over A in M if b € (M) for some algebraic
V(A)-formula ¢(x).

The set of all elements of U that are algebraic over A is called the algebraic
closure of A in M and is denoted by acly(A). We say that A is algebraically
closed in M if acly(A) = A.

It is easy to see that aclpr(A) is closed under all functions in ¥ and contains
all elements of U that interpret constants. For this reason, we regard aclps(A) as
a substructure of M (provided aclps(A) is nonempty). If M is strongly minimal,

242 First-order theories

then these substructures obey rules that justify the use of the word “closure.” The
following four rules are easily verified regardless of whether M is strongly minimal:

(Reflexivity) A C aclp(A).

(Monotonicity) If A C B, then aclpy(A) C acly(B).
(Idempotency) aclys(aclyr(A)) = aclpyr(A)

(Finite character) If a € aclps(A), then a € acly(Ap) for some
finite subset Ag of A.

If M happens to be strongly minimal, then we also have the Exchange rule.

Proposition 5.92 (Exchange) Let M be a strongly minimal structure. Let A be
a subset of the universe of M and let b and ¢ be elements from the universe of M.
If ¢c € aclpr (AU {b}) and ¢ & aclpr(A), then b € aclp (AU {c}).

Proof Since ¢ € aclp (AU{b}), there exists a formula ¢(Z,y, z) and parameters
a from A such that M |= o(a,b,c) and M | 3=*z¢(a,b, z) for some k € N.
(“I=*20(z)” is an abbreviation for the first-order formula saying that 6(z) holds
for exactly k many elements.)

Claim Either ¢(a,y,c) is algebraic (in which case b € aclpy (A U {c})), or
3= 2¢(a, y, 2) is algebraic (in which case b € aclp(A) C acly (AU {c})).

Proof If ¢(a, y, c) is not algebraic, then it holds for all but finitely many elements
y in U. So there exists | € N such that M |= 37ly—¢(a, y,). Since ¢ & acly(A),
the formula 3='y—¢(a,y, z) holds for all but finitely many elements z in U. So
for almost all z in U, the formula o(a,y, z) holds for all but [elements y of U.
It follows that, for all but at most [elements y in U, the formula ¢(a, y, z) holds
for almost all z in U. In particular, the formula 3=*2¢(a, y, z) does not hold for
most choices of y. So this formula must be algebraic as we wanted to show. [

The exchange rule allows us to assign a dimension to subsets of the universe
of a strongly minimal structure. Before defining this dimension, we first must
define the notions of independence and basis.

Definition 5.93 Let A and C be subsets of the universe of M. We say that A is
independent over C' if, for every a € A, a is not in acly (AU C — {a}). We say
that A is independent if A is independent over ().

Definition 5.94 Let A and C be subsets of the universe of M. A basis for A is
a subset B C A such that B is independent and acly(B) = aclpr(A). We say
that B is a basis for A over C'if B is independent over C' and aclpy (AU C) =
aclyr(BUC).

The exchange rule entails that any two bases of a set have the same size.
This allows us to define dimension.

First-order theories 243

Lemma 5.95 Let A and C be subsets of the universe U of a strongly minimal
structure M. If A has a finite basis over C, then any two bases of A over C' have
the same size.

Proof We prove this for C = (). The proof is similar for C # ().

Claim Let E and F' be finite independent subsets of U. If |E| = |F| and E C
acly(F), then F C acly(E).

Before proving the claim, we show that the claim implies the lemma. Let
B; and Bj be two bases for A (at least one of which is finite). With no loss of
generality, we may assume that |B1| < |Bz|. Let E be any subset of By having
the same size as By. Since E C aclpy(A) = aclp(By), the claim implies that
B; C acly (F). By monotonicity, acly (By) C acly(acly (E)). By idempotency
aclpr(B1) C aclpy (E). Since acly (By) = aclpy(A), E is a basis for A. Since By
is independent, E must be all of Bs. We conclude that By has the same size as
By as we wanted to show.

Proof of Claim We prove the claim by induction on n = |E|. If n = 1, then
E = {e} and F = {f}. Since FE is independent, e ¢ aclp(). By exchange,
e € aclp(f) — aclp(0) implies f € acl(e).

Now suppose that E = {e1,...,ent1} and F = {f1,..., fms1} for some
m € N. Our induction hypothesis is that the claim holds for any sets E and F
with |E| = |F| < m. Tt follows that an independent set of size m + 1 cannot be
contained in the algebraic closure of a set of size m. In particular, E cannot be
contained in aclps(fa, ..., fm+1). So, for some 4,

e; € acly(F) —aclpy(fa .. fng1)-
With no loss of generality, we may assume ¢ = 1. By exchange,
f1 €acly(er, fo, - oy frne1)-
Now suppose that, for some k, we have
{fi,.-., fx} Caclyler, ... ek, fut1s-- -, fmt1)-

By our induction hypothesis, F is not in the algebraic closure of

{en, - er frogr ooy fmpr) — { o1}

(since this set has size m). So some e; € F is not in this algebraic closure. Clearly,
1 > k. With no loss of generality, suppose i = k + 1. Since

ert1 € aclayr(fr,- .o, fog1) Caclar(er, ... ek, fogts- s fmt1),

244 First-order theories

we have, by exchange,

fk+1 € aClM(elv"'7ek+17fk+27"'7fm+1)'

Continuing in this manner (for m + 1 steps), we arrive at

{fl, ey fm+1} C aclM(el, ey 6m+1)
as we wanted to show. [

Proposition 5.96 Let A and C be subsets of the universe U of a strongly minimal
structure M. If B; and By are bases for A over C, then |B;| = |Ba|.

Proof If B; or B; is finite, then this proposition is the same as the previous
lemma. So suppose both bases are infinite. Let Pp(Bz) be the set of all finite
subsets of Bs. By Exercise 2.36, |Bz| = |Pp(B2)|. By the finite character of
algebraic closure, for each b € Bj, there exists F}, € Pr(Bs) such that b €
aclpyr(Fy). If | By| > |Ba| = |Pr(Bz2)|, then some F' € Pr(Bz) must equal Fy for
infinitely many b € B; (again by Exercise 2.36). Since F' is a finite set, this is
impossible by the previous lemma. We conclude that |By| < |Bz|. By the same
argument, we have |By| < |Bj], and so these two bases have the same size. [

Definition 5.97 Let A and C be subsets of the universe of a strongly minimal
structure. The dimension of A over C, denoted dim(A/C), is the cardinality of
any basis for A over C. The dimension of A, denoted dim(A), is the dimension
of A over 0.

The notion of dimension (as well as basis and independence) should be famil-
iar to anyone who has studied linear algebra. As we shall see in the next section,
infinite vector spaces (viewed in an appropriate vocabulary) provide examples of
strongly minimal structures. The notion of independence that we have defined
for strongly minimal theories corresponds exactly to the notion of linear inde-
pendence in these examples. Likewise, the dimension of a subset of a vector
space corresponds to the usual definition of dimension. The algebraic closure of
a set of vectors corresponds to the span of the vectors. Vector spaces are com-
pletely determined by their dimension. The following lemma shows that this fact
generalizes to arbitrary strongly minimal structures.

Lemma 5.98 Let M be a strongly minimal V-structure. Let A and C be subsets
of the universe U of M. If dimps(A) = dimps(C), then aclpy(A) =2 aclpy (C).

We use the following terminology in the proof of Lemma 5.98.

Definition 5.99 Let M be a V-structure and let A be a subset of the universe
U of M. A function f: A — U is said to be M-elementary if

M = p(a,...,a,) implies M = o(f(a1),..., f(an))

for any V-formula ¢(z1,...,2z,) and tuple (a1, ..., a,) of elements from A.

First-order theories 245

Proof of Lemma 5.98 Let a be an ordinal such that |a| = dimps(A). Let
By = {a;]i < a} be a basis for A and let Be = {¢;|i < a} be a basis for C.

We first show that the function f: B4 — B¢ defined by f(a;) = ¢; is M-
elementary. Second, we show that f can be extended to an isomorphism from
aclpr(A) onto aclp (C).

Claim 1 For any V-formula ¢(z) and tuple a of B4 and corresponding tuple
7(@) of Be, it M |= o(a) then M = (f(a)).

Proof We prove this by induction on the number of free variables in ¢(z). If
there are zero free variables, then the claim asserts that M | ¢ implies M | ¢
for the V-sentence ¢. Suppose now that ¢(x1,...,Zm+1) has m+1 free variables
and the claim holds for any formula having fewer than m + 1 free variables.

Suppose M = p(a, ..., @mi1).

Since B, is independent, the formula ¢(ay,...,amn,y) is not algebraic.
Since M is strongly minimal, —¢(a1,...,am,y) is algebraic.

So M = Fly-p(ay,...,am,y) for some | € N (where the counting
quantifier 3= is as defined in the proof of Proposition 5.92) .

By induction, M = 3= ly=p(c1, - .-, Cm, Y)-

Since Be is independent, M | ¢(c1, ..., Cmi1).

It follows that the claim holds for all ¢(Z) and f is M-elementary.

Claim 2 If By C E C acly(A) and a € aclp(A) — E, then any M-elementary
function g : E — aclp(C) extends to an M-elementary function ¢':(E U {a}) —
aclpr (C).

Proof Since a € aclp(E), there exists a formula 6(z, €) having parameters from
E such that M |= 6(a,€) and M |= 3='yf(y, &) for some | € N. Moreover, there
exists such a 6 so that [is as small as possible. This means that M | 6(y, &) —
¥(y) for any V(E)-formula v(y) that holds for a (otherwise either 8(y, &) A 9 (y)
would define a set smaller that [that contains a).

We want to show that g can be extended. Since g is M-elementary, M
3=yf(y, f(€)). So there exists b € acly;(C) such that M = 0(b, f(€)). We extend
g to EU{a} by defining ¢'(a) = b. For any V-formula ¢(z1,. .., z,,y) and n-tuple
(dy,...,dy) of elements from F,

M | ¢(dy,...,ds,a) implies

M E 0(y,e) — p(dy,...,ds,y) which implies

M E0(y,g9(e)) — p(g(dr),...,9(d2),y) (since g is M-elementary)
which implies M |= ¢(g(d1), .. .,g(d2),b) (since M = 6(b, g(€))).
It follows that ¢’ is M-elementary as we wanted to show.

Claim 2 shows that the M-elementary function defined in Claim 1 can
be repeatedly extended. By induction (transfinite induction if dimps(A) is

246 First-order theories

infinite), we can extend this to an M-elementary function from acly(A) to
aclpr(B). Such a function must be onto (see Exercise 5.34), and is therefore
an isomorphism. [J

Theorem 5.100 Countable strongly minimal theories are uncountably
categorical.

Proof Let T be a strongly minimal theory and let x be an uncountable cardinal.
Let M and N be two models of T of size k. Let Uy and Ujps be the underlying
sets of N and M, respectively.

Claim dim]\/[(U]\/j) = dlmN(UN) = K.

Proof This follows from the assumption that the vocabulary V of T is countable.
For any A C Uy, |[V(A)| = |A] + X implies |aclpr(A)| < |A| + Rg. In particular,
if |A| < &, then A cannot be a basis for Uyy.

By the Joint Embedding lemma 4.37, there exists a model D of T that is
an elementary extension of both M and N. Since dimp(Ups) = dimp(Un) = &,
we have M = aclp(Upy) 2 aclp(Uyx) = N by Lemma 5.98. [

Corollary 5.101 Strongly minimal theories are complete.
Proof This follows immediately from Proposition 5.15. O

We now turn to a variant of strong minimality. Let M be an infinite V-
structure. Suppose that V contains the binary relation < and M interprets <
as a linear order on its underlying set U. An interval of M is a subset of U of
the form

(a,b) ={x €Ula <z <b),(a,0) ={z €Ula <z}, or
(00,a) ={z € Ulx < a}

for some a and b in U. We also include singletons {a} C U as (degenerate)
intervals. Clearly, any interval is a definable subset of M. The structure M is
said to be o-minimal if every definable subset of M is a finite union of intervals.
A theory is o-minimal if its models are o-minimal.

As was demonstrated in Example 5.85, o-minimal theories are not strongly
minimal. However, these two notions have much in common. The word “min-
imal” means the same for both. They are minimal in the sense that the definable
subsets (definable by formulas in one free variable) are as few as possible. For
o-minimal theories, “as few as possible” takes into account the presence of a
linear order (o-minimal is short for “order-minimal”). Also, algebraically closed
substructures of an o-minimal structure satisfy the exchange rule. So o-minimal
structures, like strongly minimal structures, have an intrinsic notion of inde-
pendence and dimension (however, o-minimal structures are not uncountably
categorical).

First-order theories 247

Example 5.102 The following structures are o-minimal:

e Q. ={Q| <},
e R, ={R| <,+-,0,1}, and
o Rea:p = {R|6$p, <+, '707 1}7

where Ry, interprets the unary function exp(x) as e and the other symbols
are interpreted in the usual way.

That Q« is o-minimal follows from the fact that Tp;o has quantifier elim-
ination (Proposition 5.49). Likewise, the o-minimality of R,, can be deduced
from Tarski’s theorem. Tarski’s theorem states that T,, = Th(R,,) has quanti-
fier elimination. (This fact was stated without proof in Example 5.71.) Not only
did Alfred Tarski prove that T, has quantifier elimination, he also provided an
algorithm to carry out the quantifier elimination. Given any formula ¢(Z) in the
vocabulary V,,. of T,,., Tarski’s algorithm produces a quantifier-free V,,.-formula
that is T,--equivalent to ¢(Z) (although this algorithm is far from efficient).
Since Tarski’s algorithm allows sentences as input, this also shows that T, is
decidable.

The question of whether Res, has similar properties became known as
Tarski’s Problem (one of several problems by this name). This problem motiv-
ated the conception of o-minimality in the 1980s. Nearly half a century after
Tarski’s results regarding R,,, Alex Wilkie proved in the 1990s that Resp, is
o-minimal. This structure does not have a theory with quantifier elimination,
but, as Wilkie proved, it is model-complete. Whether it is decidable remains
unknown.

For more on o-minimal structures, the reader is referred to [10] written by
Lou van den Dries, the mathematician who introduced the concept. We now end
our brief discussion of o-minimality and return to strongly minimal structures. In
this section, we have proved several facts regarding strongly minimal structures,
but have provided a dearth of examples of such structures. We correct this
deficiency in the next section by analyzing specific examples of strongly minimal
theories.

5.8 Fields and vector spaces

We examine some basic algebraic structures that have strongly minimal the-
ories. We consider vector spaces and the field of complex numbers. We show
that these structures, viewed in appropriate vocabularies, have theories with
quantifier elimination. From this we deduce strong minimality.

248 First-order theories

We use these examples to illustrate a fundamental trichotomy of strongly
minimal theories. Strongly minimal theories are divided into those that are trivial
and those that are nontrivial. They can also be divided into those that are loc-
ally modular and those that are nonlocally modular. Since trivial theories are
necessarily locally modular (as we shall show), there are three possibilities: a
strongly minimal theory is either nonlocally modular, trivial, or both nontrivial
and locally modular. We shall define these concepts and provide examples of the-
ories from each of these three categories. We begin with trivial strongly minimal
theories.

Definition 5.103 A strongly minimal theory is trivial if for any M = T and any
subset A of the universe of M, acly(A) = U, 4 acla({a}).

Example 5.104 Recall T, from Example 5.12. This theory was shown to be
strongly minimal in Example 5.89. Let M be a model of Ty having underlying
set U. Recall from Example 5.20 that M = Z,, for some cardinal x where Z, is
the structure having k copies of Z as its underlying set. For any a € U, aclps(a)
is the copy of Z that contains a. Likewise, for any A C U, aclp(A) consists of
the copies of Z that contain some element of A. From this observation it follows
that T is a trivial strongly minimal theory.

For examples of strongly minimal theories that are not trivial, recall the
concept of a group. A group consists of a set together with a binary function
that satisfies the axioms listed in Example 5.6. We can view any group as a first-
order structure in the vocabulary V,, = {+4,0} where + is a binary function
representing the group operation and 0 is a constant representing the identity of
the group. Now suppose that T is a strongly minimal theory containing the Vg,-
theory Ty, of groups. Let {a,b} be an independent set containing two elements
from the universe of a model M of T. Then a + b is an element that is in
aclpr({a,b}) but is contained in neither aclys({a}) nor aclps ({b}). It follows that
any such theory T is not trivial.

We shall demonstrate examples of strongly minimal groups in this section.
Each of these examples happens to be an Abelian group. A group is Abelian if,
in addition to the properties listed in Example 5.6, the following holds:

(Commutativity) For every a and b in G, aob=boa.

Here, as in Example 5.6, o denotes the group’s binary operation. This property
can easily be expressed as a Vg,-sentence. This sentence is consistent with, but
not a consequence of, the theory of groups T, (see Exercise 2.5(c)).

Our choice of {4, 0} as the vocabulary for groups is somewhat arbitrary. We
can just as well use the vocabulary {-, 1} or any other vocabulary consisting of a
binary function and a constant. An additive group is a group in the vocabulary

First-order theories 249

{+,0}. A multiplicative group has {-,1} as its vocabulary. A field is a structure
with two binary operations each of which forms an Abelian group.

Definition 5.105 Let V,, be the vocabulary {+,,0,1} (the vocabulary of arith-
metic). For any V,,.-structure F' = (U|+,-,0,1}, we say that F is a field if the
following hold:

The reduct (U|+,0) of F is an Abelian group.

e The substructure (U — {0}|,1) of the reduct (U]|-,1) of F is an Abelian
group.

FEVaYyWz(z - (z+y)=z-2+2-y).
FEYaVYWz(x+y)-2)=2-2+y-2).

The theory of fields, denoted Tr, is the set of all V,,-sentences that hold in all
fields.

So a field has both a multiplicative group structure and an additive group
structure. The constant 0 necessarily has no multiplicative inverse and so must
be excluded from the multiplicative group. The last two items in the above
definition, called the distributive rules, dictate how the two operations interact.

Example 5.106 The rational numbers and the real numbers, viewed as structures
in the vocabulary V,,., are examples of fields.

Example 5.107 The integers do not form a field. The structure (Z — {0}|-,1) is
not a group since no element (other than 1) has a multiplicative inverse.

Suppose that we restrict our attention to the integers in the set Zr; =
{0,1,2,3,4,5,6}. If we take the usual definition of addition and multiplication,
then this set does not form a field since it is not closed under addition or mul-
tiplication. Let us instead consider addition and multiplication modulo 7. This
means that we take the remainder of the sum or product when divided by 7. For
example, 3+6=2 (mod 7), 4+4 =1 (mod7), 5-4=6 (mod 7), 5-6=2
(mod 7) and so forth. Let F7 = (Z7|+,-,0,1) be the V,,-structure that interprets
+ as addition modulo 7 and - as multiplication modulo 7 on the set Z;. Then F7
is an example of a finite field. For any positive integer a, F, is defined analog-
ously. This structure is a field if and only if a is prime. We leave the verification
of these facts to the reader.

The examples of fields that we have given, namely Q, R, and F, are not
strongly minimal. To obtain a strongly minimal structure, we consider vector
spaces over these fields.

250 First-order theories

Definition 5.108 Let F be a field. For each element a of F, let s, denote a unary
function. Let Vp = {+,0, s4|a € F'}. A vector space over F is a structure M in
the vocabulary Vg that satisfies the following:

e The reduct of M to {+,0} is an Abelian group.

M EVz(s1(z) =).

M EVaVy(se(r +y) = sq(x) + s4(y)) for all a € F.
M EVz(sqrs(x) = sa() + sp(x)) for all @ and b in F.
M EVz(sq(sp(x)) = sq.b(x)) for all @ and b in F.

The theory of vector spaces over F is the set of Vp-sentences that hold in each
vector space over F.

Example 5.109 We consider various vector spaces over R.

Let R™ be the set of all ordered n-tuples (aq,...,a,) where each a; € R.

Let Rlzy,...,x,] be the set of all polynomials in n variables having
coefficients in R.

Let R=2[z] be the set of all polynomials in R[xz1,...,,] of degree at most 2.

Let M, «n(R) be the set of all n x n matrices having real numbers as entries.

There is a natural way to describe a vector space over R having any one of
these sets as an underlying set. Each set carries a natural notion of addition
and a zero element (either the matrix having all zero entries or the constant
polynomial p(xz) = 0). Moreover, we can define scalar multiplication for each.
Given any element v from any one of these sets and any r € R, the product r - v
is a well-defined element in the same set as v. Thus the unary function s, has a
natural interpretation.

We recall some facts about vector spaces from linear algebra. Let V be a
vector space over a field F. Let B = {v1,...,v,} be a set of vectors in V. The
span of B is the set of all linear combinations a; - 4+ v + - - - a, - v, where each
a; is in F. The set B is linearly independent if v; is not in the span of B — {v;}
for each v; € B. From this notion of independence, we can define linear bases
and linear dimension. Two vector spaces having the same linear dimension over
a field are necessarily isomorphic. We repeatedly use the adjective “linear” to
distinguish these terms from their strongly minimal counterparts. However, we
will show that these two notions are the same.

Proposition 5.110 The Vp-theory Ty of a vector space over an infinite field F
has quantifier elimination.

First-order theories 251

Proof Note that the theory of a vector space over F' is Va-axiomatizable. Also,
any two uncountable models of the same size have the same linear dimension
and, hence, are isomorphic. By Lindstrém’s theorem, Ty is model-complete.
To show that Ty has quantifier elimination, it suffices to show that it has the
isomorphism property (by Proposition 5.79). Let M = Ty.

Claim Every substructure of M is a submodel.

Proof A substructure is, by definition, closed under all functions in the vocabu-
lary. Since Ty F Va(z 4+ s—1(x) = 0), every substructure contains the inverse for
each element and also the constant 0. From this information it is easy to verify
that any substructure of M is itself a vector space over F.

It follows from this claim that 7y, has the isomorphism property and, hence,
quantifier elimination as well. [

Proposition 5.111 The Vg-theory Ty of a vector space over an infinite field F’
is a nontrivial strongly minimal theory.

Proof Let M be an arbitrary model of Ty. We must show that every Vp(M)-
formula 6(x) defines either a finite or co-finite subset of the underlying set of M.
By the previous proposition, it suffices to consider only atomic 6(z) (by Proposi-
tion 5.88). Atomic Vg (M)-formulas have the form ¢; = t5 for some Vg (M)-terms
t1 and to. If there is exactly one free variable x in the equation t; = to, then this
formula is Ty -equivalent to a formula of the form x = t for some quantifier-free
Vp-term t. That is, we can solve the equation for x (here we are using the fact
that F' is a field). Clearly, this formula defines a set of size 1. Since Ty has
quantifier elimination and every atomic formula defines a finite subset of every
model, Ty is strongly minimal. It is not trivial since (a + b) € aclps({a,b}) for
independent {a,b}. O

Corollary 5.112 For any infinite field F', the Vp-theory Ty of vector spaces over
F is k-categorical if and only if k > |F.

Proof First note that Ty has no models smaller than |F|. If k > |F|, then Ty is
k-categorical by Proposition 5.98. If k = |F|, then Ty is not k-categorical since
any finite dimensional vector space over F' has the same size as F. [

In particular, the theory of vector spaces over F' is complete if F is infinite.
This is not true for finite fields. Finite dimensional vector spaces over finite fields
are finite. To obtain a complete theory, we must only consider vector spaces of
infinite dimension over finite fields.

Proposition 5.113 For any finite field F', the theory of infinite dimensional vector
spaces over F' is strongly minimal, nontrivial, and totally categorical.

252 First-order theories

Proof This can be proved by repeating the arguments we gave for vector spaces
over infinite fields. We leave the verification of this to the reader. [J

Let M model the theory of vector spaces over a field F' (either finite or
infinite). For any algebraically closed subsets A and B of the universe of M, the
following holds:

We state this fact from linear algebra without proof. We show that this is
one property of vector spaces that does not generalize to all strongly minimal
theories.

Example 5.114 Let M be an infinite dimensional vector space over a field F.
Let Vi = VpU{f} where f is a ternary function. Let M’ be the expansion of M
to a Vi-structure that interprets f as the function f(z,y,2) = x +y — 2. This
function is explicitly definable in terms of Vp:

M E f(z,y,2) =wifand only if M' = Jw(w+2z=0Ax+y+w=u).

It follows that M and M’ are bi-definable and M’ is strongly minimal. Now let
N be the reduct of M’ to the vocabulary {f, sq.|a € F'}. That is, the vocabulary
of N contains neither + nor 0. Since M’ is strongly minimal and every definable
subset of N is also a definable subset of M’, N is strongly minimal. We claim
that Equation (5.1) does not hold for N. Let a, b, and ¢ be elements from the
underlying set such that dimps(a,b,c) = 3. Then dimy(a,b,c) = 3.

Clearly, dimp (a,b, ¢, f(a,b,c)) = dimps(a,b,c,a+b—c) =3, dimy(a,b) =
dimpr(a,b) = 2, and dimy(c, f(a,b,¢)) = dimp(c,a+b—c) = 2. If A =
acly({a,b}) and B = acly({c, f(a,b,c)}), then AN B = (). Thus we have 3 =
dsz(A U B) #* dZ’I’I’LN(A) + dsz(B) — dsz(A N B) =2+4+2—-0=4and
Equation (5.1) fails.

Note that aclp ({a,b}) Naclyr({c,a + b — ¢}) is nonempty. It contains the
constant 0 that was omitted from the vocabulary of N. This intersection also
contains a + b and all of its scalar multiples. So in M, this intersection has
dimension 1 and Equation (5.1) holds (as it does in every vector space).

Definition 5.115 Let T be a strongly minimal theory.

If Equation (5.1) holds for all M =T, then T is said to be modular.

If Equation (5.1) holds whenever A N B is nonempty, then 7T is said to be
locally modular. We say that a strongly minimal structure is modular or locally
modular if its theory is.

Equivalently, T is locally modular if and only if the expansion of T' by a
single constant is modular. Whereas the theory of a vector space over a field is

First-order theories 253

modular, the theory Th(N) from Example 5.114 is a locally modular strongly
minimal theory that is not modular. If we expand N to include the constant
0, then the binary function + can be recovered as f(x,y,0) = x + y. So this
expansion of NN is bi-definable with the modular structure M.

Proposition 5.116 Let T be a strongly minimal theory. If T is trivial, then it is
modular.

Proof Let A and C be subsets of the universe of a model M of T'. Let By be a
basis for ANC. Let By be a basis for A —aclp (AN C) and let By be a basis for
C —aclpy(ANC). Consider ByU By U Bs. For any elements a and b of this union,
it is not the case that a € aclp({b}) (by the definition of these three bases). It
follows, since T is trivial, that By U By U By is an independent set. So By U By
is a basis for A, By U B> is a basis for C, and By U By U By is a basis for AU C.
Equation (5.1) clearly holds. O

A strongly minimal theory is nonlocally modular if it is not locally modular.
To demonstrate an example of a nonlocally modular strongly minimal theory,
we consider the complex numbers. Recall that the set C of complex numbers
consists of all numbers of the form a + bi where a and b are real numbers an @ is
the square root of —1. Complex numbers are added and multiplied as follows:

(a+bi)+ (c+di) = (a+)+ (b+ d)i, and
(a+bi)- (c+di) = ac+ adi+ bei + bd(—1) = (ac — bd) + (ad + be)i

In this way, we can view the complex numbers as a V,,-structure C. This struc-
ture is a field (the multiplicative inverse of a + bi is a/(a® + %) — b/(a® + b?)i).

We axiomatize the theory Th(C). We use without proof the Fundamental
Theorem of Algebra. This theorem states that, for any nonconstant polynomial
p(x) having coefficients in C, there exists a solution in C to the equation p(z) = 0.
Moreover, there are no more than d such solutions where d is the degree of the
polynomial.

Definition 5.117 The theory of algebraically closed fields, denoted Tacr, is the
Var-theory axiomatized by:

e the axioms for the theory of fields T, and
o Vyi - -Vyp,Jz(ax™ + y; L TR e T =0) for each n € N

(where 2™ is an abbreviation for the Vg, -term z -z - - - - x).

Lemma 5.118 Let F be a field. There exists an extension F of F that
models TacF.

254 First-order theories

Proof Note that the axioms for the theory of fields Ty are each Vy-sentences.
By Proposition 5.76, F' has an extension that is existentially closed with respect
to Ty. By definition, any existentially closed field is algebraically closed. [

The theory Tacr of algebraically closed fields is not complete. By previous
proposition, every field can be extended to a model of Tacpr. In particular,
the field F; from Example 5.107 has an extension F; that models Tycp. This
structure is not elementarily equivalent to C. To see this, let 87 be the sentence
(1414+14+1+1+141=0). Then F7 = 07 and C = —6-.

Definition 5.119 Let p be a prime number. Let 6, be the V,,-sentence saying
that p-1 = 0. The theory of algebraically closed fields of characteristic p, denoted
Tacrp, is the deductive closure of Tacp U {0,}.

To axiomatize C, we must include the negations of the 6,,.

Definition 5.120 The theory of algebraically closed fields of characteristic 0,
denoted Tacro, is the deductive closure of Tycp U {—6,|p is prime}.

We claim that Tacpg is the complete V,,.-theory of C.
Proposition 5.121 T4cro has quantifier elimination.

Proof We use condition (ii)’ of Proposition 5.58. Let M |= T and let (ay,...,ay)
and (by,...,b,) be n-tuples from the universe U of M that satisfy the same
atomic formulas in M. We must show that for any a,4+1 € U there exists b, 41
in the universe of an elementary extension N of M such that (a1,...,an, dnt1)
and (by, ..., by, b,y1) satisfy the same atomic formulas in N. We break the proof
of this into two cases. In case 1, we are able to take N to be equal to M.

Case 1: a,4+1 is a root of some polynomial having coefficients among A =
{a1,...,a,}. That is, M |= p(an+1) = 0 for some polynomial p(x) having coef-
ficients in A. We may assume that p(z) = 0 has the least number of solutions
among all such polynomials (so p(x) is the minimal polynomial over A). Let g(x)
be the polynomial obtained by replacing each occurrence of a; in p(z) with b;
(for each i = 1,...,n). Since M is algebraically closed, M | q(b,+1) = 0 for
some b,+1 € U. Since p(x) is minimal, (a1,...,an,ans+1) and (b1, ..., by, bpt1)
satisfy the same atomic formulas in M. This can be shown in the same way that
Claim 2 was proved in the proof of Lemma 5.98.

Case 2: a,41 is not a root of any polynomial having coefficients among A =
{a1,...,a,}. Let N be an elementary extension of M such that |[N| > |M]. Since
there are only countably many polynomials having coefficients in A and each has
only finitely many roots, there must exist b,,41 in the universe of N that is not a
root of any of them. Clearly (ai,...,an,an+1) and (by,...,b,, b,y1) satisfy the
same atomic formulas in N. O

First-order theories 255

Proposition 5.122 T'yc g is a nonlocally modular strongly minimal theory.

Proof Let M be an arbitrary model of Tacpg. To show that T'acpg is strongly
minimal, it suffices to show that every atomic V,,.(M)-formula 6(z) defines
either a finite or co-finite subset of the underlying set of M (by Proposi-
tion 5.88). Atomic V,,.(M)-formulas are Tg-equivalent to formulas of the form
p(x) = 0 where p(z) is a polynomial having coefficients from the universe of
M. Strong minimality follows from the fact that polynomials have finitely many
roots.

It remains to be shown that Tacpg is not locally modular. Let a, b, and ¢
be elements from a model M of Tacro such that dimps(a,b,¢) = 3. Let A =
aclyr({a,b}) and let B = aclpyr({a+b-c¢,c}). Then dimp(A) = dimp(B) = 2
and dimps (AU B) = 3. We state without proof the following fact: if d € AN B,
then d € acly (). From this we see that dimp; (AN B) = 0 and Tacpo is not
modular. [

Corollary 5.123 T4 is complete and uncountably categorical.

It follows that Tac o is the complete theory of C. What does this fact tell
us about the complex numbers? By quantifier elimination, we know that any
Var-formula ¢ is Tscro-equivalent to some quantifier-free V,,-formula 1. Let
us consider some specific formulas ¢.

For each n € N, let p,,(z, Yo, Y1, --,Yn) be the polynomial

Yoty xtys 2oty a2t =0.

Let ©(yo,...,Yn) be the formula Jzp(x,yo,y1,...,yn) = 0. Since Tacro has
quantifier elimination, we know that this formula is T4cpo-equivalent to a
quantifier-free V,,.-formula. However, Tacro implies every polynomial has a
root. So the formula ¢(yo,y1,...,yn) holds for all yo,...,y, in any model of
Tacro- It follows that ¢(yo,y1,...,yn) I8 Tacro-equivalent to the quantifier-
free formula 1 = 1. Do not try to impress your complex analysis professor with
this fact.
Now, for any n,m € N, let 0,, 1, (Yo, - - -, Yn, 205 - - -, Zm) be the formula

Fx(pn(z, Y0, -, Yn) = 0 A pm(2, 20, -« -, 2m) = 0).

This formula asserts that the two polynomials share a root. Whether or not this
is true depends on the coefficients (yo, - . . , y») and (2o, . . ., zm) of the two polyno-
mials. Since T'4cro has quantifier-elimination, there must exists a quantifier-free
formula ¥g(yo, - - - Yns 20, - - -, 2m) that holds if and only if the two polynomials
have a common root. This is not obvious. In fact, 0y m (Yo, - -3 Yn, 205 - - -, 2m)

256 First-order theories

holds if and only if the determinate of the following matrix is not zero:

0 0 0 Yo U1 cee Yn
20 z1 Zm 0 0
0 Z0 z1 Zm 0 ... 0
O O 20 z1 Zm

The determinant of this matrix is called the resultant of the two polynomials

DX, Yoy - -+ Yn) and pp(z, 20, .., 2m). Since the determinant is an algebraic
expression in (Yo, ..., Yn, 20, --,2m), We can say that this determinate equals
zero with a quantifier-free V,,~formula ©g (Yo, - .-, Yns 20, - - - s Zm)-

Now suppose that we have k polynomials of the form p,, (x, yo, ..., yn). Let §
be the k- (n+1)-tuple consisting of the coefficients of these polynomials. Suppose
we want to determine whether there exists a number that is simultaneously the
root of each of these k polynomials. Since T'ac g has quantifier elimination, there
exists some quantifier-free expression having g as variables that determines this.
That is, there exist analogues for the resultant that work for each k& > 2.

The perspective of model theory is somewhat askew compared to other
branches of mathematics. The light shed by model theory will not fully illumin-
ate a structure in all of its detail. However, it can bring to light certain features
of a structure that are shaded by other approaches. As a basic example, we have
the fact that there exist resultants for several polynomials in several variables.
That is, there exists a polynomial P(g) in the coefficients § of the given poly-
nomials such that P(g) = 0 if and only if the polynomials have a common zero.
Model theory provides an immediate proof of this fact, but it does not provide
a description of the polynomial P(g).

Resultants provide a superficial example of the deep relationship between
model theory and other branches of mathematics. Not only have model theoretic
methods shed new light on various branches of mathematics, these methods have
yielded results at the forefront of research. Most notable is Ehud Hrushovski’s
1996 proof of the Mordell-Lang conjecture for function fields. Implementing
model-theoretic tools (such as strong minimality), Hrushovski answered in the
affirmative this long standing conjecture of algebraic geometry. The statement of
this conjecture (not to mention the proof) is beyond the scope of this book. We
consider an application of model theory to algebraic geometry that is far more
fundamental.

First-order theories 257

5.9 Some algebraic geometry

The model-theoretic properties of C provide elementary proofs for some funda-
mental theorems of algebraic geometry. In this section, we give one prominent
example known as Hilbert’s Nullstellensatz.

Algebraic geometry arises from the interplay between the algebra of poly-
nomial equations and the geometry of the solutions of these equations. Let

Clx1,...,x,] denote the set of all polynomials having variables z1,...,z, and
coefficients in C. Each f(z1,...,2,) in Clzy,...,2,] defines a subset of C",
namely

Vi ={(z1,...,2,) € C"|f(21,...,2) = O}

The set of solutions of a polynomial in two variables is called an algebraic
curve. More specifically, if f(z,y) is a polynomial having complex coefficients,
then V; is a complex algebraic curve.

Example 5.124 Consider the polynomials

flz,y) = 2® —ay + 2%y — 3, and
g(x,y) = a* + 22%y + 2%y® — 2%y + 229” + 4.

These two polynomials define the same complex algebraic curves. This is because
they factor as f(z,y) = (2% — y)(z +y) and g(z,y) = (22 — y)(x + y)*.

Since they have the same factors, they have the same curves. Whether we
plot f(z,y) = 0 or g(z,y) = 0 in the real plane, we will see the union of the
parabola defined by y = 22 and the line y = —x. Likewise, the complex curves
defined by these polynomials are identical.

Definition 5.125 A polynomial f € Clzy,...,x,] is irreducible if it cannot be
factored as f(z1,...,2n) = p(z1,...,2,) - q(z1,...,2,) for two nonconstant
polynomials p(z1,...,z,) and g(x1,...,2,) in Clay, ..., z,].

The polynomials f(x,y) and g(x,y) from the previous example are not irre-
ducible. These polynomials have the two irreducible factors corresponding to the
irreducible curves given by the line and the parabola. Hilbert’s Nullstellensatz
states that two polynomials in C[z,y] define the same curves if and only if they
have the same irreducible factors. As the following example shows, this is not
true when restricted to the real numbers.

Example 5.126 Let h(x,y) = (22 + 1)(2? — y)(x + y). Since (x? + 1) is not zero
for any real numbers, h(z,y) defines the same curve in R? as the polynomials
f(z,y) and g(z,y) from the previous example. In C2, however, h(z,y) has the
root (i,0) that is not a root of f(x,y). So the complex algebraic curve defined
by h(x,y) is not the same as the curve defined by f(z,y).

258 First-order theories

Theorem 5.127 (Hilbert’s Nullstellensatz) Let g(z,y) and h(z,y) be two poly-
nomials having complex coefficients. The complex algebraic curves defined by
g(z,y) and h(x,y) are the same if and only if g(x,y) and h(z,y) have the same
irreducible factors.

Proof A point (a,b) € C? is on the curve defined by g(z,y) if and only if
g(a,b) = 0. This happens if and only if p(x,y) = 0 for some irreducible factor p
of g. It follows that if g(x,y) and h(x,y) have the same irreducible factors, then
g(z,y) and h(x,y) define the same curves.

Conversely, suppose that g(x, y) and f(z,y) do not have the same irreducible
factors. Let p(z,y) be an irreducible factor of g(z, y) that is not a factor of h(z, y).
We show that there exists (a,b) € C? such that p(a,b) = 0 and h(a,b) # 0. If we
show this, then we can conclude that the curves defined by g(z,y) and f(z,y)
are not the same.

Let P be the set of all polynomials in C[z,y] that have p(x,y) as a factor.
Then g(x,y) € P and h(z,y) ¢ P.

For each f(x,y) € C[z,y], let f(x,y) + P denote the set

{f(z,y) +q(z,9)|q(x,y) € P}.

Note that fi(z,y) + P = fo(x,y) + P if and only if the polynomial f;(z,y) —
fa(z,y) is in P. In particular, f(x,y) + P = P if and only if f(z,y) is in P.
Let Cp = {f(z,y) + P|f(z,y) € C[z,y]}. So Cp is a set of sets.
We define a V,,.-structure N having Cp as its underlying set. The V-
structure N interprets the constants 0 and 1 as the elements P and 1 + P,
respectively. We next define addition and multiplication for this structure. For

fi(z,y) and fo(x,y) in Clz,y] let:
(i+P)+(fo+P)=(fi+f2)+P, and (i +P)-(f2+P)=(fi-f2) +P.

This completes our description of the V,,-structure N = (Cp|0,1,+,-).

We claim that e : C — N defined by e(a) = a + P is an embedding. We
leave the verification of this to the reader. The range C. of e is a substructure
of N that is isomorphic to C. For any f(z,y) € C(z,y), let fe(z,y) be the result
of applying e to each coefficient of f(x,y). By the definition of addition and
multiplication in N, fe(z,y) = f(x,y) + P.

For example, if

fla,y) =22 + 5xy?,

then

fo(z,y) = e(2)x + e(5)xy® = (2 + P)x + (5 + P)xy* = 22 + Sxy® + P.

First-order theories 259

Claim N E Jw3z(pe(w,z) = 0 A he(w, z) #0).

Proof This is witnessed by the elements z + P and y + P of Cp. We have
Pe(z+P,y+P) = p(x+P,y+P)+P (by the definition of p.), and p(z+P,y+P) =
p(z,y) + P (by the definition of + and - in N). So we have p.(z + P,y + P) =
(p(z,y) + P)+ P = (p(z,y) + P) + (0+ P) = p(z,y) + P.

Since p(z,y) € P, p(z,y) + P = P. Since N interprets 0 as the element P,

N E pe(z+ P,y+ P) =0.

Likewise, h.(x+P,y+P) = h(z,y)+P. Since h(z,y) is not in P, h(z,y)+P # P,
and N = he(z + P,y + P) # 0. Thus the claim is verified.

We further claim that N is a field. The axioms T are easily verified. We
leave this verification to the reader. By Proposition 5.118, there exists an exten-
sion M of N that models T4crg. Since M is an extension of the model C, and
Tacro is model-complete, M is an elementary extension of C.. We have

C. = JwIz(pe(w, z) = 0 A he(w, 2) # 0) (since C. < M), and
C = JwIz(p(w, z2) = 0Ah(w, 2) # 0) (since e : C — C, is an isomorphism).

By the semantics of 3, C |= (p(a,b) = 0 A h(a, b) # 0) for some (a,b) € C? as we
wanted to show. [

Exercises

5.1. A theory T is V;-aziomatizable if it has an axiomatization consisting of
universal sentences.
(a) Prove that T is Vi-axiomatizable if and only if for every M = T and
every A C M, A is a model of T.

(b) Find an example of a complete V;-axiomatizable theory or show that
no such theory exists.

5.2. A theory T is 3;-aziomatizable if it has an axiomatization consisting of
existential sentences.
(a) Prove that T is 3;-axiomatizable if and only if for any model M of
T and any embedding f: M — N, N is also a model of T

(b) Find an example of a complete 3;-axiomatizable theory or show that
no such theory exists.

5.3. Show that the following are equivalent:
(i) T is finitely axiomatizable.

(ii) T is axiomatized by a single sentence.

(iii) Any axiomatization of T" has a finite subset that axiomatizes T'.

260

5.4.

5.9.

5.6.

9.7.

5.8.

5.9.

5.10.

First-order theories

Show that the following theories are not finitely axiomatizable:

(a) The theory Ty of the integers with a successor function.

(b) The theory Trg of the random graph.

(¢) The theory Tacro of algebraically closed fields of characteristic 0.
Let T be a complete Vg-theory that contains the theory of equivalence

relations Tg. Show that T is finitely axiomatizable if and only if 7" has a
finite model.

Let T'; be the set of V.-sentences that hold in every finite model of Ty 0.
Let I's be the set of sentences saying that there exist at least n elements
for each n € N. Let Trro be the set V_.-sentences that can be derived
from I'y UTs.

(a) Show that Trro is a theory.

(b) Show that Trro is quasi-finitely axiomatizable.
(¢) Show that Trro is not k-categorical for any k.

Let 77 and T5 be bi-definable theories each having finite vocabularies.
(a) Show that T} is complete if and only if T5 is.

(b) Show that T} is finitely axiomatizable if and only if T5 is.

(¢) Show that T} is quasi-finitely axiomatizable if and only if T is.
(d) Show that T} is k-categorical if and only if T5 is.

(e) Show that Tj is strongly minimal if and only if 75 is.

Let Vp be the vocabulary consisting of a single unary relation P. Let T
be a complete Vp-theory having infinite models.
(a) Show that T'is countable categorical.

(b) Give examples showing that T’ may or may not be totally categorical.

Show that there exists a complete quasi-finitely axiomatizable V-theory
having infinite models for every finite vocabulary V.

For any first-order sentence ¢, let Spec(y) denote the finite spectrum of
¢ (as defined in Exercise 2.3). Show that either Spec(p) or Spec(—y) is
cofinite. (Hint: Use the previous exercise.)

. Let Vg be the vocabulary consisting of a single binary relation E. Let M

be an infinite Vg-structure that interprets F as an equivalence relation.
Suppose that each equivalence class of M has the same size.
(a) Show that Th(M) is countably categorical.

(b) Show that Th(M) is uncountably categorical if and only if the
equivalence classes are finite.

(¢) Show that Th(M) has quantifier elimination.

5.12.

5.13.
5.14.

5.15.

5.16.

First-order theories 261

Let Vg be the vocabulary consisting of a single binary relation E. Let T’
be the Vg-theory saying that E is an equivalence relation having infinitely
many equivalence classes of size 3, infinitely many equivalence classes of
size 5, and no other equivalence classes.

) Axiomatize T.

(a

(b) How many models of size Rg does T have up to isomorphism?
(¢) How many models of size 8y does T have up to isomorphism?
(d) Show that T does not have quantifier elimination.

(e) Show that T is model-complete.

Show that Tpro has 2% nonisomorphic models of size 280,

Let VI = {<, P, P;} be the vocabulary consisting of a single binary
relation < and two unary relations P, and P,. Let T};; 5 be the Vi-
theory axiomatized by the V_-sentences 165 in Section 5.3 together with
the following two VI -sentences:

8¢+ Vavy(Ps(z) — =(y < z))
8 Vavy(Py(z) — =(z < y)).
So P,(x) means z is small and P,(X) means x is big.
(a) Show that T, is incomplete.
(b) ShowthatT; ;5 hasexactly four countable models up toisomorphism.
(c) Show that T, o has quantifier elimination.

Let V. (C) bethevocabulary {<, ¢1, ¢z, ¢s, . . .} consisting of a binary relation

< and a denumerable set of constants. Let T pr,o be the complete expansion

of Tpro toa VT (C)-theory that says ¢; < ¢; if and only if i < j.

(a) Show that Tepro has exactly three countable models up to
isomorphism.

(b) Show that Tepro is complete.
(¢c) Show that Tepro has quantifier elimination.

Let Vg be the vocabulary consisting of a single binary relation E. Let Tg
be the Vg-theory that says F is an equivalence relation. Let M be a model
of Tr that has exactly one equivalence class of size n for each n € N and
no other equivalence classes.

(a) Axiomatize Th(M).

(b) Show that Th(M) is not finitely axiomatizable.

(¢) Show that M is not s-categorical for any .
Let VT = {F, f} where f is a unary function. Let ¢ be the V*-sentence
saying for each x there exists a unique y such that both E(z,y) and

262

0.17.

5.18.

5.19.

5.20.

5.21.

9.22.

First-order theories

Vz(=f(z) = y). Let M™ be an expansion of M to a V*-structure that
interprets f as a one-to-one and onto function and models ¢™.
(d) Show that Th(M™) is finitely axiomatizable.

(e) Show that Th(M™) is not k-categorical for any .

Let M and M™ be as in Exercise 5.16.
(a) Show that M is minimal but not strongly minimal.

(b) Show that M is not minimal.

Complete the proof of Proposition 5.58 by showing that T has quantifier
elimination if and only if condition (ii)’ holds.

Let T be a countable complete theory. Show that T has quantifier elim-
ination if and only if condition (i)’ from Proposition 5.58 holds for all
countable models M of T

Let B be the set of all finite sequences of 0s and 1s (including the empty
sequence). Let M = (B|S) be the structure in the vocabulary of a single
binary relation S that interprets S as follows. For sequences s; and ss in
B, M = S(s1, s2) if and only if so is obtained by adding a 0 or a 1 to the
end of s1. So S is a successor relation and every element of B has exactly
two successors and at most one predecessor.
(a) Show that Th(B) is bi-definable with a model-complete theory that
has a finite relational vocabulary. (Include a constant for the element
having no predecessor.)

(b) Show that any theory in a finite relational vocabulary that is bi-
definable with Th(B) cannot have quantifier elimination.

(¢c) Show that B is a strongly minimal structure.

Let Vps be the vocabulary consisting of denumerably many unary relations
Py, Py, Ps, ... and let I and O be disjoint finite subsets of N. Let ¢ o(x)
be the Vps-formula A;.; Pi(x) A \;co ~Pi().

This formula says that z is in each of the sets defined by P; for i € I
and outside each of the sets defined by P; for ¢ € O. Let Tp be the Vpg-
theory axiomatized by the sentences saying that there exist at least n
elements satisfying ¢ o for each n in N and any finite disjoint subsets I
and O of N.

(a) Show that T has quantifier elimination.

(b) Show that Tp is not x-categorical for any .

An automorphism of a structure M is an isomorphism f : M — M from

M onto itself. Let T be a countable complete theory.

(a) Suppose that, for any M = T and tuples (a1, ..., a,) and (by,...,by)
satisfying the same atomic formulas in M, there is an automorphism

9.23.

5.24.

5.25.

5.26.

9.27.

5.28.

5.29.

First-order theories 263

f of M with f(a;) =b; for i = 1,...,n. Show that T has quantifier

elimination.
(b) Suppose that T has quantifier elimination. Show that, for any M =T
and tuples (ai,...,a,) and (by,...,b,) satisfying the same atomic

formulas in M, there exist an elementary extension N of M and an
automorphism f of N with f(a;) =0b; fori =1,...,n.
Let T = Th(Msy) where My is the countable Vg-structure defined in
Example 5.18. Let Ty = Th(Z,) where Z; is the Vs-structure defined in
Example 5.20.

We define a theory T that contains both of these theories. Let V be
the vocabulary {E,s}. Let T be the set of all V-sentences that can be
derived from the set Ty U Ts U {VaVy(s(z) =y — E(z,y))}.

(a) Show that T is complete.

(b) Refer to Exercise 5.22. Demonstrate a model M of T and tuples
(a1,...,ay) and (by,...,b,) from the universe of M such that

e (a1,...,a,) and (by,...,b,) satisfy the same atomic formulas
in M, and
e there is no automorphism f of M for which f(a;) = b; for i =
1,...,n.
(¢) Show that T has quantifier elimination.
Let T be a theory. Prove that T' is model-complete if and only if, for any
model M of T, T UD(M) is complete.
Let T be a theory. Let M be a model of T' that can be embedded into any
model of T'. Show that if 7" is model-complete, then 7" is complete.

Show that 7" is model-complete if and only if, for any models M and N of
T with M C N, there exists an elementary extension M’ of M such that
McNcM.

Let T be a model-complete theory. Let T3 be the set of all Vs-sentences
¢ such that T + ¢. Show that M = Ty if and only if M = T.

(Hint: Show that every model of T3 has an elementary extension that is
the union of a chain of models of T'.)

Let T be a theory and let M be a model of T. Show that M is existen-
tially closed with respect to T if and only if M is existentially closed with
respect to Ty.

Show that the following theories have the amalgamation property:

(a) The theory of graphs T¢.

(b) The theory of linear orders T7.0.
(¢) The theory of fields Tr.

264

5.30.

5.31.

5.32.

5.33.

5.34.

5.35.

5.36.

5.37.

First-order theories

Let T be a theory. A theory T is the model-companion of T if T!, = Ty
and T is model-complete.
(a) Show that Tre is the model-companion of Tg.

(b) Show that Tpro is the model-companion of Tro.
(¢c) Show that Tycp is the model-companion of Tx.

Refer to the previous two exercises. Prove that if 7" has the amalgamation
property and T’ is the model-companion of T, then 7' has quantifier
elimination.

Verify that aclyr(aclpr(A)) = aclpr(A) for any structure M and any subset
A of the underlying set of M.

Let M be a strongly minimal V-structure having underlying set U. Let
o(z,y) be a V-formula having two free variables. Show that there exists
n € N such that, for all a € U: |p(a,M)| is infinite if and only if
|o(a, M)| > n. Show that this is not true for the minimal structure M from
Exercise 5.17.

Let M be a structure and let f : A — B be an M-elementary function
between subsets A and B of M. Show that A is algebraically closed if and
only if B is algebraically closed.

Let G be a graph having a strongly minimal theory. Let a and b be
vertices of G such that dimg(a,b) = 2. Let dg(a,b) be the length of
the shortest path (in G) from a to b if such a path exists and oo oth-
erwise. Prove that there are exactly three possible values for dg(a,b)
(including o).

Let T be a strongly minimal theory. Show that the following are
equivalent.

(i) T is locally modular.

(i) If T is expanded by adding one constant to the vocabulary, then the
result is modular.

(iii) Some expansion of T' by constants is modular.

Let T be a strongly minimal theory. Show that the following are

equivalent.

(i) T is modular.

(ii) If ¢ € aclpr (AU {b}), then ¢ € aclps({a,b}) for some a € A for any
model M of T and any subset A U {b} of the underlying set of M
with aclpy(A) = A.

(Hint: To show (ii) implies (i) use induction on n = dimys(A).)

5.38.

5.39.

5.40.
0.41.

5.42.

5.43.

5.44.

5.45.

First-order theories 265

Let Ry = {R|f,<,+,-,0,1} be an expansion of R,, where f is a unary

function.

(a) Show that if Ry interprets f(z) as a polynomial, then R; is
o-minimal. (Use the fact that R,y is o-minimal.)

(b) Show that if Ry interprets f(x) as sin(z), then Ry is not o-minimal.

(¢) For any real number z, the floor of z, denoted |z], is greatest integer
less than or equal to . Show that if Ry interprets f(x) as |«], then
Ry is not o-minimal.
Let M be a V-structure and let A be a subset of the universe U of M. The
definable closure of A in M, denoted delps(A), is the set of all d € U such
that M |= Vaz(x = d < ¢(z)) for some V(A)-formula ¢(x). (The formula
(x) is said to define the unique element d over A.) Show that if M is
o-minimal, then dclp(A) = aclp(A) for all A C U. Show that this is not
necessarily true if M is strongly minimal.

Show that Tra is not uncountably categorical.

We randomly construct a graph having vertices V' = {vy,v9,v3,...}. For
each pair of vertices v; and v;, we flip a coin. If the coin lands heads up,
v; and v; share an edge. Otherwise, they do not share an edge. Suppose
that our coin is unfair. Say that our coin lands heads up only 1 out of
1000 times. Show that (after flipping the coin infinitely many times) the
resulting random graph will be isomorphic to Gg (with probability 1).

We define a graph having N as vertices. Any natural number n can
be uniquely factored as pj* - pg? - pg®---pS&m where the p;s are dis-
tinct primes. We say that each of the exponents a; in this factorization
are “involved in n.” We now define our graph: two natural numbers
a and b share an edge if and only if either a is involved in b or b is
involved in a. Show that the resulting graph is isomorphic to the random
graph.

Show that for every substructure A of the random graph Gy, either G =
Aor Ggr & (Gg — A) (where (G — A) is the substructure having the
vertices that are not in A as an underlying set).

Show that the 0-1 law fails for vocabularies that are not relational.
(Hint: Consider the sentence 3z f(z) = x.)

Let T'acFp be the Vg, -theory of algebraically closed fields of characteristic

p (for prime p). Prove that, for any V,,-sentence ¢, the following are
equivalent:

(i) Tacro F ¢,

266 First-order theories

(ii) Tacrp = ¢ for sufficiently large primes p, and
(i) Tacrp = ¢ for arbitrarily large primes p.
5.46. Algebraically closed fields of any characteristic are necessarily infinite.

However, every finite subset of Tscrp has arbitrarily large finite models
for any prime p. Using this fact (and the previous exercise) prove Ax’s

theorem.

Az’s theorem: Let f(x) be a polynomial having complex coefficients. If
f :C — C is one-to-one, then f is onto.

6 Models of countable theories

We define and study types of a complete first-order theory 7T'. This concept allows
us to refine our analysis of Mod(T). If T has few types, then Mod(T') contains
a uniquely defined smallest model that can be elementarily embedded into any
structure of Mod(T'). We investigate the various properties of these small models
in Section 6.3. In Section 6.4, we consider the “big” models of Mod(T'). For any
theory, the number of types is related to the number of models of the theory. For
any cardinal x, I(T,) denotes the number of models in Mod(T') of size k. We
prove two basic facts regarding this cardinal function. In Section 6.5, we show
that if 7" has many types, then I(7T, k) takes on its maximal possible value of
2% for each infinite k. In Section 6.6, we prove Vaught’s theorem stating that
I(T,Ng) cannot equal 2.

All formulas are first-order formulas. All theories are sets of first-order sen-
tences. For any structure M, we conveniently refer to an n-tuple of elements
from the underlying set of M as an “n-tuple of M.”

6.1 Types

The notion of a type extends the notion of a theory to include formulas and not
just sentences. Whereas theories describe structures, types describe elements
within a structure.

Definition 6.1 Let M be a V-structure and let @ = (aq, ..., a,) be an n-tuple of
M. The type of a in M, denoted tpps(a), is the set of all V-formulas ¢(Z) having
free variables among x1, ..., x, that hold in M when each z; in Z is replaced by
a;. More concisely, but less precisely: tpy(a) = {¢(Z)|M = ¢(a)}.

If a is an n-tuple, then each formula in tpps(a) contains at most n free
variables but may contain fewer. In particular, the type of an n-tuple contains
sentences. For any structure M and tuple a of M, tpy(a) contains Th(M) as a
subset. The set tpys(a) provides the complete first-order description of the tuple
a and how it sits in M. This description is not necessarily categorical; many
tuples within the same structure may have the same type.

Example 6.2 Let Q_ be the structure (Q| <) that interprets < as the usual order
on the rational numbers. This structure is a model of the theory Tpro of dense
linear orders discussed in Section 5.4. Consider the four-tuple (—2,—1,1,2). The

268 Models of countable theories

type tpq_(—2,—1,1,2) contains the formulas z1 < z2, 2 < x3, and z3 < z4.
Since Tpro has quantifier elimination, for any four-tuple a = (a1, as,as, as)
of rational numbers, if a1 < as < a3z < a4 then tpq_(a) is the same as
tpq.(—2,-1,1,2).

Definition 6.3 Let I" be a set of formulas having free variables among z1, ..., z,.
A structure M realizes I if T is a nonempty subset of tpys(a) for some tuple a
of M. Otherwise, M is said to omit I'. The set T" is realizable if it is realized in

some structure.

Note the distinction between the terms realizable and satisfiable. The set
tpp(a) is realizable by definition, but rarely is tpys(a) satisfiable (see Exer-
cise 6.4). This is because tpr(a@) contains formulas that are not sentences. Recall
that a formula ¢(Z) is equivalent to the sentence VZ¢(Z). So when we say that
a formula ¢(z1,...,x,) is satisfiable, we mean that it holds for all n-tuples of a
structure. When we say that ¢(z1,...,x,) is realizable, we mean that it holds
for some n-tuple of a structure.

We now define the key concept of this chapter.

Definition 6.4 An n-type is a realizable set of formulas having free variables
among &1, ...,Ty. A type is an n-type for some n.

The sets tppr(a) are examples of types. Moreover, these are the only
examples we need to consider. Every type is a subset of tpys(a) for some M
and a. The types tpys(a) are called complete types. Types that are not complete
are called partial types. We typically use p, ¢, and r to denote types (T is used to
denote arbitrary sets of formulas). We often write a type with its free variables as
p(x1,...,2,). The notation p(ty,...,t,) represents the set of formulas obtained
by replacing each x; with the term t;.

Since types are generally not satisfiable, they are not consistent. This is
unfortunate. Much of the previous chapters has been devoted to consistent sets
of formulas. We can recover results from the previous chapters and apply them
to types by making the following observation: the formula (z) is realizable if
and only if the sentence ¢(c) is satisfiable for some constant c. We state this
more generally as the following proposition.

Proposition 6.5 Let I'(z1,...,2,) be a set of formulas having free variables
among &1, ...,Ty,. Let ¢1,...,c, be constants not in the vocabulary of I". Then
I'(z1,...,2,) is realizable if and only if I'(c1, ..., ¢,) is satisfiable.

Proof T'(zy,...,x,) is realizable if and only if

I(x1,...,2,) is a subset of tpys(a@) for some M and a.

Models of countable theories 269

This happens if and only if M’ =T (cy,...,¢,) where M’ is an expansion of
M that interprets the constants cq,...,c, as the tuple a of M. [

So for any realizable set of formulas, there is a closely related set of sentences
that is satisfiable. This allows us to apply properties regarding satisfiability to
types that are not satisfiable. In particular, the Compactness theorem remains
true when “satisfiable” is replaced with “realizable.”

Proposition 6.6 Let I'(x1,...,xz,) be a set of formulas having free variables
among xi,...,T,. Every finite subset of I' is realizable if and only if T" is
realizable.

Proof Let ¢q,...,c, be constants not in the vocabulary of I'.

By Proposition 6.5, I'(x1, ..., x,) is realizable if and only if T'(¢y,...,¢,) is
satisfiable.

By the Compactness theorem, I'(cy, . .., ¢,) is satisfiable if and only in every
finite subset of I'(cy, ..., ¢,) is satisfiable.

Finally, again by Proposition 6.5, every finite subset of I'(¢cy,...,¢,) is
satisfiable if and only if every finite subset of I'(z1,...,x,) is realizable. O

Let T be a complete theory. Any type that is realized in a model of T,
whether it is partial or complete, is called a type of T. The set of all complete
types of T is denoted S(T'). Equivalently, S(7T') is the set of all complete types
that contain T as a subset. We denote by S,,(T") the set of all n-types in S(T).

Corollary 6.7 Let T be a complete theory and let " be a set of formulas having
free variables among x1, ..., x,. If each finite subset of I' is a type of T', then I"
is an type of T.

Proof Apply Proposition 6.6 to the set TUT. [O

Example 6.