
www.dbebooks.com - Free Books & magazines

A First Course in Logic

This page intentionally left blank

A First Course in Logic
An introduction to model theory, proof theory,
computability, and complexity

S H A W N H E D M A N
Department of Mathematics, Florida Southern College

1

3
Great Clarendon Street, Oxford OX2 6DP
Oxford University Press is a department of the University of Oxford.
It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide in

Oxford NewYork
Auckland CapeTown Dar es Salaam HongKong Karachi
Kuala Lumpur Madrid Melbourne MexicoCity Nairobi
NewDelhi Shanghai Taipei Toronto

With offices in
Argentina Austria Brazil Chile CzechRepublic France Greece
Guatemala Hungary Italy Japan Poland Portugal Singapore
SouthKorea Switzerland Thailand Turkey Ukraine Vietnam

Oxford is a registered trade mark of Oxford University Press
in the UK and in certain other countries

Published in the United States
by Oxford University Press Inc., New York

c© Oxford University Press 2004

The moral rights of the author have been asserted

First published 2004

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means,

or as expressly permitted by law, or under terms agreed with the appropriate
reprographics rights organization. Enquiries concerning reproduction

Oxford University Press, at the address above

You must not circulate this book in any other binding or cover
and you must impose the same condition on any acquirer

A catalogue record for this title is available from the British Library
Library of Congress Cataloging in Publication Data
Data available

Typeset by Newgen Imaging Systems (P) Ltd., Chennai, India
Printed in Great Britain
on acid-free paper by

ISBN 0–19–852980–5 (Hbk)
ISBN 0–19–852981–3 (Pbk)

without the prior permission in writing of Oxford University Press,

outside the scope of the above should be sent to the Rights Department,

Biddles Ltd., King’s Lynn, Norfolk

10 9 8 7 6 5 4 3 2

Database right Oxford University Press (maker)

Reprinted (with corrections) 2006

To Julia

This page intentionally left blank

Acknowledgments

Florida Southern College provided a most pleasant and hospitable setting for the
writing of this book. Thanks to all of my friends and colleagues at the college. In
particular, I thank colleague David Rose and student Biljana Cokovic for reading
portions of the manuscript and offering helpful feedback. I thank my colleague
Mike Way for much needed technological assistance. This book began as lecture
notes for a course I taught at the University of Maryland. I thank my students
and colleagues in Maryland for their encouragement in beginning this project.

The manuscript was prepared using the MikTex Latex system with a GNU
Emacs editor. For the few diagrams that were not produced using Latex, the
Gimp was used (the GNU Image Manipulation Program). I would like to thank
the producers of this software for making it freely available.

I cannot adequately acknowledge all those who have shaped the subject
and my understanding of the subject contained within these pages. For the
many names of logicians and mathematicians mentioned in the book, I fear
there are many deserving names that I have left out. My apologies to those I have
slighted in this respect. Many people, through books and personal interaction,
have influenced my presentation of the subject. The books are included in the
bibliography. Of my teachers, two merit special mention. I thank John Baldwin
and David Marker at the University of Illinois at Chicago from whom I learned
so much not so long ago. It is my hope that this book should lead readers to
their outstanding books on Stability Theory and Model Theory.

Most importantly, I must acknowledge my wife Julia and our young children
Max and Sabrina. From Sabrina’s perspective, this book has been a life-long
project. To Julia and Max, it may have seemed like a lifetime. It is to Julia that
I owe the greatest debt of gratitude. Without Julia’s enduring patience, effort,
and support, this book certainly would not exist.

This page intentionally left blank

Contents

1 Propositional logic 1

1.1 What is propositional logic? 1
1.2 Validity, satisfiability, and contradiction 7
1.3 Consequence and equivalence 9
1.4 Formal proofs 12
1.5 Proof by induction 22

1.5.1 Mathematical induction 23
1.5.2 Induction on the complexity of formulas 25

1.6 Normal forms 27
1.7 Horn formulas 32
1.8 Resolution 37

1.8.1 Clauses 37
1.8.2 Resolvents 38
1.8.3 Completeness of resolution 40

1.9 Completeness and compactness 44

2 Structures and first-order logic 53

2.1 The language of first-order logic 53
2.2 The syntax of first-order logic 54
2.3 Semantics and structures 57
2.4 Examples of structures 66

2.4.1 Graphs 66
2.4.2 Relational databases 69
2.4.3 Linear orders 70
2.4.4 Number systems 72

2.5 The size of a structure 73
2.6 Relations between structures 79

2.6.1 Embeddings 80
2.6.2 Substructures 83
2.6.3 Diagrams 86

2.7 Theories and models 89

x Contents

3 Proof theory 99

3.1 Formal proofs 100
3.2 Normal forms 109

3.2.1 Conjunctive prenex normal form 109
3.2.2 Skolem normal form 111

3.3 Herbrand theory 113
3.3.1 Herbrand structures 113
3.3.2 Dealing with equality 116
3.3.3 The Herbrand method 118

3.4 Resolution for first-order logic 120
3.4.1 Unification 121
3.4.2 Resolution 124

3.5 SLD-resolution 128
3.6 Prolog 137

4 Properties of first-order logic 147

4.1 The countable case 147
4.2 Cardinal knowledge 152

4.2.1 Ordinal numbers 153
4.2.2 Cardinal arithmetic 156
4.2.3 Continuum hypotheses 161

4.3 Four theorems of first-order logic 163
4.4 Amalgamation of structures 170
4.5 Preservation of formulas 174

4.5.1 Supermodels and submodels 175
4.5.2 Unions of chains 179

4.6 Amalgamation of vocabularies 183
4.7 The expressive power of first-order logic 189

5 First-order theories 198

5.1 Completeness and decidability 199
5.2 Categoricity 205
5.3 Countably categorical theories 211

5.3.1 Dense linear orders 211
5.3.2 Ryll-Nardzewski et al. 214

5.4 The Random graph and 0–1 laws 216
5.5 Quantifier elimination 221

5.5.1 Finite relational vocabularies 222
5.5.2 The general case 228

5.6 Model-completeness 233
5.7 Minimal theories 239

Contents xi

5.8 Fields and vector spaces 247
5.9 Some algebraic geometry 257

6 Models of countable theories 267

6.1 Types 267
6.2 Isolated types 271
6.3 Small models of small theories 275

6.3.1 Atomic models 276
6.3.2 Homogeneity 277
6.3.3 Prime models 279

6.4 Big models of small theories 280
6.4.1 Countable saturated models 281
6.4.2 Monster models 285

6.5 Theories with many types 286
6.6 The number of nonisomorphic models 289
6.7 A touch of stability 290

7 Computability and complexity 299

7.1 Computable functions and Church’s thesis 301
7.1.1 Primitive recursive functions 302
7.1.2 The Ackermann function 307
7.1.3 Recursive functions 309

7.2 Computable sets and relations 312
7.3 Computing machines 316
7.4 Codes 320
7.5 Semi-decidable decision problems 327
7.6 Undecidable decision problems 332

7.6.1 Nonrecursive sets 332
7.6.2 The arithmetic hierarchy 335

7.7 Decidable decision problems 337
7.7.1 Examples 338
7.7.2 Time and space 344
7.7.3 Nondeterministic polynomial-time 347

7.8 NP-completeness 348

8 The incompleteness theorems 357

8.1 Axioms for first-order number theory 358
8.2 The expressive power of first-order number theory 362
8.3 Gödel’s First Incompleteness theorem 370
8.4 Gödel codes 374
8.5 Gödel’s Second Incompleteness theorem 380
8.6 Goodstein sequences 383

xii Contents

9 Beyond first-order logic 388

9.1 Second-order logic 388
9.2 Infinitary logics 392
9.3 Fixed-point logics 395
9.4 Lindström’s theorem 400

10 Finite model theory 408

10.1 Finite-variable logics 408
10.2 Classical failures 412
10.3 Descriptive complexity 417
10.4 Logic and the P = NP problem 423

Bibliography 426

Index 428

Preliminaries

What is a logic?
A logic is a language equipped with rules for deducing the truth of one sentence
from that of another. Unlike natural languages such as English, Finnish, and
Cantonese, a logic is an artificial language having a precisely defined syntax. One
purpose for such artificial languages is to avoid the ambiguities and paradoxes
that arise in natural languages. Consider the following English sentence.

Let n be the smallest natural number that cannot be defined in fewer than
20 words.

Since this sentence itself contains fewer than 20 words, it is paradoxical. A logic
avoids such pitfalls and streamlines the reasoning process. The above sentence
cannot be expressed in the logics we study. This demonstrates the fundamental
tradeoff in using logics as opposed to natural languages: to gain precision we
necessarily sacrifice expressive power.

In this book, we consider classical logics: primarily first-order logic but
also propositional logic, second-order logic and variations of these three logics.
Each logic has a notion of atomic formula. Every sentence and formula can be
constructed from atomic formulas following precise rules. One way that the three
logics differ is that, as we proceed from propositional logic to first-order logic
to second-order logic, there is an increasing number of rules that allow us to
construct increasingly complex formulas from atomic formulas. We are able to
express more concepts in each successive logic.

We begin our study with propositional logic in Chapter 1. In the present
section, we provide background and prerequisites for our study.

What is logic?
Logic is defined as the study of the principles of reasoning. The study of logics
(as defined above) is the part of this study known as symbolic logic. Symbolic
logic is a branch of mathematics. Like other areas of mathematics, symbolic logic
flourished during the past century. A century ago, the primary aim of symbolic
logic was to provide a foundation for mathematics. Today, foundational studies
are just one part of symbolic logic. We do not discuss foundational issues in this

xiv Preliminaries

book, but rather focus on other areas such as model theory, proof theory, and
computability theory. Our goal is to introduce the fundamentals and prepare the
reader for further study in any of these related areas of symbolic logic. Symbolic
logic views mathematics and computer science from a unique perspective and
supplies distinct tools and techniques for the solution of certain problems. We
highlight many of the landmark results in logic achieved during the past century.

Symbolic logic is exclusively the subject of this book. Henceforth, when we
refer to “logic” we always mean “symbolic logic.”

Time complexity
Logic and computer science share a symbiotic relationship. Computers provide
a concrete setting for the implementation of logic. Logic provides language and
methods for the study of theoretical computer science. The subject of complex-
ity theory demonstrates this relationship well. Complexity theory is the branch
of theoretical computer science that classifies problems according to how difficult
they are to solve. For example, consider the following problem:

The Sum 10 Problem: Given a finite set of integers, does some subset
add up to 10?

This is an example of a decision problem. Given input as specified (in this
case, a finite set of integers) a decision problem asks a question to be answered
with a “yes” or “no.” Suppose, for example, that we are given the following set
as input:

{−26,−16,−12,−8,−4,−2, 7, 8, 27}.

The problem is to decide whether or not this set contains a subset of numbers
that add up to 10. One way to resolve this problem is to check every subset.
Since 10 is not in our set, such a subset must contain more than one number.
We can check to see if the sum of any two numbers is 10. We can then check
to see if the sum of any three numbers is 10, and so forth. This method will
eventually provide the correct answer to the question, but it is not efficient. We
have 29 = 512 subsets to check. In general, if the input contains n integers, then
there are 2n subsets to check. If the input set is large, then this is not feasible. If
the set contains 23 numbers, then there are more than 8 million subsets to check.
Although this is a lot of subsets, this is a relatively simple task for a computer. If,
however, there are more than, say, 100 numbers in the input set, then, even for
the fastest computer, the time required to check each subset exceeds the lifespan
of earth.

Preliminaries xv

Time complexity is concerned with the amount of time it takes to answer
a problem. To answer a decision problem, one must produce an algorithm that,
given any suitable input, will result in the correct answer of “yes” or “no.” An
algorithm is a step-by-step procedure. The “amount of time” is measured by how
many steps it takes to reach the answer. Of course, the bigger the input, the
longer it will take to reach a conclusion. An algorithm is said to be polynomial-
time if there is some number k so that, given any input of size n, the algorithm
reaches its conclusion in fewer than nk steps. The class of all decision problems
that can be solved by a polynomial-time algorithm is denoted by P. We said
that complexity theory classifies problems according to how difficult they are to
solve. The complexity class P contains problems that are relatively easy to solve.

To answer the Sum 10 Problem, we gave the following algorithm: check
every subset. If some subset adds up to 10, then output “yes.” Otherwise, output
“no.” This algorithm is not polynomial-time. Given input of size n, it takes at
least 2n steps for the algorithm to reach a conclusion and, for any k, 2n > nk

for sufficiently large n. So this decision problem is not necessarily in P. It is
in another complexity class known as NP (nondeterministic polynomial-time).
Essentially, a decision problem is in NP if a “yes” answer can be obtained in
polynomial-time by guessing. For example, suppose we somehow guess that the
subset {−26,−4,−2, 7, 8, 27} sums up to 10. It is easy to check that this guess
is indeed correct. So we quickly obtain the correct output of “yes.”

So the Sum 10 Problem is in NP. It is not known whether it is in P. The
algorithm we gave is not polynomial-time, but perhaps there exists a better
algorithm for this problem. In fact, maybe every problem in NP is in P. The
question of whether P = NP is not only one of the big questions of complexity
theory, it is one of the most famous unanswered questions of mathematics. The
Clay Institute of Mathematics has chosen this as one of its seven Millennium
Problems. The Clay Institute has put a bounty of one million dollars on the
solution for each of these problems.

What does this have to do with logic? Complexity theory will be a recurring
theme throughout this book. From the outset, we will see decision problems that
naturally arise in the study of logic. For example, we may want to know whether
or not a given sentence of propositional logic is sometimes true (likewise, we may
ask if the sentence is always true or never true). This decision problem, which
we shall call the Satisfiability Problem, is in NP. It is not known whether it is
in P. In Chapter 7, we show that the Satisfiability Problem is NP-complete.
This means that if this problem is in P, then so is every problem in NP. So if
we can find a polynomial time algorithm for determining whether or not a given
sentence of propositional logic is sometimes true, or if we can show that no such
algorithm exists, then we will resolve the P = NP problem.

xvi Preliminaries

In Chapter 10, we turn this relationship between complexity and logic on its
head. We show that, in a certain setting (namely, graph theory) the complexity
classes of P and NP (and others) can be defined as logics. For example, Fagin’s
Theorem states that (for graphs) NP contains precisely those decision problems
that can be expressed in second-order existential logic. So the P = NP problem
and related questions can be rephrased as questions of whether or not two logics
are equivalent.

From the point of view of a mathematician, this makes the P = NP problem
more precise. Our above definitions of P and NP may seem hazy. After all,
our definition of these complexity classes depends on the notion of a “step” of
an algorithm. Although we could (and will) precisely define what constitutes
a “step,” we utterly avoid this issue by defining these classes as logics. From
the point of view of a computer scientist, on the other hand, the relationship
between logics and complexity classes justifies the study of logics. The fact that
the familiar complexity classes arise from these logics is evidence that these logics
are natural objects to study.

Clearly, we are getting ahead of ourselves. Fagin’s Theorem is not men-
tioned until the final chapter. In fact, no prior knowledge of complexity theory is
assumed in this book. Some prior knowledge of algorithms may be helpful, but
is not required. We do assume that the reader is familiar with sets, relations,
and functions. Before beginning our study, we briefly review these topics.

Sets and structures
We assume that the reader is familiar with the fundamental notion of a set. We
use standard set notation:

x ∈ A means x is an element of set A,
x �∈ A means x is not an element of A,
∅ denotes the unique set containing no elements,
A ⊂ B means every element of set A is also an element of set B,
A ∪B denotes the union of sets A and B,
A ∩B denotes the intersection of sets A and B, and
A×B denotes the Cartesian product of sets A and B.

Recall that the union A ∪ B of A and B is the set of elements that are in A or
B (including those in both A and B), whereas the intersection A ∩B is the set
of only those elements that are in both A and B. The Cartesian product A×B
of A and B is the set of ordered pairs (a, b) with a ∈ A and b ∈ B. We simply
write A2 for A × A. Likewise, for n > 2, An denotes the Cartesian product of
An−1 and A. This is the set of n-tuples (a1, a2, . . . , an) with each ai ∈ A. For
convenience, A1 (the set of 1-tuples) is an alternative notation for A itself.

Preliminaries xvii

Example 1 Let A = {α,β, γ} and let B = {β, δ, ε}. Then

A ∪B = {α,β, γ, δ, ε},
A ∩B = {β},
A×B = {(α,β), (α, δ), (α, ε), (β,β), (β, δ), (β, ε), (γ,β), (γ, δ), (γ, ε)},

and B2 = {(β,β), (β, δ), (β, ε), (δ,β), (δ, δ), (δ, ε), (ε,β), (ε, δ), (ε, ε)}.

Two sets are equal if and only if they contain the same elements. Put another
way, A = B if and only if both A ⊂ B and B ⊂ A. In particular, the order and
repetition of elements within a set do not matter. For example,

A = {α,β, γ} = {γ,β,α} = {β,β,α, γ} = {γ,α,β,β,α}.

Note that A ⊂ B includes the possibility that A = B. We say that A is a proper
subset of B if A ⊂ B and A �= B and A �= ∅.

A set is essentially a database that has no structure. For an example of a
database, suppose that we have a phone book listing 1000 names in alphabetical
order along with addresses and phone numbers. Let T be the set containing these
names, addresses, and phone numbers. As a set, T is a collection of 3000 elements
having no particular order or other relationships. As a database, our phone book
is more than merely a set with 3000 entries. The database is a structure: a set
together with certain relations.

Definition 2 Let A be a set. A relation R on A is a subset of An (for some
natural number n). If n = 1, 2, or 3, then the relation R is called unary, binary,
or ternary respectively. If n is bigger than 3, then we refer to R as an n-ary
relation. The number n is called the arity of R.

As a database, our phone book has several relations. There are three types
of entries in T : names, numbers, and addresses. Each of these forms a subset of
T , and so can be viewed as a unary relation on T . Let N be the set of names in
T , P be the set of phone numbers in T , and A be the set of addresses in T . Since
a “relation” typically occurs between two or more objects, the phrase “unary
relation” is somewhat of an oxymoron. We continue to use this terminology, but
point out that a “unary relation” should be viewed as a predicate or an adjective
describing elements of the set.

We assume that each name in the phone book corresponds to exactly one
phone number and one address. This describes another relation between the
elements of T . Let R be the ternary relation consisting of all 3-tuples (x, y, z)
of elements in T 3 such that x is a name having phone number y and address z.
Yet another relation is the order of the names. The phone book, unlike the set
T , is in alphabetical order. Let the symbol < represent this order. If x and y

xviii Preliminaries

are elements of N (that is, if they are names in T), then x < y means that x
precedes y alphabetically. This order is a binary relation on T . It can be viewed
as the subset of T 2 consisting of all ordered pairs (x, y) with x < y.

Structures play a primary role in the study of first-order logic (and other
logics). They provide a context for determining whether a given sentence of the
logic is true or false. First-order structures are formally introduced in Chapter 2.
In the previous paragraphs, we have seen our first example of a structure: a
phone book. Let D denote the database we have defined. We have

D = (T |N ,P ,A,<,R).

The above notation expresses that D is the structure having set T and the five
relations N , P , A, <, and R on T .

Although a phone book may not seem relevant to mathematics, the objects
of mathematical inquiry often can be viewed as structures such as D. Number
systems provide familiar examples of infinite structures studied in mathematics.
Consider the following sets:

N denotes the set of natural numbers: N = {1, 2, 3, ...},
Z denotes the set of integers: Z = {...,−3,−2,−1, 0, 1, 2, 3, ...}, and
Q denotes the set of rational numbers: Q = {a/b|a, b ∈ Z}.
R denotes the set of real numbers: R is the set of all decimal expansions of

the form z.a1a2a3 · · · where z and each ai are integers and 0 ≤ ai ≤ 9.
C denotes the set of complex numbers: C = {a+bi|a, b ∈ R} where i =

√
−1.

Note that N, Z, Q, R, and C each represents a set. These number sys-
tems, however, are more than sets. They have much structure. The structure
includes relations (such as < for less than) and functions (such as + for addi-
tion). Depending on what our interests are, we may consider these sets with any
number of various functions and relations.

The interplay between mathematical structures and formal languages is
the subject of model theory. First-order logic, containing various relations and
functions, is the primary language of model theory. We study model theory in
Chapters 4–6. As we shall see, the perspective of model theory sheds new light
on familiar structures such as the real and complex numbers.

Functions
The notation f : A→ B expresses that f is a function from set A to a subset of
set B. This means that, given any a ∈ A as input, f yields at most one output
f(a) ∈ B. It is possible that, given a ∈ A, f yields no output. In this case we say
that f(a) is undefined. The set of all a ∈ A for which f does produce an output is

Preliminaries xix

called the domain of f . The range of f is the set of all b ∈ B such that b = f(a)
for some a ∈ A. If the range of f is all of B, then the function is said to be onto B.

The graph of f : A → B is the subset of A × B consisting of all ordered
pairs (a, b) with f(a) = b. If A happens to be Bn for some n ∈ N, then we say
that f is a function on B and n is the arity of f . In this case, the graph of f
is an (n + 1)-ary relation on B. The inverse graph of f : A → B is obtained by
reversing each ordered pair in the graph of f . That is, (b, a) is in the inverse
graph of f if and only if (a, b) is in the graph of f . The inverse graph does not
necessarily determine a function. If it does determine a function f−1 : B → A

(defined by f−1(b) = a if and only if (b, a) is in the inverse graph of f) then f−1

is called the inverse function of f and f is said to be one-to-one.
The concept of a function should be quite familiar to anyone who has com-

pleted a course in calculus. As an example, consider the function from R to R

defined by h(x) = 3x2 + 1. This function is defined by a rule. Put into words,
this rule states that, given input x, h squares x, then multiplies it by 3, and then
adds 1. This rule allows us to compute h(0) = 1, h(3) = 28, h(72) = 15553, and
so forth. In addition to this rule, we must be given two sets. In this example, the
real numbers serve as both sets. So h is a unary function on the real numbers.
The domain of h is all of R since, given any x in R, 3x2 + 1 is also in R. The
function h is not one-to-one since h(x) and h(−x) both equal the same number
for any x. Nor is h onto R since, given x ∈ R, h(x) = 3x2 + 1 cannot be less
than 1.

Other examples of functions are provided by various buttons on any calcu-
lator. Scientific calculators have buttons x2 , log x , sinx , and so forth. When
you put a number into the calculator and then push one of these buttons, the
calculator outputs at most one number. This is exactly what is meant by a “func-
tion.” The key phrase is “at most one.” As a nonexample, consider the square
root. Given input 4, there are two outputs: 2 and −2. This is not a function. If
we restrict the output to the positive square root (as most calculators do), then
we do have a function. It is possible to get less than one output: you may get
an ERROR message (say you input −35 and then push the log x button). The
domain of a function is the set of inputs for which an ERROR does not occur.
We can imagine a calculator that has a button h for the function h defined in
the previous paragraph. When you input 2 and then push h , the output is 13.
This is what h does: it squares 2, multiplies it by 3, and adds 1. Indeed, if we
have a programmable calculator we could easily make it compute h at the push
of a button.

Intuitively, any function behaves like a calculator button. However, this
analogy must not be taken literally. Although calculators provide many examples
of familiar functions, most functions cannot be programmed into a calculator.

xx Preliminaries

Definition 3 A function f is computable if there exists a computer program
that, given input x,

• outputs f(x) if x is in the domain of f , and

• yields no output if x is not in the domain of f .

As we will see in Section 2.5, most functions are not computable. However,
it is hard to effectively demonstrate a function that is not computable. How
can we uniquely describe a particular function without providing a means for
its computation? As we will see, logic provides many examples. Computability
theory is a subject of Chapter 7. Odd as it may seem, computability theory
studies things that cannot be done by a computer. This subject arose from
Gödel’s proof of his famous Incompleteness theorems. Proved in 1931, Gödel’s
theorems rank among the great mathematical achievements of the past century.
They imply that there is no computer algorithm to determine whether or not a
given statement of arithmetic is true or false. Again, we are getting way ahead
of ourselves. We will come to Gödel’s theorems (as well as Fagin’s theorem) and
state them precisely in due time. Let us now end our preliminary ramblings and
begin our study of logic.

1 Propositional logic

1.1 What is propositional logic?
In propositional logic, atomic formulas are propositions. Any assertion will do.
For example,

A = “Aristotle is dead,”

B = “Barcelona is on the Seine,” and

C = “Courtney Love is tall”

are atomic formulas. Atomic formulas are the building blocks used to construct
sentences. In any logic, a sentence is regarded as a particular type of formula.
In propositional logic, there is no distinction between these two terms. We use
“formula” and “sentence” interchangeably.

In propositional logic, as with all logics we study, each sentence is either
true or false. A truth value of 1 or 0 is assigned to the sentence accordingly. In
the above example, we may assign truth value 1 to formula A and truth value
0 to formula B. If we take proposition C literally, then its truth is debatable.
Perhaps it would make more sense to allow truth values between 0 and 1. We
could assign 0.75 to statement C if Miss Love is taller than 75% of American
women. Fuzzy logic allows such truth values, but the classical logics we study
do not.

In fact, the content of the propositions is not relevant to propositional logic.
Henceforth, atomic formulas are denoted only by the capital letters A, B, C,. . .
(possibly with subscripts) without referring to what these propositions actually
say. The veracity of these formulas does not concern us. Propositional logic is not
the study of truth, but of the relationship between the truth of one statement
and that of another.

The language of propositional logic contains words for “not,” “and,” “or,”
“implies,” and “if and only if.” These words are represented by symbols:

¬ for “not,” ∧ for “and,” ∨ for “or,”

→ for “implies,” and ↔ for “if and only if.”

As is always the case when translating one language into another, this corres-
pondence is not exact. Unlike their English counterparts, these symbols represent
concepts that are precise and invariable. The meaning of an English word, on the

2 Propositional logic

other hand, always depends on the context. For example, ∧ represents a concept
that is similar but not identical to “and.” For atomic formulas A and B, A ∧B
always means the same as B∧A. This is not always true of the word “and.” The
sentence

She became violently sick and she went to the doctor.

does not have the same meaning as

She went to the doctor and she became violently sick.

Likewise ∨ differs from “or.” Conversationally, the use of “A or B” often pre-
cludes the possibility of both A and B. In propositional logic A∨B always means
either A or B or both A and B.

We must precisely define the symbols ¬, ∧, ∨, →, and ↔. We are confronted
with the conundrum of how to define the first word of a language (having recourse
to no other words!). For this reason, we take the symbols ¬ and ∧ as primitives.
We define the other symbols in terms of these two symbols. Although we do not
define ¬ and ∧ in terms of the other symbols, we do describe the semantics of
these symbols in an unambiguous manner.

Before describing the semantics of the language, we discuss the syntax.
Whereas the semantics regards the meaning, or interpretation, of sentences in
the language, the syntax regards the grammar of the language. The syntax of
propositional logic tells us which strings of symbols are permissible as formulas.
Naturally, any atomic formula is a formula. We also have the following two rules.

(R1) If F is a formula, then ¬F is a formula.
(R2) If F and G are formulas, then (F ∧G) is a formula.

Definition 1.1 The formula ¬F is the negation of F
and the formula (F ∧G) is the conjunction of F and G.

Definition 1.2 A finite string of symbols is a formula of propositional logic if
and only if it is built up from atomic formulas by repeated application of rules
(R1) and (R2).

Example 1.3 ¬(¬(A ∧B) ∧ ¬C) is a formula and ((A¬∧)B(C¬ is not.

Note that we have restricted the definition of formula to the primitive
symbols ¬ and ∧. If we were describing the syntax of propositional logic to
a computer, then this definition of formula would suffice. However, to make for-
mulas more palatable to humans, we include the other symbols (∨, →, and ↔)
to be defined later. We may regard formulas involving these symbols as abbre-
viations for more complicated formulas involving only ¬ and ∧. The inclusion of
these symbols make the formulas easier (for us humans) to read.

Propositional logic 3

Also toward the aim of readability, we employ certain conventions. The use
of these abbreviations and conventions alters our notion of “formula” somewhat.
One of these conventions is the following:

(C1) If F or (F) is a formula, then we view F and (F) as the same formula.

That is, we may drop the outermost parentheses. This extends our definition of
formula. Technically, by the above definition, A ∧ B is not a formula. However,
using convention (C1), we do not distinguish A ∧B from the formula (A ∧B).

The use of convention (C1) leads to some ambiguities that we presently
address. Suppose that, in (R1), F denotes A ∧B (which, by (C1) is a formula).
Then ¬F does not represent the formula ¬A∧B. Rather, ¬F denotes the formula
¬(A ∧ B). As we shall see, ¬A ∧ B and ¬(A ∧ B) do not mean the same thing.
Likewise, F ∧G denotes the formula (F) ∧ (G).

The use of (C1) also requires care in defining the notion of “subformula.”
A subformula of a formula F (viewed as a string of symbols) is a substring of
F that is itself a formula. However, because of (C1), not every such substring
is a subformula. So we do not want to take this property as the definition of
“subformula.” Instead, we define “subformula” as follows.

Definition 1.4 The following rules define the subformulas of a formula.

Any formula is a subformula of itself.
Any subformula of F is also a subformula of ¬F .
Any subformula of F or G is also a subformula of (F ∧G).

Example 1.5 Let A and B be atomic and let F be the formula ¬(¬A ∧ ¬B).

The formula A ∧ ¬B occurs as a substring of F , but it is not a subformula
of F . There is no way to build the formula F from the formula A∧¬B. The
subformulas of F are A, B, ¬A, ¬B, (¬A ∧ ¬B), and ¬(¬A ∧ ¬B).

Having described the syntax of propositional logic, we now describe the
semantics. That is, we say how to interpret the formulas. Not only must we
describe the semantics for the symbols “∧” and “¬,” but we must also say how
to interpret formulas in which these symbols occur together. For this we state the
order of operations. It is the role of parentheses to dictate which subformulas are
to be considered first when interpreting a formula. If no parentheses are present,
then we use the following rule:

¬ has priority over ∧ .

For example, the formula ¬(A∧B) means “not both A and B.” The parentheses
tell us that the “∧” in this formula has priority over “¬.” The formula ¬A ∧B,

4 Propositional logic

on the other hand, has a different interpretation. In the absence of parentheses,
we use the rule that ¬ has priority over ∧. So this formula means “both not
A and B.”

The semantics of propositional logic is defined by this rule along with
Tables 1.1 and 1.2.

These are examples of truth tables. Each row of these tables assigns truth
values to atomic formulas and gives resulting truth values for more complex
formulas. For example, the third row of Table 1.1 tells us that if A is true and B
is false, then (A∧B) is false. We see that (A∧B) has truth value 1 only if both
A and B have truth value 1, corresponding to our notion of “and.” Likewise,
Table 1.2 tells us that ¬A has the opposite truth value of A, corresponding to
our notion of negation.

Using these two truth tables, we can find truth tables for any formula. This
is because every formula is built from atomic formulas via rules (R1) and (R2).
Suppose, for example, we want to find a truth table for the formula ¬(¬A ∧ ¬B).
Given truth values for A and B, we can use Table 1.2 to find the truth values
of ¬A and ¬B. Given truth values for ¬A and ¬B, we can then use Table 1.1
to find the truth value of (¬A∧¬B). Finally, we can refer again to Table 1.2 to
find the truth value of ¬(¬A∧¬B). The resulting truth table for this formula is
shown in Table 1.3.

Note that the formulas listed across the top of Table 1.3 are precisely the sub-
formulas from Example 1.5. From this table we see that the formula ¬(¬A ∧ ¬B)
has truth value 1 if and only if A or B has truth value 1. This formula corres-
ponds to the notion of “or” discussed earlier. The symbol ∨ is used to denote
this useful notion.

Table 1.1 Truth table for A ∧ B

A B (A ∧ B)

0 0 0

0 1 0

1 0 0

1 1 1

Table 1.2 Truth table for ¬A

A ¬A

0 1

1 0

Propositional logic 5

Table 1.3 Truth table for (A ∨ B)

A B ¬A ¬B (¬A ∧ ¬B) ¬(¬A ∧ ¬B)

0 0 1 1 1 0

0 1 1 0 0 1

1 0 0 1 0 1

1 1 0 0 0 1

Table 1.4 Truth table for (A → B)

A B ¬A (B ∨ ¬A) (A → B)

0 0 1 1 1

0 1 1 1 1

1 0 0 0 0

1 1 0 1 1

Definition 1.6 The symbol ∨ is defined as follows: for any formulas F and G,
(F ∨ G) is an abbreviation for ¬(¬F ∧ ¬G). The formula (F ∨ G) is called the
disjunction of F and G.

Two other abbreviations that are convenient are the following.

Definition 1.7 The symbols → and ↔ are defined as follows:

(F → G) abbreviates (G ∨ ¬F), and
(F ↔ G) abbreviates ((F → G) ∧ (G→ F)).

We previously remarked that the symbol → corresponds to the English word
“implies” and the symbol ↔ corresponds to the phrase “if and only if.” Again,
these correspondences are merely mnemonic devices for the semantics of the
symbols. For example (A ↔ B) is true if A and B have the same truth values
and is otherwise false. So ↔ behaves exactly like the phrase “if and only if.” The
relationship between → and “implies” is a bit tenuous. Consider the truth table
for (A→ B) (Table 1.4).

We see that (A → B) is true unless A is true and B is false. In particular,
(A → B) is true whenever A is false. Thus, in logic, a false statement implies
anything. This differs from the colloquial use of the word “implies.” We would
not say “Barcelona is on the Seine implies Aristotle is dead” or, even more
egregious, “Barcelona is on the Seine implies Barcelona is not on the Seine.”
However, (A → B) and (A → ¬A) are true statements of propositional logic
whenever A is false.

6 Propositional logic

Having introduced new symbols, we must determine the order of operation
for these symbols. When evaluating the truth value of a formula, we must know
the order in which to proceed. Rather than ranking all of the symbols in a
hierarchy, we state just one rule:

¬ has priority over ∧, ∨, →, and ↔.

Beyond this, the parentheses dictate the order in which to proceed.

Example 1.8 Consider the formula ((¬A→ B)∧C)∨¬(A∧D). Call this formula
F . Suppose we know that the truth values for A, B, C, and D are 1, 0, 1, and
0, respectively. To evaluate the truth value for F we begin with the subformula
¬A (using Table 1.2) since ¬ has priority. We next evaluate the subformula
(¬A → B) (Table 1.4) which is in the innermost set of parentheses. We next
evaluate the truth values for ((¬A→ B)∧C) and (A∧D) (Table 1.1). We then
find the truth values for ¬(A∧D) (Table 1.2) and, finally, for F (Table 1.3). We
obtain the following truth values.

A B C D ¬A (¬A→ B) ((¬A→ B) ∧ C) (A ∧D) ¬(A ∧D) F

1 0 1 0 0 1 1 0 1 1

This is just one row of a truth table for this formula. We could choose other
truth values for A, B, C, and D other than 1, 0, 1, and 0. Since there are two
possible values for each of these four atomic formulas, there are 24 = 16 ways
to assign truth values to A, B, C, and D. So the full table has 16 rows. The
completion of this table is left as Exercise 1.3(d).

The role of parentheses is not only to determine the order of operations,
but also to make formulas more readable. Toward this aim, we omit parentheses
when they are not necessary. We have already discussed convention (C1) that
allows us to drop the outermost parentheses from the formula (F). We also use
the following convention:

(C2) For any formulas F , G, and H,
we view F ∧G ∧H as the same formula as (F ∧G) ∧H
and F ∨G ∨H as the same formula as (F ∨G) ∨H.

Since the formulas (F ∧ G) ∧ H and F ∧ (G ∧ H) have the same truth
tables, there is no ambiguity in dropping the parentheses and simply writing
F ∧ G ∧ H. In contrast, F ∧ G ∨ H is ambiguous and is not permitted as a
formula of propositional logic. The formulas (F ∧ G) ∨H and F ∧ (G ∨H) do
not have the same truth tables.

We have now completely defined propositional logic.

Propositional logic 7

In summary, propositional logic, like any logic, is a language. Its dictionary
contains the words ¬, ∧, ∨, →, and ↔. (The symbols “(” and “)” are used only as
punctuation.) The words ∨, →, and ↔ are defined in terms of ¬ and ∧. The words
¬ and ∧ are considered primitive and are listed in our hypothetical dictionary
without definition. The dictionary also contains infinitely many atomic formulas
that are merely listed as capital letters (with subscripts, perhaps). The grammar
of this language consists of the rules (R1) and (R2) along with conventions (C1)
and (C2) regarding parentheses.

Propositional logic, like any logic, also has rules for deduction. These rules
follow from the semantics of the logic. The semantics of propositional logic are
summarized by Tables 1.1 and 1.2 and the definitions of the symbols ∨, →, and
↔. The semantics and the rules for deduction that follow from the semantics
are implicit in the words “not,” “and,” “or,” “implies,” and “if and only if”
(although this correspondence is not exact). For example, if (A ∧ B) is true
(truth value 1), then we can deduce that both A and B are true. And if A→ B

and A both have truth value 1, then it follows that B also has truth value 1. We
discuss these and other rules for deduction in Section 1.5.

1.2 Validity, satisfiability, and contradiction
Let S = {A1, . . . ,An} be a set of atomic formulas. Let F(S) be the set of all
formulas that can be built from the atomic formulas in S.

Definition 1.9 An assignment of S is a function A : S → {0, 1}.

That is, an assignment of S assigns truth values to each atomic formula in
S. An assignment A of S naturally extends to all of F(S). Given any formula F
in F(S), an assignment A of S corresponds to a unique row of the truth table
for F . We define A(F) to be the truth value of F in this row.

An assignment A of S also extends to certain formulas not in F(S). Suppose
F0 is a formula that is not in F(S). Let S0 be the set of atomic subformulas of
F0. If every extension of A to S ∪ S0 has the same value for F0, then we define
A(F0) to be this value.

Example 1.10 Let A and B be atomic formulas. Let A be the assignment of
{A,B} defined by A(A) = 1 and A(B) = 0. Then

A(A ∧B) = 0,

A(A ∨B) = 1,

A(A ∧ (C ∨ ¬C)) = 1, and

A(B ∨ (C ∧ ¬C)) = 0.

8 Propositional logic

The reason A(A ∧ (C ∨ ¬C)) = 1 is that A(A) = 1 and, no matter what truth
value we assign to C, (C∨¬C) has truth value 1. Likewise A(B ∨ (C ∧ ¬C)) = 0
because both B and (C ∧ ¬C) have truth value 0, regardless of the truth
value of C.

Let A be an assignment of S and let F be a formula. If A(F) = 1, then we
say F holds under assignment A. Equivalently, we say A models F . We write
A |= F to denote this concept.

Definition 1.11 A formula is valid if it holds under every assignment. We use
|= F to denote this. A valid formula is called a tautology.

Example 1.12 The formula (C ∨¬C) from the previous example is a tautology.

Definition 1.13 A formula is satisfiable if it holds under some assignment.

Definition 1.14 A formula is unsatisfiable if it holds under no assignment. An
unsatisfiable formula is called a contradiction.

Example 1.15 The formula (C ∧ ¬C) is a contradiction.

Suppose that we want to determine whether or not a given formula is valid.
This is an example of a decision problem. A decision problem is any problem
that, given certain input, asks a question to be answered with a “yes” or a “no.”
Given formula F as input, we may ask “Is F valid?” We refer to this as the
validity problem. Likewise, we may ask “Is F satisfiable?,” and refer to this the
satisfiability problem. For propositional logic, truth tables provide a systematic
approach for resolving such decision problems. If all of the truth values for F are
1s, then F is valid. If some truth value is 1, then F is satisfiable. Otherwise, if
no truth values are 1s, F is unsatisfiable.

Example 1.16 Consider the formula (A∧(A→ B)) → B. To determine whether
this formula is satisfiable, we compute the following truth table.

A B A → B A ∧ (A → B) (A ∧ (A → B)) → B

0 0 1 0 1

0 1 1 0 1

1 0 0 0 1

1 1 1 1 1

We see that (A ∧ (A → B)) → B has truth value 1 under any assignment. So
not only is this formula satisfiable, it is valid.

Propositional logic 9

Example 1.17 Consider now the formula ((A → B) → A) ∧ ¬A. Suppose we
want to determine whether this formula is satisfiable or not. Again we compute
a truth table.

A B (A → B) ((A → B) → A) ¬A ((A → B) → A) ∧ ¬A

0 0 1 0 1 0

0 1 1 0 1 0

1 0 0 1 0 0

1 1 1 1 0 0

This formula is unsatisfiable. It is a contradiction.

Theoretically, we can determine whether any formula F is valid, satisfiable
or unsatisfiable by looking at a truth table. Unfortunately, this is not always
an efficient method. If F contains n atomic formulas, then there are 2n rows
to compute in the truth table for F . So if F happens to have, say, 23 atomic
formulas, then computing a truth table is not feasible. One of our aims in this
chapter is to find alternative methods for resolving the validity and satisfiability
problems that avoid truth tables. More generally, our aim is to contrive various
ways of determining whether or not a given formula is a consequence of a given
set of formulas. This is a central problem of any logic.

1.3 Consequence and equivalence
We now introduce the fundamental notion of consequence. First, we define what
it means for one formula to be a consequence of another. Later in this section,
we similarly define what it means for a formula to be a consequence of a set of
formulas.

Definition 1.18 Formula G is a consequence of formula F if for every assignment
A, if A |= F then A |= G. We denote this by F |= G.

Note that the symbol |= is used in a variety of ways. There is always a
formula to the right of this symbol. When we write |= F , the interpretation
of “|=” depends on how we fill in the blank. The blank may either be filled
with an assignment A, a formula G, or not filled with the empty set. The three
corresponding interpretations for |= are as follows:

• A |= F means that A(F) = 1. We read this as “A models F .”

• G |= F means every assignment that models G also models F . That is, F
is a consequence of G.

10 Propositional logic

• |= F means every assignment models F . That is, F is a tautology.

So although |= has multiple interpretations, in context it is not ambiguous.
The notion of consequence is closely related to the notion of “implies” dis-

cussed in Section 1.1. A formula G is a consequence of a formula F if and only
if “F implies G” is always true. We restate this as the following proposition.

Proposition 1.19 For any formulas F and G, G is a consequence of F if and
only if F → G is a tautology.

Proof We show that F → G is not a tautology if and only if G is not a
consequence of F .

By the definition of “tautology,” F → G is not a tautology if and only if
there exists an assignment A such that A |= ¬(F → G).

By the definition of “→,” A |= ¬(F → G) if and only if A |= ¬(¬F ∨G).
By the semantics of propositional logic, A |= ¬(¬F ∨G) if and only if both

A |= F and A |= ¬G.
Finally, by the definition of “consequence,” there exists an assignment A

such that A |= F and A |= ¬G if and only if G is not a consequence of F .

Suppose we want to determine whether or not formula G is a consequence
of a formula F . We refer to this as the consequence problem. By Proposition 1.19
this can be rephrased as a validity problem (since G is a consequence of F if
and only if G → F is valid). Such problems can be resolved by computing a
truth table. If the truth values for F → G are all 1s, then G is a consequence
of F . Otherwise, it is not. In particular, if F is a contradiction, then G is a
consequence of F regardless of G.

Example 1.20 Let F and G be formulas. Each of the following can easily be
verified by computing a truth table.

(F ∧G) |= F
F |= (F ∨G)

(F ∧ ¬F) |= G

Definition 1.21 If both G is a consequence of F and F is a consequence of G,
then we say F and G are equivalent. We denote this by F ≡ G.

It follows from Proposition 1.19 that two formulas F and G are equivalent
if and only if F ↔ G is a tautology. So we can determine whether two formulas
F and G are equivalent by computing a truth table. Each of the equivalences in
the following examples can easily be verified in this manner.

Example 1.22 For all formulas F andG, (F∧G) ≡ (G∧F) and (F∨G) ≡ (G∨F).

Propositional logic 11

Example 1.23 For any formula F and any tautology T , (F ∧ T) ≡ F and

(F ∨ T) ≡ T .

Example 1.24 For any formula F and any contradiction ⊥, (F ∧ ⊥) ≡ ⊥
and (F ∨ ⊥) ≡ F .

Example 1.25 (Distributivity rules) The following two equivalences exhibit the
distributivity rules for ∧ and ∨. For all formulas F , G, and H,

(F ∧ (G ∨H)) ≡ ((F ∧G) ∨ (F ∧H)) and

(F ∨ (G ∧H)) ≡ ((F ∨G) ∧ (F ∨H)).

Example 1.26 (DeMorgan’s rules) For all formulas F and G

¬(F ∧G) ≡ (¬F ∨ ¬G), and

¬(F ∨G) ≡ (¬F ∧ ¬G).

The equivalences in the previous examples are basic. Note that we refer
to some of these equivalences as “rules.” Each of these holds true for arbitrary
formulas. From these basic equivalences, more elaborate equivalences can be
created.

Example 1.27 Using the equivalences in the previous examples, we show that
((C ∧D)∨A)∧ ((C ∧D)∨B)∧ (E ∨¬E) ≡ (A∧B)∨ (C ∧D). Let L denote the
formula on the left in this equivalence. Note that (E ∨ ¬E) is a tautology. By
Example 1.23, L is equivalent to ((C ∧D)∨A)∧ ((C ∧D)∨B). According to the
second distributivity rule in Example 1.25, this is equivalent to (C∧D)∨(A∧B)
(viewing (C ∧D) as the formula F in that rule).

By Example 1.22, this is equivalent to (A∧B)∨(C∧D) which is the formula
on the right in our equivalence.

Using the basic rules in Examples 1.22–1.26, we were able to verify that
((C ∧D) ∨ A) ∧ ((C ∧D) ∨ B) ∧ (E ∨ ¬E) ≡ (A ∧ B) ∨ (C ∧D). This is itself
a rule, holding for any formulas A, B, C, D, and E. Alternatively, we could
have verified this equivalence by computing a truth table. Such a truth table
would have had 25 = 32 rows. The previously established rules provided a more
efficient method of verification.

Likewise, we could state “rules for consequence” that would allow us to
show that one formula is a consequence of another without having to com-
pute truth tables. In the next section, we exploit this idea and introduce the
notion of formal proof. Formal proofs allow us to “derive” formulas from sets
of formulas. The following definition extends the notion of consequence to this
setting.

12 Propositional logic

Definition 1.28 Let F = {F1,F2,F3, . . .} be a set of formulas.
For any assignment A, we say A models F , denoted A |= F if A |= Fi for

each formula Fi in F .
We say a formula G is a consequence of F , and write F |= G, if A |= F

implies A |= G for every assignment A.

Suppose that we want to determine whether a formula G is a consequence
of a set of formulas F . If F is finite, then we could consider the conjunction

∧F
of all formulas in F and compute a truth table for

∧F → G. This method would
certainly produce an answer. However, if the set F is large, then computing such
a truth table is neither an efficient, nor a pleasant, thing to do. If F is infinite,
then this method does not work at all. Another approach is to derive G from F .
Consider the following example.

Example 1.29 Let F be the following set of formulas

{A, (A→ B), (B → C), (C → D), (D → E), (E → F), (F → G)}.

Suppose each of the seven formulas in F is true. Then, in particular, A and
A → B are true. It follows that B must also be true. Likewise, since B and
B → C are true, then C must also be true, and so forth. If each formula in F
is true, then A, B, C, D, E, F , and G are true. Each of these formulas is a
consequence of F . We do not need a truth table to see this.

Let
∧F be the conjunction of all formulas in F . That is,∧

F = A ∧ (A→ B) ∧ (B → C) ∧ (C → D) ∧ (D → E) ∧ (E → F) ∧ (F → G).

The truth table for
∧F → G comprises 128 rows. Without computing a single

row, we can see that each row will have truth value 1. The formula
∧F → G is

a tautology and, equivalently, G is a consequence of F .

In the previous example, we repeatedly used the fact that if X and X → Y

are both true, then Y is also true. That is, we used the fact that Y is a con-
sequence of X ∧ (X → Y). This follows from the truth table we computed
in Example 1.16. Rather than compute another truth table (having 128 rows),
we used a truth table we have already computed (having only four rows) to
deduce that G is a consequence of F . We derived G from F using a previously
validated rule.

1.4 Formal proofs
A logic, by definition, has rules for deducing the truth of one sentence from
that of another. These rules yield a system of formal proof. In this section, we
describe such a proof system for propositional logic.

Propositional logic 13

A proof system consists of a set of basic rules for derivations. These rules
allow us to deduce formulas from sets of formulas. It may take several steps
to derive a given formula G from a set of formulas F , where each “step” is an
application of one of the basic rules. The list of these steps forms a formal proof
of G from F .

Of particular interest is the relationship between the notion of formal proof
and the notion of consequence. We want a proof system that is sound. That is,
we want the following property to hold.

(Soundness) If a formula G can be derived from a set of formulas F ,
then G is a consequence of F .

If a proof system is sound, then it provides an alternative to truth tables
for determining whether a formula G is a consequence of a set of formulas F . In
this section, we present a proof system and prove that it is sound. We use this
proof system in several examples. The proof system we introduce is intended to
be user-friendly. To construct a proof deriving G from F , one may consider the
question: why is G a consequence of F? The object is then to translate one’s
reasoning into a formal proof. Although this process is necessarily pedantic, the
large yet coherent set of basic rules we provide is intended to aid the translation
of thought into formal proof.

The aim of a formal proof system is to make the thought process infallible.
Ideally, the proof system could replace the thought process. Instead of thinking,
we could blindly follow a set of rules. If two people disagree about whether G
truly is a consequence of F , there would be no need for debate. Both parties
could perform a computation to see whether or not G is indeed a consequence of
F . The reason that “not thinking” is ideal is that we could program a computer
to perform this task. In Section 1.8, we introduce another proof system known
as resolution. Resolution is a pared down proof system that takes the think-
ing out of formal proofs. Whereas resolution is intended for the mechanization
of proofs, the proof system we describe in the present section is intended for
human use.

We now list the basic rules for our proof system. The veracity of many of
these rules is self-evident. For example, if F and G can be derived from F , then
F ∧ G can also be derived from F . We call this rule “∧-Introduction.” We use
the following notation: we write F � G to abbreviate “G can be derived from
F .” Using this notation, ∧-Introduction is written as:

if F � F and F � G then F � (F ∧G).

Table 1.5 lists this and other basic rules for derivations.

14 Propositional logic

Table 1.5 Basic rules for derivations

Premise Conclusion Name

G is in F F � G Assumption

F � G and F ⊂ F ′ F ′ � G Monotonicity

F � G F � ¬¬G Double negation

F � F , F � G F � (F ∧ G) ∧-Introduction
F � (F ∧ G) F � F ∧-Elimination

F � (F ∧ G) F � (G ∧ F) ∧-Symmetry

F � F F � (F ∨ G) ∨-Introduction
F � (F ∨ G),

F ∪ {F} � H, F ∪ {G} � H F � H ∨-Elimination

F � (F ∨ G) F � (G ∨ F) ∨-Symmetry

F ∪ {F} � G F � (F → G) →-Introduction

F � (F → G), F � F F � G →-Elimination

F � F F � (F) (,)-Introduction

F � (F) F � F (,)-Elimination

F � ((F ∧ G) ∧ H) F � (F ∧ G ∧ H) ∧-Parentheses rule
F � ((F ∨ G) ∨ H) F � (F ∨ G ∨ H) ∨-Parentheses rule

Table 1.6 More rules for derivations

Rules Name

F � (F ∨ G) if and only if F � ¬(¬F ∧ ¬G) ∨-Definition
F � (F → G) if and only if F � (¬F ∨ G) →-Definition

F � (F ↔ G) if and only if both F � (F → G) and F � (G → F) ↔-Definition

There are a lot of rules. Note the organization of the list. It begins with
a couple of rules that are quite intuitive: Assumption and Monotonicity. There
follow a few similarly named rules for various symbols of propositional logic. The
four rules that conclude the list reflect conventions (C1) and (C2). In addition
to the rules in Table 1.5, we have the rules in Table 1.6 regarding the definitions
of ∨, →, and ↔.

Our list of rules is both too big and too small. It is too big in the sense
that some of these rules are redundant. For example, since ∨ can be expressed
in terms of ¬ and ∧, ∨-Symmetry follows from ∧-Symmetry (see Exercise 1.13).
We could pare these redundant rules from our list. In fact, we really need only

Propositional logic 15

three rules! These rules must be phrased within the proper context and are the
topic of Section 1.8. Our present concern is not economy, but utility. These rules
allow us to derive formulas from other formulas. The more rules at our disposal,
the better. In this sense, the above list is too small. As we shall see, there is no
end to the rules that can be derived from those stated above.

Having listed these rules for derivations, we now define “formal proof.”

Definition 1.30 A formal proof in propositional logic is a finite sequence of
statements of the form “X � Y ” (where X is a set of formulas and Y is a
formula) each of which follows from the previous statements by one of the rules
in Table 1.5 or Table 1.6. We say that G can be derived from F if there is a
formal proof concluding with the statement F � G.

A formal proof can always be put into two-column form. The best way to
describe formal proofs is to give an example.

Example 1.31 Let H = {(¬A ∨B), (¬A ∨ C), (A ∨ ¬D)}.
We derive the formula D → (A ∧B ∧ C) from H.

Statement Justification

1. H ∪ {D} � D Assumption

2. H ∪ {D} � (A ∨ ¬D) Assumption

3. H ∪ {D} � (¬D ∨ A) ∨-Symmetry applied to 2

4. H ∪ {D} � (D → A) →-Definition applied to 3

5. H ∪ {D} � A →-Elimination applied to 4 and 1

6. H ∪ {D} � (¬A ∨ B) Assumption

7. H ∪ {D} � (A → B) →-Definition applied to 6

8. H ∪ {D} � B →-Elimination applied to 7 and 5

9. H ∪ {D} � (¬A ∨ C) Assumption

10. H ∪ {D} � (A → C) →-Definition applied to 9

11. H ∪ {D} � C →-Elimination applied to 10 and 5

12. H ∪ {D} � (A ∧ B) ∧-Introduction applied to 5 and 8

13. H ∪ {D} � ((A ∧ B) ∧ C) ∧-Introduction applied to 12 and 11

14. H ∪ {D} � (A ∧ B ∧ C) ∧-Parenthesis rule applied to 13

15. H � (D → (A ∧ B ∧ C)) →-Introduction applied to 14

16. H � D → (A ∧ B ∧ C) (,)-Elimination

At first glance, the above proof looks like a complicated way of demonstrat-
ing a fact that is not so complicated. However, reading the proof line-by-line we
see that each line asserts a simple truth that is easy to verify. Proofs can be made

16 Propositional logic

more succinct by using additional rules. For example, note that in the previous
proof we repeatedly introduced the symbol → only to eliminate it. Instead, we
could have separately proved the following rule.

Premise: F � (¬F ∨G), F � F
Conclusion: F � G

Statement Justification

1. F � F Premise

2. F � (¬F ∨ G) Premise

3. F � (F → G) →-Definition applied to 2

4. F � G →-Elimination applied to 3 and 1

The proof in Example 1.31 essentially repeats the above argument three times.
We can treat this four-line proof as a subroutine. Had we established this rule
prior to Example 1.31, we could have referred to it three times to make the proof
more concise. For lack of a better name, we christen this rule ∨-Modus Ponens.
“Modus ponens” is a standard name for the rule we call →-Elimination. As the
archaic name suggests, this rule has been around for a while. It is found in what
can be considered the origin of formal proofs: Euclid’s Elements. The next five
examples establish some other rules that facilitate the construction of proofs.

Example 1.32 (Tautology rule) This rule states that, for any formula G,
(¬G ∨G) can be derived from any set of formulas.

Premise: None
Conclusion: F � (¬G ∨G)

Statement Justification

1. F ∪ {G} � G Assumption

2. F � (G → G) →-Introduction applied to 1

3. F � (¬G ∨ G) →-Definition applied to 2

Example 1.33 (Contradiction rule) This rule states that any formula G can be
derived from the contradiction F ∧ ¬F .

Premise: F � (F ∧ ¬F)
Conclusion: F � G

Propositional logic 17

Statement Justification

1. F � (F ∧ ¬F) Premise

2. F � (¬F ∧ F) ∧-Symmetry applied to 1

3. F � ¬F ∧-Elimination applied to 2

4. F � (¬F ∨ G) ∨-Introduction applied to 3

5. F � F ∧-Elimination applied to 1

6. F � G ∨-Modus Ponens applied to 4 and 5

Example 1.34 (Contrapositive) This is the rule of logic that states that if p
implies q, then ¬q implies ¬p.

Premise: F ∪ {F} � G
Conclusion: F ∪ {¬G} � ¬F

Statement Justification

1. F ∪ {F} � G Premise

2. F ∪ {F} � ¬¬G Double negation applied to 1

3. F � (F → ¬¬G) →-Introduction applied to 2

4. F � (¬F ∨ ¬¬G) →-Definition applied to 3

5. F � (¬¬G ∨ ¬F) ∨-Symmetry applied to 4

6. F � (¬G → ¬F) →-Definition applied to 5

7. F ∪ {¬G} � (¬G → ¬F) Monotonicity applied to 6

8. F ∪ {¬G} � ¬G Assumption

9. F ∪ {¬G} � ¬F →-Elimination applied to 6 and 8

Example 1.35 (Proof by cases) This rule provides a useful way to structure a
proof.

Premise: F ∪ {F} � G, F ∪ {¬F} � G
Conclusion: F � G

Statement Justification

1. F ∪ {F} � G Assumption

2. F ∪ {¬F} � G Assumption

3. F � (¬F ∨ F) Tautology rule

4. F � G ∨-Elimination applied to 3, 2, and 1

18 Propositional logic

Example 1.36 (Proof by contradiction) Another way to structure a proof is by
contradiction. As the following proof indicates, proof by contradiction is (in this
context) essentially the contrapositive of proof by cases.

Premise: F ∪ {F} � G, F ∪ {F} � ¬G
Conclusion: F � ¬F

Statement Justification

1. F ∪ {F} � G Premise

2. F ∪ {¬G} � ¬F Contrapositive applied to 1

3. F ∪ {F} � ¬G Premise

4. F ∪ {¬¬G} � ¬F Contrapositive applied to 3

5. F � ¬F Proof by cases applied to 2 and 4

These are now established rules that may henceforth be used to justify state-
ments in proofs. By “established” we mean that these rules are true, provided
that the rules in Table 1.5 are true. We must prove that this is the case. We
must prove that our proof system is sound: that if G can be derived from F ,
then G is in fact a consequence of F .

Theorem 1.37 (Soundness) If F � G, then F |= G.
Proof If F � G, then there is a formal proof concluding with F � G. Each line
of the proof contains a statement of the form X � Y which is justified by one of
the rules in Tables 1.5 or 1.6. We want to show that for each line of the proof,
if X � Y , then X |= Y . This can be accomplished by verifying each rule in the
tables one-by-one. We demonstrate this by verifying three rules: Assumption,
∧-Elimination, and →-Introduction. The verification of the remaining rules are
left as an exercise.

We begin with the first rule of Table 1.5: Assumption. The conclusion of
this rule is that F � G. We must show, under the premise of this rule, that
F |= G. But this is clear since the premise states that G is in F (if A models F
then A must model G).

Refer next to ∧-Elimination. This rule states that if F � (F ∧ G), then
F � F . We must show that if F |= (F ∧G), then F |= F . That is, we must show
that F is a consequence of (F ∧G). This is verified by the following truth table.

F G (F ∧ G) ((F ∧ G) → F)

0 0 0 1

0 1 0 1

1 0 0 1

1 1 1 1

Propositional logic 19

Now consider →-Introduction. This rule states that if F∪{F} � G then F �
(F → G). To verify this, we must show that if F ∪{F} |= G then F |= (F → G).
Assuming that F ∪ {F} |= G, we want to show that, for any assignment A, if
A |= F , then A |= (F → G).

So suppose that A |= F and A(F) is defined. If A(F) = 0, then A |=
(F → G) regardless of the value of A(G). If, on the other hand, A(F) = 1,
then A |= F ∪ {F}. By our assumption, A |= G. In any case, we see that
A |= (F → G). Since A was an arbitrary assignment modeling F , we conclude
that F |= (F → G) as was required.

Essentially, we must verify that each rule is true when � is replaced by |=.
For most of the rules, like ∧-Elimination, this can be accomplished by computing
a small truth table. For the last four rules of Table 1.5, there is really nothing
to prove. These four rules hold by conventions (C1) and (C2). Also, each rule
in Table 1.6 is sound by virtue of the definitions of ∨, →, and ↔. We leave the
verification of the remaining rules in Table 1.5 as Exercise 1.22.

Formal proofs provide a method for showing that a formula is a consequence
of other formulas. The following Corollaries state that formal proofs can also
show that a formula is valid or unsatisfiable.

Corollary 1.38 If G can be derived from the empty set, then G is a tautology.

Proof If ∅ � G, then, by Monotonicity, F � G for every set of formulas F . By
Theorem 1.37, F |= G for every set of formulas F . It follows that A |= G for any
assignment A and G is a tautology.

Corollary 1.39 If¬G can be derived from the empty set, thenG is a contradiction.

Proof This is immediate from the previous Corollary and the definition of
“contradiction.”
Example 1.40 The following formal proof shows that ((A→ B)∨A) is a tautology.

Statement Justification

1. {¬A} � ¬A Assumption

2. {¬A} � (¬A ∨ B) ∨-Introduction applied to 1

3. {¬A} � (A → B) →-Definition applied to 2

4. {¬A} � ((A → B) ∨ A) ∨-Introduction applied to 3

5. {A} � A Assumption

6. {A} � (A ∨ (A → B)) ∨-Introduction applied to 5

7. {A} � ((A → B) ∨ A) ∨-Symmetry applied to 6

8. ∅ � ((A → B) ∨ A) Proof by cases applied to 4 and 7

Formal proofs can also show that two formulas are equivalent.

20 Propositional logic

Definition 1.41 Formulas F and G are provably equivalent if both {F} � G and
{G} � F .

Corollary 1.42 If F and G are provably equivalent, then they are equivalent.

Proof This follows immediately from Theorem 1.37.

Consider now the converses of Theorem 1.37 and its Corollaries. The-
orem 1.37 states that if G can be derived from F , then G is a consequence
of F . Is the opposite true? Can we derive from F every consequence of F? Can
every tautology be given a formal proof as in Example 1.40? If two formulas are
equivalent, does this mean we can prove that they are equivalent? We claim that
the answer to each of these questions is “yes.” We claim that every rule that is
true in propositional logic, all infinitely many of them, can be derived from the
rules in Tables 1.5 and 1.6. This is not obvious.

Example 1.43 It may seem that our list of rules is incomplete. For example,
the formulas F and ¬¬F are clearly equivalent. So if we can derive the formula
¬¬F from a set of formulas F , then we should also be able to derive F from
F . However this is not one of our rules. Double negation states that if F � F ,
then F � ¬¬F . We now show that the converse of Double negation, although
not stated as a rule, can be derived from our rules.

Premise: F � ¬¬F
Conclusion: F � F

Statement Justification

1. F � ¬¬F Premise

2. F ∪ {¬F} � ¬¬F Monotonicity applied to 1

3. F ∪ {¬F} � ¬F Assumption

4. F ∪ {¬F} � (¬F ∧ ¬¬F) ∧-Introduction applied to 3 and 2

5. F ∪ {¬F} � F Contradiction rule (1.33) applied to 4

6. F � {F} � F Assumption

7. F � F Proof by cases applied to 5 and 6

So not only are F and ¬¬F equivalent formulas, we can formally prove
that they are equivalent formulas. We claim that each of the equivalences in the
previous section are actually provably equivalent. In particular, we show that the
Distributivity rules from Example 1.25 and DeMorgan’s rules from Example 1.26
can be given formal derivations.

Proposition 1.44 (DeMorgan’s rules) The equivalent pairs of formulas in
Example 1.26 are each provably equivalent.

Propositional logic 21

Proof We prove this for the second of DeMorgan’s rules. We demonstrate formal
proofs for each of the following:

{¬(F ∨G)} � (¬F ∧ ¬G), and
{(¬F ∧ ¬G)} � ¬(F ∨G).

Statement Justification

1. {¬(¬F ∧ ¬G)} � (F ∨ G) ∨-Introduction
2. {¬(F ∨ G)} � ¬¬(¬F ∧ ¬G) Contrapositive

3. {¬(F ∨ G)} � (¬F ∧ ¬G) Double negation

Statement Justification

1. {(¬F ∧ ¬G)} ∪ {(F ∨ G)} � (F ∨ G) Assumption

2. {(¬F ∧ ¬G)} ∪ {(F ∨ G)} � (¬F ∧ ¬G) Assumption

3. {(¬F ∧ ¬G)} ∪ {(F ∨ G)} � ¬F ∧-Elimination applied to 2

4. {(¬F ∧ ¬G)} ∪ {(F ∨ G)} � G ∨-Elimination applied to 1 and 3

5. {(¬F ∧ ¬G)} ∪ {(F ∨ G)} � (¬G ∧ ¬F) ∧-Symmetry applied to 2

6. {(¬F ∧ ¬G)} ∪ {(F ∨ G)} � ¬G ∧-Elimination applied to 5

7. {(¬F ∧ ¬G)} � ¬(F ∨ G) Proof by contradiction

applied to 4 and 6

We have demonstrated that ¬(F∨G) and (¬F∧¬G) are provably equivalent.
The verification of DeMorgan’s first rule is left as Exercise 1.23.

Proposition 1.45 (∧-Distributivity) For any formulas F , G, andH, the formulas
(F ∧ (G ∨H)) and ((F ∧G) ∨ (F ∧H)) are provably equivalent.

Proof To prove this, we must derive each formula from the other. Instead of
providing formal proofs, we outline the derivations and leave the details to the
reader. First we show that (F ∧G)∨ (F ∧H) can be derived from F ∧ (G∨H).

Premise: F � F ∧ (G ∨H).
Conclusion: F � (F ∧G) ∨ (F ∧H)

We sketch a formal proof using Proof by cases. Assuming the premise, we
show that (F ∧G)∨ (F ∧H) can be derived from both F ∪ {G} and F ∪ {¬G}.

From the premise, we see that F ∪ {G} � F . It follows that (F ∧ G) can
be derived from F ∪ {G}. We then obtain F ∪ {G} � (F ∧ G) ∨ (F ∧ H) by
∨-Introduction.

22 Propositional logic

Next we show that F ∪{¬G} � (F ∧G)∨ (F ∧H). From the premise we see
that both F and (G∨H) can be derived from F ∪{¬G}. Since, F ∪{¬G} � ¬G,
we obtain F ∪{¬G} � H from (G∨H) by ∨-Modus Ponens. It follows that F ∪
{¬G} � (F ∧H). Finally, we get F∪{¬G} � (F ∧G)∨(F ∧H) by ∨-Introduction.

We must also show that the converse holds.

Premise: F � (F ∧G) ∨ (F ∧H)
Conclusion: F � F ∧ (G ∨H)

We prove this by twice applying ∨-Elimination. Since (G∨H) can be derived
from both (F∧G) and (F∧H), we obtain F � (G∨H) by applying ∨-Elimination
to the premise. We obtain F � F in the same manner. The conclusion then
follows by ∧-Introduction.

These arguments can be arranged as formal two-column proofs. We leave
this as Exercise 1.24.
Proposition 1.46 (∨-Distributivity) For any formulas F , G, andH, the formulas
(F ∨ (G ∧H)) and ((F ∨G) ∧ (F ∨H)) are provably equivalent.

Proof Exercise 1.25.
Of course, we do not need formal proofs to verify these equivalences. We

could use truth tables. In the case of the Distributivity rules and DeMorgan’s
rules, truth tables provide a more efficient method of verification than formal
proofs. For now, the importance of Propositions 1.44, 1.45, and 1.46 is that they
lend credence to our earlier claim that we can formally prove anything that is
true in propositional logic. Later, these propositions will help us prove this claim.

At the outset of this section, we said we would be interested in the rela-
tionship between the notion of formal proof and the notion of consequence. We
proved in Theorem 1.37 that if G can be formally proved from F then G is a
consequence of F . We stated, without proof, that the opposite of this is also
true: if F |= G then F � G. So the symbol |= introduced in the previous sec-
tion and the symbol � introduced in the present section mean the same thing
in propositional logic. This is the Completeness theorem for propositional logic,
the proof of which will be given at the conclusion of this chapter.

1.5 Proof by induction
There are two types of proofs that must be distinguished. We have discussed
and given several examples of formal proofs. This type of proof arises from
the rules of the logic. Such proofs are said to take place within the logic, and
we refer to them as internal proofs. Formal proofs have a limited scope. They
can prove only sentences that can be written in the logic. In contrast, we may
want to prove something about the logic itself. We may want to prove, say,

Propositional logic 23

that every sentence in the logic has a certain property. Such statements that
refer to the logic itself generally can neither be stated nor proved within the
logic. We give external proofs for such statements. External proofs are some-
times called meta-mathematical. However, this terminology belies the fact that
external proofs are often more mathematical in nature than formal proofs.

Induction is a method of external proof that is used repeatedly in this book.
Suppose that we want to prove that some property holds for every formula of
propositional logic. For example, in the next section we show that each formula of
propositional logic is equivalent to some formula in conjunctive normal form. We
will define “conjunctive normal form” later. Our present concern is the question
of how can we prove such a thing for all formulas. We need a systematic way to
check each and every formula F . We do this by induction on the complexity of
F . Induction on the complexity of F is analogous to mathematical induction.

1.5.1 Mathematical induction. Recall that mathematical induction is a
method of proof that allows us to prove something for all natural numbers. For
example, suppose we want to prove that for all natural numbers n, the number
11n − 4n is divisible by 7. Using mathematical induction, we can do this in two
steps. First, we show that the statement is true for n = 1. This is easy. Second,
we show that if the statement holds for n = m for some m, then it also holds for
n = m+1. This is the inductive step. In our example, we can do this by observing
that 11m+1 −4m+1 = 11m+1 −11 ·4m +7 ·4m = 11(11m −4m)+7 ·4m. It follows
that if 11m − 4m is divisible by 7, then so is 11m+1 − 4m+1. This completes the
proof. It’s like the domino effect. It is true for n = 1, and so, by the second step
of the proof, it must also be true for n = 2, and therefore n = 3, and n = 4, and
so forth. We conclude that for every natural number n, 11n−4n is divisible by 7.

An example of mathematical induction that is more relevant to proposi-
tional logic is provided by the proof of Proposition 1.47. This proposition is a
generalization of DeMorgan’s rules. First, we introduce some notation.

Notation 1 Let F1, . . . ,Fn be formulas. We write
n∧

i=1

Fi to abbreviate F1 ∧ F2 ∧ . . . ∧ Fn, and

n∨
i=1

Fi to abbreviate F1 ∨ F2 ∨ . . . ∨ Fn.

Proposition 1.47 Let {F1, . . . ,Fn} be a finite set of formulas. Then both

¬
(

n∧
i=1

Fi

)
≡
(

n∨
i=1

¬Fi

)
and ¬

(
n∨

i=1

Fi

)
≡
(

n∧
i=1

¬Fi

)
.

Proof We show that ¬(
∧n

i=1 Fi) ≡ (
∨n

i=1 ¬Fi) by induction on n.

24 Propositional logic

First, suppose n = 1. We need to show that ¬(
∧1

i=1 Fi) ≡ (
∨1

i=1 ¬Fi). By
the definitions of “

∧
” and “

∨
,” this is the same as ¬(F1) ≡ (¬F1), which is true

by convention (C1).
Our induction hypothesis is that, for some m ≥ 1 and any formulas

F1, . . . ,Fm, we have

¬
(

m∧
i=1

Fi

)
≡
(

m∨
i=1

¬Fi

)
.

We want to show that

¬
(

m+1∧
i=1

Fi

)
≡
(

m+1∨
i=1

¬Fi

)
.

By the definition of
∧

we have

¬
(

m+1∧
i=1

Fi

)
≡ ¬

((
m∧

i=1

Fi

)
∧ Fm+1

)
.

By DeMorgan’s rule we get

(1)¬
(

m+1∧
i=1

Fi

)
≡
(
¬
(

m∧
i=1

Fi

)
∨ ¬Fm+1

)
.

By our induction hypothesis,

¬
(

m∧
i=1

Fi

)
≡
(

m∨
i=1

¬Fi

)
.

(†) Substituting this into (1) yields

¬
(

m+1∧
i=1

Fi

)
≡
((

m∨
i=1

¬Fi

)
∨ ¬Fm+1

)
.

Finally, by the definition of
∨

we arrive at

¬
(

m+1∧
i=1

Fi

)
≡

m+1∨
i=1

¬Fi.

We have shown that ¬(
∧m+1

i=1 Fi) ≡ (
∨m+1

i=1 ¬Fi) as was required. We conclude
that ¬(

∧n
i=1 Fi) ≡ (

∨n
i=1 ¬Fi) for any n.

The second equivalence of the proposition follows from the first. Since
(
∨n+1

i=1 ¬Fi) ≡ ¬(
∧n+1

i=1 Fi) holds for any formulas Fi, it holds when each Fi

is replaced by ¬Fi: (
n+1∨
i=1

¬¬Fi

)
≡ ¬

(
n+1∧
i=1

¬Fi

)
.

Propositional logic 25

Since these two formulas are equivalent, their negations are also equivalent:

¬
(

n+1∨
i=1

¬¬Fi

)
≡ ¬¬

(
n+1∧
i=1

¬Fi

)
.

Now ¬(
∨n

i=1 Fi) ≡ (
∧n

i=1 ¬Fi) by double negation.

Likewise, we can generalize the distributivity rules as follows.

Proposition 1.48 Let {F1, . . . ,Fn} and {G1, . . . ,Gm} be finite sets of formulas.
The following equivalences hold:

(n∧
i=1

Fi

)
∨


 m∧

j=1

Gj




 ≡


 n∧

i=1


 m∧

j=1

(Fi ∨Gj)







(n∨

i=1

Fi

)
∧


 m∨

j=1

Gj




 ≡


 n∨

i=1


 m∨

j=1

(Fi ∧Gj)






Proof Exercise 1.27.
There is one unjustified step in the proof of Proposition 1.47. In the step

labeled with (†), we essentially said that if G′ ≡ G, then (G ∨ F) ≡ (G′ ∨ F).
Although this substitution makes intuitive sense, we have not yet established
this as a rule we may use. We validate this step in Theorem 1.49. We prove
this theorem by induction on the complexity of formulas. We now describe this
method of proof.

1.5.2 Induction on the complexity of formulas. Suppose we want to show
that property P holds for every formula F . We can do this by induction on
the complexity of F follows. First we show that every atomic formula possesses
property P. This corresponds to verifying case n = 1 in mathematical induction.
The atomic case is our induction basis. We then assume that property P holds
for formulas G and H. This is our induction hypothesis. Our aim is to show that
property P necessarily holds for ¬G, G∧H, G∨H, G→ H, and G↔ H. If we
succeed at this, then we can rightly conclude that P holds for all formulas. This
completes the proof.

Theorem 1.49 (Substitution theorem) Suppose F ≡ G. Let H be a formula
that contains F as a subformula. Let H ′ be the formula obtained by replacing
some occurrence of F in H with G. Then H ≡ H ′.
Proof We prove this by induction on the complexity of H.

First suppose H is atomic. Then the only subformula of H is H itself. So
F = H. It follows that H ′ = G and, since F ≡ G, we have H ≡ H ′.

26 Propositional logic

Our induction hypothesis is that the conclusion of the theorem holds for
formulas H1 and H2 each of which contains an occurrence of F as a subformula.
That is, H1 ≡ H ′

1 and H2 ≡ H ′
2 whenever H ′

1 and H ′
2 are formulas obtained

from H1 and H2 by replacing an occurrence of F with G.
Suppose H = ¬H1. Then H ′ = ¬H ′

1. Since H1 ≡ H ′
1, we have ¬H1 ≡ ¬H ′

1.
It follows that H ≡ H ′ as was required.

Suppose H is one of the following formulas: H1∧H2, H1∨H2, H1 → H2, or
H1 ↔ H2. Since F is a subformula of H, F is a subformula of H1, a subformula
of H2, or is H itself. If F = H, then we have H = F ≡ G = H ′ as in the atomic
case. So we may assume that the occurrence of F that is to be replaced by G
occurs either in H1 or H2. With no loss of generality, we may assume that it
occurs in H1.

If H = H1 ∧H2 then H ′ = H ′
1 ∧H2. In this case we have:

H1 ∧H2 is true if and only if
both H1 and H2 are true if and only if
both H ′

1 and H2 are true (since H1 ≡ H ′
1) if and only if

H ′
1 ∧H2 is true.

That is, H1 ∧H2 ≡ H ′
1 ∧H2. Since H ≡ H1 ∧H2, we have H ≡ H ′.

If H = H1 ∨ H2, then H ′ = H ′
1 ∨ H2. By the definition of ∨, we have

H ≡ ¬(¬H1 ∧ ¬H2) and H ′ ≡ ¬(¬H ′
1 ∧H2). It follows from the previous cases

(corresponding to ¬ and ∧) that H ≡ H ′.
If H = H1 → H2, then H ′ = H ′

1 → H2. By the definition of →, H ≡ (¬H1∨
H2 and H ′ ≡ (¬H ′

1 ∨H2). It follows from the previous cases (corresponding to
¬ and ∨) that H ≡ H ′.

If H = H1 ↔ H2, then H ′ = H ′
1 ↔ H2. By the definition of ↔, H ≡

(H1 → H2) ∧ (H2 → H1) and H ′ ≡ (H ′
1 → H2) ∧ (H2 → H1). It follows from

the previous cases (corresponding to ∧ and →) that H ≡ H ′.
We conclude that for any formula H that contains F as a subformula,

H ≡ H ′.

In fact, this theorem remains true when “≡” is replaced by “provably
equivalent.”

Theorem 1.50 Suppose that F and G are provably equivalent. Let H be a
formula that contains F as a subformula. Let H ′ be the formula obtained by
replacing some occurrence of F in H with G. Then H and H ′ are provably
equivalent.

Proof The proof is similar to the proof of Theorem 1.49. Proceed by induction
on the complexity of H. The induction hypothesis is that both

Propositional logic 27

H1 and H ′
1 are provably equivalent, and

H2 and H ′
2 are provably equivalent

where H ′
1 and H ′

2 are formulas obtained from H1 and H2 by replacing an occur-
rence of F with G. We want to verify in each of the five cases that H and
H ′ are provably equivalent. To do this, we refer to the rules in Tables 1.5
and 1.6 (whereas in the proof of Theorem 1.49 we referred to the semantics
of propositional logic). We leave the details of this proof as Exercise 1.28.

The word “induction” indicates that we are reasoning from a particular case
to the general case. Proofs by induction involve two steps and conclude that some
statement holds in general for all natural numbers or for all formulas. These
two steps are called the “base step” and the “induction step.” In mathematical
induction, the base step is the step where we show that the statement is true for
n = 1. If we are using induction on the complexity of formulas, then the base
step is the step where we verify the statement holds for all atomic formulas.

The induction step for mathematical induction is the step where we show
that, if the statement is true for n = m, then it is also true for n = m+ 1. The
induction step for induction on the complexity of formulas comprises five cases
corresponding to ¬, ∧, ∨, →, and ↔. Note that, in the proof of Theorem 1.49, the
cases corresponding to ∨, →, and ↔ followed quickly from the cases regarding
¬ and ∧. This is because ∨, →, and ↔ were defined in terms of ¬ and ∧. This
suggests an alternative form for the induction step which we now describe.

Suppose we want to show that some property P holds for all formulas of
propositional logic. To do this by induction on the complexity of formulas, we
first show that P holds for all atomic formulas (the base step). For the induction
step, instead of verifying the five cases as above, we can sometimes do just three
cases. First we show that P is preserved under equivalence. That is, we show
that if F ≡ G and G possess property P , then so does F . If this is true, then we
only need to consider the cases corresponding to ¬ and ∧. This suffices because
every formula of propositional logic is equivalent to a formula that uses only ¬
and ∧ (and neither ∨, →, nor ↔). We demonstrate this version of the induction
step in the next section where we prove that every formula in propositional logic
is equivalent to a formula that is in conjunctive normal form.

1.6 Normal forms
In Example 1.27 we showed that the formula ((C ∧D) ∨ A) ∧ ((C ∧D) ∨ B) ∧
(E ∨ ¬E) is equivalent to the formula (A ∧B) ∨ (C ∧D) which is a disjunction
of two conjunctions. In this section we show that there is nothing special about
((C ∧D) ∨A) ∧ ((C ∧D) ∨B) ∧ (E ∨ ¬E). Every formula of propositional logic

28 Propositional logic

is equivalent to a formula that is a disjunction of conjunctions. We begin with
some definitions.

Definition 1.51 A literal is an atomic formula or the negation of an atomic
formula, and we refer to these as being positive or negative, respectively.

Example 1.52 If A is an atomic formula, then A is a positive literal and ¬A is
a negative literal.

Definition 1.53 A formula F is in conjunctive normal form (CNF) if it is a
conjunction of disjunctions of literals. That is,

F =
n∧

i=1


 m∨

j=1

Li,j




where each Li,j is either atomic or a negated atomic formula.

Definition 1.54 A formula F is in disjunctive normal form (DNF) if it is a
disjunction of conjunctions of literals. That is,

F =
n∨

i=1


 m∧

j=1

Li,j




where each Li,j is either atomic or a negated atomic formula .

Example 1.55

(A ∨B) ∧ (C ∨D) ∧ (¬A ∨ ¬B ∨ ¬D) is in CNF ,

(¬A ∧B) ∨ C ∨ (B ∧ ¬C ∧D) is in DNF , and

(A ∨B) ∧ ((A ∧ C) ∨ (B ∧D)) is neither CNF nor DNF .

Lemma 1.56 Let F be a formula in CNF and G be a formula in DNF. Then ¬F
is equivalent to a formula in DNF and ¬G is equivalent to a formula in CNF.

Proof If F is in CNF, then F is the formula

n∧
i=1


 m∨

j=1

Li,j




for some literals Li,j . The negation of this formula

¬F = ¬
n∧

i=1


 m∨

j=1

Li,j




Propositional logic 29

is equivalent to

n∨
i=1

¬


 m∨

j=1

Li,j




by Proposition 1.47. Likewise, by the same proposition, this is equivalent to

n∨
i=1


 m∧

j=1

¬Li,j


 .

This formula is in DNF and is equivalent to ¬F .
Similarly, using Proposition 1.47 twice, we can prove that ¬G is equivalent to a
formula in CNF.
Theorem 1.57 Every formula F is equivalent to some formula F1 in CNF and
some formula F2 in DNF.

Proof We prove this by induction on the complexity of F .
First suppose F is atomic. Then F is already both CNF and DNF. So we

can take F1 = F2 = F .
Our induction hypothesis is that the conclusion of the theorem holds for

formulas G and H. That is, we suppose there exist formulas H1 and G1 in CNF
and H2 and G2 in DNF such that H ≡ H1 ≡ H2 and G ≡ G1 ≡ G2.

The property of being equivalent to formulas in CNF and DNF is clearly
preserved under equivalence. If F ≡ G, then, by our induction hypothesis, we
can just take F1 = G1 and F2 = G2. It therefore suffices to verify only two more
cases corresponding to ¬ and ∧.

Suppose first that F has the form ¬G. Then F ≡ ¬G1 ≡ ¬G2. Since G1 is in
CNF, ¬G1 is equivalent to a formula G3 in DNF by Lemma 1.56. Likewise, ¬G2

is equivalent to a formula G4 in CNF. So we can take F1 = G4 and F2 = G3.
Now suppose F has the form G ∧ H. Then F ≡ G1 ∧ H1 by substitution

(Theorem 1.49). Since G1 and H1 are both in CNF, so is their conjunction.
It remains to be shown that F = G ∧H is equivalent to a formula in DNF.

Again using Theorem 1.49, F ≡ G2∧H2. Since each of these formulas is in DNF,
they can be written as follows:

G2 =
∨
i

Mi and H2 =
∨
j

Nj

where each Mi and Nj is a conjunction of literals. We then have

F ≡
(∨

i

Mi

)
∧


∨

j

Nj


 .

30 Propositional logic

Using the second equivalence of Proposition 1.48, we have

F ≡
∨
i


∨

j

(Mi ∧Nj)




which is a disjunction of conjunctions of literals as was required.

Given a formula F , the previous theorem guarantees the existence of a
formula in DNF that is equivalent to F . Suppose we want to find such a formula.
One way to do this is to compute a truth table for F . For example, suppose F
has the following truth table.

A B F

0 0 1

0 1 0

1 0 1

1 1 0

Then F is true under assignment A if and only if A corresponds to row 1 or 3 of
the table. This leads to a formula in DNF. F is true if and only if either A and
B are both false (row 1) OR A is true and B is false (row 3). So F is equivalent
to (¬A ∧ ¬B) ∨ (A ∧ ¬B), which is in DNF.

Likewise, by considering the rows in which F is false, we can find an equival-
ent formula in CNF. F is true if and only if we are not in row 2 AND we are not in
row 4. That is, F is true if and only if A or ¬B holds (NOT row 2) AND ¬A or ¬B
holds (NOT row 4). So F is equivalent to (A∨¬B)∧(¬A∨¬B) which is in CNF .

This actually provides an alternative proof of Theorem 1.57. Given any
formula F , we can use a truth table to find equivalent formulas in CNF and
DNF. An alternative way to find a formula in CNF equivalent to F is provided
by the following algorithm. This algorithm is often, but not always, more efficient
than computing a truth table.

CNF Algorithm
Step 1: Replace all subformulas of the form F → G with (¬F ∨G) and all

subformulas of the form F ↔ G with (¬F ∨G) ∧ (¬G ∨ F). When there are no
occurrences of → or ↔, proceed to Step 2.

Propositional logic 31

Step 2: Get rid of all double negations and apply DeMorgan’s rules
wherever possible. That is, replace all subformulas of the form

¬¬G with G,

¬(G ∧H) with (¬G ∨ ¬H), and

¬(G ∨H) with (¬G ∧ ¬H).

When there are no subformulas having these forms, proceed to Step 3.
Step 3: Apply the distributivity rule for ∨ wherever possible. That is,

replace all subformulas of the form

(G ∨ (H ∧K)) or ((H ∧K) ∨G) with ((G ∨H) ∧ (G ∨K)).

If we rid our formula of these subformulas, then we are left with a formula
in CNF. If we change Step 3 to distributivity for ∧, then we would get a formula
in DNF.

Example 1.58 We demonstrate the CNF algorithm with

F = (A ∨B) → (¬B ∧A).

In Step 1, we get rid of →, rewriting the formula as

¬(A ∨B) ∨ (¬B ∧A).

In Step 2, we apply DeMorgan’s rule to obtain

(¬A ∧ ¬B) ∨ (¬B ∧A)

Proceeding to Step 3, we see that the formula in Step 2 is in DNF. In particular
it has the form (G∨ (H ∧K)) (taking G = (¬A∧¬B)). By distributivity, we get

((¬A ∧ ¬B) ∨ ¬B) ∧ ((¬A ∧ ¬B) ∨A).

We still have two ∨’s that need to be distributed:

(¬A ∨ ¬B) ∧ (¬B ∨ ¬B) ∧ (¬A ∨A) ∧ (¬B ∨A).

Now there are no subformulas of the form (G∨ (H ∧K)) or ((H ∧K)∨G) and so
we are done with Step 3. We see that we have a formula in CNF as was promised.
This formula is not written in the best form. Since (¬A ∨A) is a tautology, the
above formula is equivalent to (¬A∨¬B)∧ (¬B)∧ (¬B ∨A) which is equivalent
to (A ∨ ¬B) ∧ (¬A ∨ ¬B). Note that this is the same formula we obtained from
the truth table following the proof of Theorem 1.57.

Inspecting the CNF algorithm, we see that Theorem 1.57 can be
strengthened. This theorem states that for any formula F there exist formu-
las F1 in CNF and F2 in DNF that are equivalent to F . We now claim that F1

32 Propositional logic

and F2 are provably equivalent to F . To see this, consider the algorithm step-
by-step. In each step we replace certain subformulas with equivalent formulas.
In each case we can formally prove the equivalence. For convenience, we use the
notation F �� G to abbreviate “F and G are provably equivalent.”

Step 1:

F → G �� (¬F ∨G) by → -Definition

F ↔ G �� (¬F ∨G) ∧ (¬G ∨ F)by ↔ -Definition and → -Definition.

Step 2:

¬¬G �� G by Double negation and Example 1.43.

¬(G ∧H) �� (¬G ∨ ¬H) by Proposition 1.44 (DeMorgan’s rules).

¬(G ∨H) �� (¬G ∧ ¬H) by Proposition 1.44 (DeMorgan’s rules).

Step 3:

(G ∨ (H ∧K)) �� ((G ∨H) ∧ (G ∨K)) by Proposition 1.46(∨-Distributivity).

((H ∧K) ∨G) �� ((G ∨H) ∧ (G ∨K)) by ∨ -Symmetry and Proposition 1.46.

By Theorem 1.50, the result F1 of this algorithm is provably equivalent to F .
Likewise, F2 and F are provably equivalent. We record this strengthening of
Theorem 1.57 as follows.

Proposition 1.59 For every formula F there exist formulas F1 in CNF and F2

in DNF such that F , F1, and F2 are provably equivalent.

1.7 Horn formulas
A Horn formula is a particularly nice type of formula in CNF. There is a quick
method for determining whether or not a Horn formula is satisfiable. We discuss
both this method and what is meant by “quick.”

Definition 1.60 A formula F is a Horn formula if it is in CNF and every
disjunction contains at most one positive literal.

Clearly, the conjunction of two Horn formulas is again a Horn formula. This
is not true for disjunctions.

Example 1.61 The formula A ∧ (¬A ∨ ¬B ∨ C) ∧ (¬B ∨ D) ∧ (¬C ∨ ¬D) is a
Horn formula. The formula A ∨B is not a Horn formula.

Propositional logic 33

A basic Horn formula is a Horn formula that does not use ∧. For example,
(¬A∨¬B∨C), A, and (¬B∨¬D) are basic Horn formulas. Every Horn formula
is a conjunction of basic Horn formulas.

There are three types of basic Horn formulas: those that contain no positive
literal (such as (¬B ∨ ¬D)), those that contain no negative literals (such as
A), and those that contain both a positive literal and negative literals (such as
(¬A ∨ ¬B ∨ C)). If a basic Horn formula contains both positive and negative
literals, then it can be written as an implication involving only positive literals.
For example, (¬A ∨ ¬B ∨ C) is equivalent to (A ∧ B) → C. If a basic Horn
formula contains no positive literal, then it can be written as an implication
involving a contradiction. For example, if ⊥ is a contradiction, then (¬B ∨
¬D) is equivalent to (B ∧D) →⊥ . Otherwise, if a basic Horn formula contains
no negative literals, then it is an atomic formula. We can again write this as an
implication if we wish. The atomic formula A is equivalent to T → A, where T is
a tautology. In this way every basic Horn formula can be written as an implication
and every Horn formula can be written as a conjunction of implications.

Example 1.62 The Horn formula in Example 1.61 can be written as follows:

(T → A) ∧ ((A ∧B) → C) ∧ (B → D) ∧ ((C ∧D) →⊥).

Suppose we are given a Horn formula H and want to decide whether or
not it is satisfiable. We refer to this decision problem as the Horn satisfiability
problem. Unlike the other decision problems we have seen, there is an efficient
algorithm for resolving the Horn satisfiability problem. There are three steps
in this algorithm corresponding to the three types of basic Horn formulas. We
assume that the Horn formula has been given as a conjunction of implications.

The Horn algorithm
Given a Horn formula H written as a conjunction of implications, list the atomic
formulas occuring in H.

Step 1: Mark each atomic formula A in the list that is in a subformula of
the form (T → A).

Step 2: If there is a subformula of the form (A1∧A2∧· · ·∧Am) → C where
each Ai has been marked and C has not been marked, then mark C. Repeat this
step until there are no subformulas of this form and then proceed to step 3.

Step 3: Consider the subformulas of the form (A1 ∧ A2∧. . .∧Am) →⊥. If
there exists such a subformula where each Ai has been marked, then conclude
“No, H is not satisfiable.” Otherwise, conclude “Yes, H is satisfiable.”

34 Propositional logic

Example 1.63 We demonstrate the Horn algorithm. Let H be the formula

(T → A) ∧ (C → D) ∧ ((A ∧B) → C) ∧ ((C ∧D) →⊥) ∧ (T → B).

The atomic subformulas of H are A, B, C, and D.
In Step 1 of the algorithm, since H has subformulas (T → A) and (T → B)

we mark both A and B.
In Step 2, since H has subformula (A ∧ B) → C, we mark C. Now that C

has been marked, we must also mark D because of the subformula (C → D).
In Step 3, since H has subformula (C ∧ D) →⊥, the algorithm concludes

“No, H is not satisfiable.”
Note that for the Horn formula in Example 1.62, the Horn algorithm yields

a different conclusion.

We want to show that, for any given Horn formula, the Horn algorithm
works quickly. First we show that it works.

Proposition 1.64 The Horn algorithm concludes “Yes, H is satisfiable” if and
only if H is satisfiable.

Proof Let S = {C1,C2,. . . ,Cn} be the set of atomic formulas occuring in H.
After concluding the algorithm, some of these atomic formulas have been marked.

Suppose H is satisfiable. Then there exists an assignment A of S such that
A |= H. For each basic Horn subformula B of H, A(B) = 1. If B has the form
(T → Ci), then A(Ci) = 1. If B has the form (C1 ∧ C2 ∧ · · · ∧ Cm) → D where
each A(Ci) = 1, then A(D) also equals 1. It follows that A(Ci) = 1 for each Ci

that has been marked.
Suppose for a contradiction that the algorithm concludes “No, H is not

satisfiable.” This only happens if there exists a subformula B of the form (A1 ∧
A2 ∧ · · · ∧ Am) →⊥ where each Ai has been marked. Since each Ai has been
marked, A(Ai) = 1 for each Ai. By the semantics of → (Table 1.4), we have
A(B) = 0 which is a contradiction. So if H is satisfiable, then the algorithm
concludes “Yes, H is satisfiable.”

Conversely, suppose that the algorithm concludes “Yes, H is satisfiable.” Let
A0 be the assignment of S defined by A0(Ci) = 1 if and only if Ci is marked.
We claim that A0 |= H. It suffices to show that A0 models each basic Horn
subformula of H.

Let B be a basic Horn formula that is a subformula of H. If B has the
form (T → A), then A is marked in Step 1 of the algorithm and so A0(B) = 1.
Otherwise B has the form (A1 ∧ A2 ∧ · · · ∧ An) → G where G is either an
atomic formula or a contradiction ⊥. If A0(Ai) = 0 for some i, then A0(B) = 1.
So assume that A0 models each Ai. Then each Ai has been marked. Since the
algorithm concluded “Yes,” G is not ⊥. So G is an atomic formula. Since each

Propositional logic 35

Ai is marked, G is also marked (Step 2 of the algorithm). Since A0(G) = 1, we
have A0(B) = 1.

So the Horn algorithm works. Given any Horn formula H, the algorithm
correctly determines whether or not H is satisfiable. We now consider the fol-
lowing question. How many steps does it take the Horn algorithm to reach a
conclusion? The answer depends on the length of the input H. Suppose that the
formula H is a string of n symbols, where n is some large natural number. We
claim that the Horn algorithm concludes in fewer than n2 steps.

To verify this claim, we count the number of steps in the Horn algorithm.
But what exactly is meant by a “step?” Looking at the algorithm, we see that
there are three steps named Step 1, Step 2, and Step 3. This is not what is
meant. We may have to repeat Step 2 more than once in which case it will take
more than three steps to reach a “yes” or “no” answer. We precisely define what
constitutes a “step of an algorithm” in Chapter 7. For the time being, let us
count the number of times we must read the input H.

First we read the formula H symbol-by-symbol from left to right and list all
of its atomic subformulas. SinceH contains n symbols, there are at most n atomic
formulas in our list. Then, in Step 1, we read through H again, this time looking
for any occurences of the tautology T . We mark the appropriate atomic formulas.
In Step 2, we are in search of subformulas of the form (A1 ∧A2 ∧ · · · ∧Am) → C

where each Ai has been marked. If we find such a subformula where C has not
been marked, then we mark C. Having marked a new atomic formula, we may
have created new subformulas of the form (A1 ∧ A2 ∧ · · · ∧ Am) → C where
each Ai has been marked. Each time we mark a formula in Step 2, we must go
back and read H again. Since we can mark at most n atomic formulas, we must
repeat Step 2 no more than n times. Finally, in Step 3, we must read H one
more time (looking for ⊥), to reach the conclusion. In all, we must read H at
most 1 + 1 + n+ 1 = n+ 3 times to arrive at a conclusion. Since n2 > n+ 3 for
n > 2, this verifies our claim.

Definition 1.65 An algorithm is polynomial-time if there exists a polynomial
p(x) such that given input of size n, the algorithm halts in fewer than p(n) steps.

The class of all decision problems that can be resolved by some polynomial-
time algorithm is denoted by P.

If an algorithm is not polynomial-time, then by any measure, it is not quick.
The previous discussion shows that the Horn algorithm is polynomial-time and
so the Horn satisfiability problem is in P. In contrast, consider the following
decision problems.

Validity problem: Given formula F , is F valid?
Satisfiability problem: Given formula F , is F satisfiable?

36 Propositional logic

Consequence problem: Given formulas F and G, is G a consequence of F?
Equivalence problem: Given formulas F and G, are F and G equivalent?

In some sense, these four problems are really the same. Any algorithm that
works for one of these problems also works for all of these problems. If we had
an algorithm for the Validity problem, for example, then we could use it to
resolve the Satisfiability problem since F is satisfiable if and only if ¬F is not
valid. Similarly, any algorithm for the Satisfiability problem can be used for the
Consequence problem since G is a consequence of F if and only if ¬(F → G)
is not satisfiable. Clearly, any algorithm for the Consequence problem can be
used (twice) to resolve the Equivalence problem. Finally, given an algorithm
that decides the Equivalence problem, we can check whether F is equivalent to a
known tautology T to resolve the Validity problem. In particular, if one of these
four problems is in P then all four are.

Truth tables provide an algorithm for solving each of these problems. For
the Satisfiability problem, we first compute a truth table for F and then check
to see if its truth value is ever one. This algorithm certainly works, but how
many steps does it take? Computing the truth table is not just one step. Again,
we count how many times we are required to read the input F . If F has n
atomic formulas, then the truth table for F has 2n rows. We must refer to F to
compute each of these rows. So we must read the input at least 2n times. This is
exponential and not a polynomial. Given any polynomial p(x), 2n is larger than
p(n) for sufficiently big values of n. So this algorithm is not polynomial-time.

It is not known whether the Satisfiability problem (and the other three
decision problems) is in P. We do not know of a polynomial-time algorithm
for satisfiability, but this does not mean one does not exist. If someone could
find such an algorithm, or prove that no such algorithm exists, then it would
answer one of the most famous unsolved questions of mathematics: the P = NP
question. We will define NP and discuss this problem in Chapter 7. For now,
we merely point out that we do not present an efficient algorithm for the
Satisfiability problem and such an algorithm probably does not exist.

We do, however, present an algorithm that is an alternative to truth tables
for the Satisfiability problem. Formal proofs avoid truth tables, but do not always
resolve this decision problem. Given a formula F , we can use formal proofs to
show that F is unsatisfiable (by demonstrating that ∅ � ¬F), but we cannot
show that F is satisfiable. Likewise, formal proofs can establish that a formula
is valid or that one formula is a consequence of another, but they cannot show a
formula to be not valid or not a consequence of another. If we find a formal proof
for {F} � G then we can rightly conclude “yes, G is a consequence of F .” But if
G is not a consequence of F , then we will forever search in vain for a proof and
never reach a conclusion. In the next section we present resolution, a refinement
of formal proofs that does provide an algorithm (although not polynomial-time)
for these decision problems.

Propositional logic 37

1.8 Resolution
Resolution is a system of formal proof that involves a minimal number of rules.
One of the rules is a variation of the cut rule. This rule states that from the
formulas (F → G) and (G→ H), we can deduce the formula (F → H). Another
rule is a variation of the Substitution rule stated as follows.

Let H be a formula that contains F as a subformula. If G ≡ F , then we
can deduce H ′ form H where H ′ is the formula obtained by replacing some
occurrence of F in H with G.

That is, we consider Theorem 1.49 as a rule for deduction. This is really many
rules in one, so we are kind of cheating to get few rules. In particular, for any
pair of equivalent formulas F and G, we can deduce G from F . It may seem
that this defeats one of our purposes: the Equivalence problem. However, the
Substitution rule can be relaxed somewhat. The main purpose of this rule is to
put the formulas into CNF. The crux of resolution is that, once the formulas
are in CNF, we need only two rules to deduce everything. This will provide an
algorithm for the Equivalence problem and the other decision problems from the
previous section. It also brings us one step closer to proving the Completeness
theorem for propositional logic.

1.8.1 Clauses. Suppose F is a formula in CNF. Then F is a conjunction of
disjunctions of literals. We refer to a disjunction of literals as a clause. For
convenience, we write each clause as a set. We regard

L1 ∨ L2 ∨ · · · ∨ Ln as the set {L1,L2, . . . ,Ln}.

Any formula that is a disjunction of literals uniquely determines such a set.
However, the set does not uniquely determine the formula. Recall that two sets
are equal if and only if they contain the same elements. Order and repetition do
not matter. For example, the formulas (L1 ∨ L2), (L2 ∨ L1), and (L1 ∨ L2 ∨ L2)
each give rise to the same set {L1,L2}. Although these formulas are not identical,
they are equivalent.

Proposition 1.66 Let C and D be clauses. If C and D are the same when viewed
as sets, then C ≡ D.

Proof Let S be the set of literals occuring in C. Both C and D are equivalent
to the disjunction of the literals in S.

If F is in CNF, then F is a conjunction of clauses and we can write F
as a set of sets. We regard F as the set {C1, . . . ,Cn} where the Cis are the
clauses occuring in F (written as sets). For example, we regard the formula

38 Propositional logic

(A ∨B ∨ ¬C) ∧ (C ∨D) ∧ ¬A ∧ (¬B ∨ ¬D), as the following set of four clauses
{{A,B,¬C}, {C,D}, {¬A}, {¬B,¬D}}.

Proposition 1.67 Let F and G be two formulas in CNF. If F and G are the
same when viewed as sets, then F ≡ G.

Proof Let C be the set of clauses occuring in F . Both F and G are equival-
ent to the conjunction of the clauses in C. This proposition then follows from
Proposition 1.66.

Throughout this section, we regard any formula in CNF as both a formula
and as a set of clauses. If F and G are formulas in CNF, then their conjunction
may be written either as the formula F ∧ G or as the set F ∪ G. By the previ-
ous proposition, there is no ambiguity in regarding F as both set and formula.
However, we stress that viewing formulas as sets only makes sense for formulas
in CNF. In particular, there is no nice set theoretic counterpart for disjunction
or negation. The formulas F ∨G and ¬F are not in CNF and cannot be viewed
as sets of clauses.

1.8.2 Resolvents Given a formula in CNF, resolution repeatedly uses two rules
to determine whether or not the formula is satisfiable. One of these rules states
that any clause of F can be deduced from F . The other rule involves the resolvent
of two clauses. We now define this notion.

Definition 1.68 Let C1 and C2 be two clauses. Suppose that A ∈ C1 and
¬A ∈ C2 for some atomic formula A. Then the clause R = (C1 − {A}) ∪ (C2 −
{¬A}) is a resolvent of C1 and C2.

We represent this situation graphically by the following diagram:

C1 C2

� �

R

Example 1.69 Let C1 = {A1,¬A2,A3} and C2 = {A2,¬A3,A4}. Since A3 ∈ C1

and ¬A3 ∈ C2 we can find a resolvent.

{A1,¬A2,A3} {A2,¬A3,A4}
� �

{A1,A2,¬A2,A4}.

Propositional logic 39

Example 1.70 The resolvent of two clauses is not necessarily unique. In the
previous example, since ¬A2 ∈ C1 and A2 ∈ C2, we also have

{A1,¬A2,A3} {A2,¬A3,A4}
� �

{A1,A2,¬A3,A4}.

We now list the three rules for deduction used in resolution.

• Let G be any formula. Let F be the CNF formula resulting from the CNF
algorithm when applied to G. Then F can be deduced from G.

• Let F be a formula in CNF. Any clause of F can be deduced from F .

• Let F be a formula in CNF. Any resolvent of two clauses of F can be deduced
from F .

Remarkably, these three rules suffice for propositional logic. Resolution is com-
plete. Prior to proving this fact, we must verify that these rules are sound. We
show something stronger. We show that each of these rules can be derived using
formal proofs. In the first rule, F can be derived from G by Proposition 1.59.
If C is a clause of F , then we can derive C from F using ∧-Symmetry and
∧-Elimination.

It remains to be shown that R can be derived from F where R is a resolvent
of two clauses of F . Note the similarity between this and the Cut rule. Let C1

and C2 be as in Example 1.69. Then C1 is equivalent to (¬A1∧A2) → A3 and C2

is equivalent to A3 → (A2 ∨ A4). The Cut rule states that from these formulas
we can derive the formula (¬A1 ∧ A2) → (A2 ∨ A4). This formula is equivalent
to the resolvent obtained in Example 1.69.

Proposition 1.71 Let C1 and C2 be clauses and let R be a resolvent of C1 and
C2. Then {C1,C2} � R.

Proof Since C1 and C2 have a resolvent, there must exist an atomic for-
mula A such that A is in one of these clauses and ¬A is in the other. With
no loss of generality, we may assume that A is in C1 and ¬A is in C2.
So C1 is equivalent to (A ∨ F) for some clause F and C2 is equivalent to
(¬A ∨ G) for some clause G. The formula (F ∨ G) is a resolvent of C1 and
C2. We may assume that R is this resolvent. We provide a formal proof for
{C1,C2} � R.

Premise: F � (A ∨ F) and F � (¬A ∨G)
Conclusion: F � (F ∨G).

40 Propositional logic

Statement Justification

1. F � (A ∨ F) Premise

2. F ∪ {¬A} � (A ∨ F) Monotonicity applied to 1

3. F ∪ {¬A} � ¬A Assumption

4. F ∪ {¬A} � F ∨-Elimination applied to 2 and 3

5. F ∪ {¬A} � (F ∨ G) ∨-Introduction applied to 4

6. F � (¬A ∨ G) Premise

7. F ∪ {¬¬A} � (¬A ∨ G) Monotonicity applied to 1

8. F ∪ {¬¬A} � ¬¬A Assumption

9. F ∪ {¬¬A} � G ∨-Elimination applied to 7 and 8

10. F ∪ {¬¬A} � (G ∨ F) ∨-Introduction applied to 9

11. F ∪ {¬¬A} � (F ∨ G) ∨-Symmetry applied to 10

12. F � (F ∨ G) Proof by cases applied to 5 and 11

So anything that can be proved using resolution can be given a formal
proof. It then follows from Theorem 1.37 that resolution is sound. In par-
ticular, if R is the resolvent of two clauses of a formula F in CNF, then
R is a consequence of F . Ostensibly, resolution is a fragment of our formal
proof system. As we now show, resolution is just as powerful as formal
proofs.

1.8.3 Completeness of resolution. We show that resolution can be used to
determine whether or not any given formula is satisfiable. We may assume
that the formula is in CNF. Given any formula F in CNF, let Res0(F) =
{C|C is a clause of F}. For each n > 0, let Resn(F) = Resn−1(F) ∪ {R|R
is a resolvent of two clauses of Resn−1(F)}. Since Res0(F) = F is a
finite set, there are only finitely many clauses that can be derived from F

using resolvents. In fact, there are only finitely many clauses that use the
same atomic formulas as F . So, eventually, we will find some m so that
Resm(F) = Resm+1(F). Let Res∗(F) denote such Resm(F). This is the set
of all clauses that can be derived from F using resolvents. Viewing it as a for-
mula, Res∗(F) is the conjunction of all consequences of F that can be derived
by resolvents.

Proposition 1.72 Let F be a formula in CNF. If ∅ ∈ Res∗(F), then F is
unsatisfiable.

Propositional logic 41

Proof If ∅ ∈ Res∗(F), then ∅ ∈ Resn(F) for some n. Since ∅ �∈ Res0(F) (∅ is not
a clause) there must be some m such ∅ �∈ Resm(F) and ∅ ∈ Resm+1(F) in which
case ∅ is the resolvent of two clauses of Resm(F). But ∅ can only be obtained
as the resolvent of {A} and {¬A} for atomic A. Both {A} and {¬A} must be in
Resm(F). By the previous proposition, both A and ¬A are consequences of F .
It follows that A ∧ ¬A is a consequence of F and F is unsatisfiable.

Example 1.73 Let F be the formula

{{A,B,¬C}, {¬A}, {A,B,C}, {A,¬B}}

We show that F is unsatisfiable using resolution.
Let C1, C2, C3, and C4 denote the four clauses of F in the order given

above.
C1 C3

� �

{A,B} C4

� �

C2 {A}
� �

∅

We see that {A,B} ∈ Res(F), {A} ∈ Res2(F), and ∅ ∈ Res3(F). By
Proposition 1.72, F is unsatisfiable. We can arrange this as a two-column proof
as follows.

Consequence of F Justification

C1 Clause of F

C3 Clause of F

{A,B} Resolvent of C1 and C2

C4 Clause in F

{A} Resolvent of {A,B} and C4

C2 Clause in F

∅ Resolvent of {A} and C2

We now consider the converse of Proposition 1.72. Let F be a formula in
CNF. If F is unsatisfiable, then must ∅ be in Res∗(F)? We show that the answer
is “yes.” Resolution is all we need to show unsatisfiability. This is not immedi-
ately apparent. After all, for the “Justification” column of these proofs, we have
only two options. Either a clause is given, or it is a resolvent of two previously

42 Propositional logic

derived clauses. It may seem that this method of proof is too restrictive. We
prove that it is not.

Proposition 1.74 Let F be a formula in CNF. If F is unsatisfiable, then ∅ ∈
Res∗(F).

Proof Let F = {C1, . . . ,Ck}. We assume that none of the Cis is a tautology
(otherwise we just throw away these clauses and show that ∅ can be derived from
what remains). We will prove this proposition by induction on the number n of
atomic formulas that occur in F .

Let n = 1. Let A be the only atomic formula occurring in F . Then there are
only three possible clauses in F . Each Ci is either {A}, {¬A}, or {A,¬A}. The
last clause is a tautology, and so, by our previous assumption, it is not a clause
of F . So the only clauses in F are {A} and {¬A}. There are three possibilities,
F = {{A}}, F = {{¬A}}, or F = {{A}, {¬A}}. The first two of these are
satisfiable. So F must be {{A}, {¬A}}. Clearly, ∅ ∈ Res∗(F).

Now suppose F has atomic subformulas A1, . . . ,An+1. Suppose further that
∅ ∈ Res∗(G) for any unsatisfiable formula G that uses only the atomic formulas
A1, . . . ,An.

We define some new formulas.
Let F̃0 be the conjunction of all Ci in F that do not contain ¬An+1.
Let F̃1 be the conjunction of all Ci in F that do not contain An+1.
These are CNF formulas. We claim that, viewing these as sets,

F̃0 ∪ F̃1 = F .

For suppose that there is some clause Ci of F that is not in F̃0 ∪ F̃1. Then Ci

must contain both An+1 and ¬An+1. But then Ci is a tautology, contrary to our
previous assumption. So F̃0 ∪ F̃1 and F contain the same clauses.

Let F0 = {Ci − {An+1}|Ci ∈ F̃0}.
Let F1 = {Ci − {¬An+1}|Ci ∈ F̃1}.
That is, F0 is formed by throwing An+1 out of each clause of F̃0 in which it

occurs. Likewise, F1 is obtained by throwing ¬An+1 out of each clause of F̃1.
We claim that if we replace An+1 in F with a contradiction, then the result-

ing formula is equivalent to F0. And if we replace An+1 in F with a tautology,
then the resulting formula is equivalent to F1. We give an example to illustrate
this, but leave the verification of this fact to the reader.

Example 1.75 Suppose n = 2 so that An+1 is A3.
Let F = {{A1,A3}, {A2}, {¬A1,¬A2,A3}, {¬A2,¬A3}}.
Then F̃0 = {{A1,A3}, {A2}, {¬A1,¬A2,A3}}
and F̃1 = {{A2}, {¬A2,¬A3}}.
So F0 = {{A1}, {A2}, {¬A1,¬A2}}

Propositional logic 43

and F1 = {{A2}, {¬A2}}.
Now F is the formula (A1 ∨A3)∧ (A2)∧ (¬A1 ∨¬A2 ∨A3)∧ (¬A2 ∨¬A3).
If we know A3 has truth value 0, then this becomes
(A1 ∨ 0) ∧ (A2) ∧ (¬A1 ∨ ¬A2 ∨ 0) ∧ (1) which is equivalent to F0.
If we know that A3 has truth value 1, then F reduces to
(1) ∧ (A2) ∧ (1) ∧ (¬A2 ∨ 0) which is equivalent to F1.

Since An+1 must either have truth value 0 or 1, it follows that F ≡ F0 ∨F1.
Since F is unsatisfiable, F0 and F1 are each unsatisfiable. The formulas F0

and F1 only use the atomic formulas A1,. . . ,An. By our induction hypothesis,
∅ ∈ Res∗(F0) and ∅ ∈ Res∗(F1). (Note that ∅ can easily be derived from both
F0 and F1 in our example.)

Now F0 was formed from F̃0 by throwing An+1 out of each clause. Since we
can derive ∅ from F0, we can derive either ∅ or {An+1} from F̃0 (by reinstating
{An+1} in each clause of F0). Likewise we can derive either ∅ or {¬An+1} from
F̃1. If we can derive {An+1} form F0 and {¬An+1} from F1, then we can derive
∅ from F̃0 ∪ F̃1. Since F = F̃0 ∪ F̃1, we conclude that ∅ ∈ Res∗(F).

This yields an algorithm for the Satisfiability problem. Given any formula
G, we first find a formula F in CNF that is equivalent to G (using the CNF
algorithm). We then compute the finite set Res∗(F). If ∅ ∈ Res∗(F), then the
algorithm concludes “No, G is not satisfiable.” Otherwise, it concludes “Yes,
G is satisfiable.” By Propositions 1.72 and 1.74, this algorithm works. This
algorithm is not necessarily quick. As we previously mentioned, there is no known
polynomial-time algorithm for this decision problem. However, in certain
instances, this algorithm can reach a quick conclusion. If F is unsatisfiable,
then we do not necessarily have to compute all of Res∗(F). As soon as ∅ makes
an appearance, we know that it is not satisfiable. If F is satisfiable, on the other
hand, then truth tables can reach a quick conclusion. We only need to compute
the truth table until we find a truth value of 1.

We summarize the main results of this section in the following theorem.
This theorem is a finite version of the Completeness theorem for propositional
logic.

Theorem 1.76 Let F and G be formulas of propositional logic. Let H be the
CNF formula obtained by applying the CNF algorithm to the formula F ∧ ¬G.
The following are equivalent:

1. F |= G
2. {F} � G
3. ∅ ∈ Res∗(H)

Proof (2) implies (1) by Theorem 1.37.

44 Propositional logic

(1) implies (3) by Proposition 1.74.
We must show that (3) implies (2). By Proposition 1.59, we have {F ∧¬G} � H.
By ∧-Introduction, {F ,¬G} � F ∧ ¬G.
It follows that {F ,¬G} � H.
Since ∅ ∈ Res∗(H), there must exist an atomic formula A such that both {A}
and {¬A} are in Res∗(H). It follows from Proposition 1.71 that both {H} � A
and {H} � ¬A. Therefore, both

{F ,¬G} � A and {F ,¬G} � ¬A.

By proof by contradiction, we have {F} � ¬¬G. Finally, {F} � G by Double
negation.

1.9 Completeness and compactness
Completeness and compactness are two properties that a logic may or may not
possess. We conclude our study of propositional logic by showing that this logic
does, in fact, have each of these properties.

A logic is a formal language that has rules for deducing the truth of one
statement from that of another. If a sentence G can be deduced from a set of
sentences F using these rules, then we write F � G. The notation F |= G, on the
other hand, means that whenever each sentence in F is true, G is also true. If
F � G, then F |= G. The opposite, however, is not necessarily true. Put another
way, F |= G means that F implies G and F � G means that we can prove that
F implies G using the rules of the logic. But just because something is true does
not mean we can prove it. Perhaps the rules of the logic are too weak to prove
everything (or the expressive power of the logic is too strong). If we can prove
everything that is true (that is, if F |= G does imply F � G), then we say that
the logic is complete.

(Completeness:) F |= G if and only ifF � G.

In Section 1.4, we defined the notation F � G for propositional logic by
listing a bunch of rules. However, completeness should be understood not as a
statement about these specific rules, but as a statement about the logic itself.
Completeness asserts the existence of a list of rules that allows us to deduce
every consequence from any set of formulas of the logic. To prove this we need
to demonstrate such a list of rules. We show that the rules in Tables 1.5 and
1.6, as well as the rules for resolution, suffice for propositional logic. As we will
see in Chapter 9, second-order logic does not have completeness. We cannot give
a nice list of rules that allow us to deduce every consequence from any set of
second-order sentences.

Propositional logic 45

To prove that propositional logic has completeness, we must pass from finite
to infinite sets of formulas. If F is finite, then F |= G if and only if F � G by
Theorem 1.76. Suppose now that F is infinite. If F is a set of formulas in
CNF, then it can be viewed as a set of clauses. The set Resn(F) is defined
as it was for finite sets of clauses. Let Res∗(F) denote the union of all of the
sets Resn(F) (for n ∈ N). Again, Res∗(F) is the set of all clauses that can
be derived from F using resolution. If F is infinite, then Res∗(F) is infinite
and cannot be viewed as a formula. Such an infinite set of clauses is satis-
fiable if and only if there exists an assignment that models each clause of the
set. To prove that propositional logic has completeness, it suffices to prove the
following.

Proposition 1.77 Let F be a set of formulas in CNF. Then ∅ ∈ Res∗(F) if and
only if F is unsatisfiable.

For finite F , this is a restatement of Propositions 1.72 and 1.74. Recall the
proofs of these two statements. For Proposition 1.74, we assumed that F was
unsatisfiable, and we proved that ∅ ∈ Res∗(F) by induction on the number of
atomic formulas occurring in F . But mathematical induction proves only that
something is true for all finite n. So the method we used to prove Proposition
1.74 does not work if F involves infinitely many atomic formulas.

Consider the other direction of Proposition 1.77. Suppose ∅ ∈ Res∗(F).
Then ∅ ∈ Resn(F) for some n. That is, we can derive ∅ from F in a finite
number of steps. Therefore, we can derive ∅ from some finite subset F of F .
By Proposition 1.72, F is unsatisfiable. Since F is a subset of F , F must be
unsatisfiable also.

So one direction of Proposition 1.77 follows from the results of the previous
section. We can deduce the infinite case from the finite case by observing that if
∅ can be derived from F , then it can be derived from some finite subset of F . To
prove the other direction of Proposition 1.77 we need an analogous idea. We need
to show that if F is unsatisfiable, then some finite subset of F is unsatisfiable.
This is known as compactness.

Compactness: F is unsatisfiable if and only if some finite subset of F is
unsatisfiable.

Put another way, compactness says that F is satisfiable if and only if every
finite subset of F is satisfiable. As with completeness, one direction of com-
pactness always holds. If F is satisfiable, then every finite subset of F must be
satisfiable also. But just because every finite subset of a set is satisfiable does
not necessarily mean that the set itself is satisfiable. Consider, for example, the
following set of English sentences.

46 Propositional logic

F0 = “There are finitely many objects in the universe.”

F1 = “There is at least one object in the universe.”

F2 = “There are at least two objects in the universe.”

F3 = “There are at least three objects in the universe.”

· · ·
Fn = “There are at least n objects in the universe.”

· · ·

Taken together, these sentences are contradictory. If there are more than
n objects for each n, then there cannot possibly be finitely many objects as F0

asserts. However, if we take only finitely many of the above statements, then
there is no problem. Any finite set of these sentences is satisfiable, but the
collection as a whole is not. Any logic that can express these sentences does not
have compactness.

We prove that propositional logic does have compactness in Theorem 1.79.
First, we prove the following lemma. This lemma may not seem relevant at the
moment, but it is the key to proving Theorem 1.79.

Lemma 1.78 Let X be an infinite set of finite binary strings. There exists an
infinite binary string w̄ so that any prefix of w̄ is also prefix of infinitely many
x̄ in X.

Proof A binary string is a sequence on 0s and 1s such as 1011. The strings 1,
10, 101, and 1011 are the prefixes of 1011. We have an infinite set X of such
strings of finite length. We want to construct an infinite string w̄ of 0s and 1s so
that each prefix of w̄ is also a prefix of infinitely many strings in X.

We construct w̄ step-by-step from left to right. In each step we will do two
things. In the nth step, we not only decide what the nth digit of w̄ should be,
we also delete strings from X that we do not like.

To determine what the first digit of w̄ should be, look at the first digits of
all the strings in X. Of course, there are infinitely many strings and you cannot
look at all these digits at once, but suppose that you are somehow omniscient.
There are two possibilities. Either you see infinitely many 1s or you do not. If
infinitely many strings in X start with 1, then we let the first digit of w̄ be a 1
and we delete all strings in X that begin with a 0 (we are still left with infinitely
many). Otherwise, if only finitely many strings in X start 1, we delete these and
let the first digit of w̄ be a 0.

Now suppose we have determined the first n digits of w̄. Suppose too
that we have deleted all sequences from X that do not start with these same n
digits and are left with an infinite subset X ′ of X. To determine the (n + 1)th

Propositional logic 47

entry in w̄ we look at the (n + 1)th digits of all the strings in X ′. Since X ′ is
infinite, X ′ must have infinitely many strings of length n + 1 or greater. So
again, there are two possibilities. If infinitely many strings in X ′ have 1s in the
(n + 1)th place, then we let the (n + 1)th digit of w̄ be 1. Otherwise, we let
the (n + 1)th digit be 0. Either way, we delete all strings from X ′ that do not
share the same first n + 1 entries as w̄. We are still left with an infinite subset
of X.

Continuing this procedure, we obtain an infinite sequence w̄ so that the first
n digits of w̄ agrees with the first n digits of infinitely many sequences in X. We
have not really given a practical way of constructing w̄, but we have proven that
such a string exists.

We are ready now to prove propositional logic has compactness.

Theorem 1.79 (Compactness of propositional logic) A set of sentences of
propositional logic is satisfiable if and only if every finite subset is satisfiable.

Proof As we remarked earlier, only one direction of this requires proof. Suppose
F = {F1,F2, . . .} is a set of formulas and every finite subset of F is satisfiable.
Let A1,A2,A3, . . . be a list without repetition of the atomic formulas occurring
in F1 followed by the atomic formulas occurring in F2 (but not F1), and so on.

Since every finite subset of F is satisfiable, for each n there exists an assign-
ment An such that An |= ∧n

i=1 Fn. So each Fi in F holds under all but finitely
many of these assignments. We may assume that An is defined only on the
atomic formulas occurring in F1, . . . ,Fn. For each n, the truth values An assigns
to A1,A2, . . . forms a finite sequence of 0s and 1s. So X = {An|n = 1, 2,. . . } is
an infinite set of finite binary sequences. By the previous lemma, there exists an
infinite binary sequence w̄ so that every prefix of w̄ is a prefix of infinitely many
sequences in X.

Define an assignment A on all the Ans as follows: let A(An) be the nth digit
of w̄. We must show that every formula F in F holds under A. This follows from
the fact that F holds under all but finitely many of the assignments in X. Let
m be such that F contains no atomic formula past Am in our list. Then there is
an An in X so that An |= F and the first m entries of An are the same as A. It
follows that A also models F .

Proposition 1.77 follows from compactness. We can now prove that propos-
itional logic has completeness. We could give a proof similar to that of Theorem
1.76 using Proposition 1.77 in place of Propositions 1.72 and 1.74. However,
compactness yields a more direct proof.

Theorem 1.80 (Completeness of propositional logic) For any sentence G and
set of sentences F , F |= G if and only if F � G.

Proof By Theorem 1.37, if F � G, then F |= G.

48 Propositional logic

Conversely, suppose that F |= G. Then F ∪ {¬G} is unsatisfiable. By com-
pactness, some finite subset of F ∪ {¬G} is unsatisfiable. So there exists finite
F0 ⊂ F such that F0 ∪ {¬G} is unsatisfiable and, equivalently, F0 |= G. Since
F0 is finite, we can apply Theorem 1.76 to get F0 � G. Finally, F � G by
Monotonicity.

Exercises
1.1. Show that ¬ and ∨ can be taken as primitive symbols in propositional

logic. That is, show that each of the symbols ∧, →, and ↔ can be defined
in terms of ¬ and ∨.

1.2. Show that ¬ and → can be taken as primitive symbols in propositional
logic. That is, show that each of the symbols ∧, ∨, and ↔ can be defined
in terms of ¬ and →.

1.3. Find the truth tables for each of the following formulas. State whether
each is a tautology, a contradiction, or neither.
(a) (¬A→ B) ∨ ((A ∧ ¬C) ↔ B)

(b) (A→ B) ∧ (A→ ¬B)

(c) (A→ (B ∨ C)) ∨ (C → ¬A)

(d) ((A→ B) ∧ C) ∨ (A ∧D) .

1.4. In each of the following, determine whether the two formulas are
equivalent.
(a) (A ∧B) ∨ C and (A→ ¬B) → C

(b) (((A→ B) → B) → B) and (A→ B)

(c) (((A→ B) → A) → A) and (C → D) ∨ C
(d) A↔ ((¬A ∧B) ∨ (A ∧ ¬B)) and ¬B.

1.5. Show that the following statements are equivalent.
1. F |= G,

2. |= F → G,

3. F ∧ ¬G is unsatisfiable, and

4. F ≡ F ∧G.

1.6. Show that the following statements are equivalent.
1. F ≡ G,

2. |= F ↔ G, and

3. (F ∧ ¬G) ∨ (¬F ∧G) is unsatisfiable.

Propositional logic 49

1.7. (a) Find a formula F in CNF which has the following truth table.

A B C F

0 0 0 0

1 0 0 1

0 1 0 1

0 0 1 1

1 1 0 0

1 0 1 0

0 1 1 0

1 1 1 1

(b) Find a formula in DNF having the above truth table.

1.8. Find formulas in CNF equivalent to each of the following.
(a) (A↔ B) ↔ C

(b) (A→ (B ∨ C)) ∨ (C → ¬A)

(c) (¬A ∧ ¬B ∧ C) ∨ (¬A ∧ ¬C) ∨ (B ∧ C) ∨A.

1.9. The Cut rule states that from the formulas (F → G) and (G → H)
we can derive the formula (F → H). Verify this rule by giving a
formal proof.

1.10. (a) Let ↔-Symmetry be the following rule:

Premise: F � (F ↔ G)
Conclusion: F � (G↔ F)
Verify this rule by giving a formal proof.

(b) Give a formal proof demonstrating that {(F ↔ G)} � (¬F ↔ ¬G).

1.11. Give formal proofs demonstrating that the formulas (F ∧ (F ∨ G)) and
(F ∨ (F ∧G)) are provably equivalent.

1.12. If F → G is a consequence of F , then so is ¬G → ¬F . We refer to this
rule as →-Contrapositive. Verify this rule by giving a formal proof.

1.13. Show that ∨-Symmetry follows from the other rules of Tables 1.5
and 1.6.

1.14. Show that →-Elimination follows from the other rules of Tables 1.5
and 1.6.

1.15. Show that Double negation follows from Assumption, Monotonicity, and
Proof by cases.

50 Propositional logic

1.16. Suppose that we remove from Table 1.5 the following four rules:
∨-Elimination, ∨-Symmetry, →-Introduction, and →-Elimination and
replace these with

DeMorgan’s rules, ∨-Distributivity, the Cut rule (from Exercise 1.9),
and the converse of Double negation (if F � ¬¬F then F � F).

Show that the resulting set of rules is complete.

1.17. Use resolution to verify each of the following statements:
(a) ¬A is a consequence of (A→ B) ∧ (A→ ¬B)

(b) (¬A ∧ ¬B ∧ C) ∨ (¬A ∧ ¬C) ∨ (B ∧ C) ∨A is a tautology

(c) ((A→ B) ∧ (A→ ¬B)) → ¬A is a tautology.

1.18. For each formula in Exercise 1.3 find an equivalent formula in CNF.

1.19. For each formula in Exercise 1.3, verify your answer to that problem by
using resolution.

1.20. Determine whether or not the following Horn formulas are satisfiable. If
it is satisfiable, find an assignment that models the formula.
(a) (T → A1) ∧ (T → A2) ∧ (A1 ∧ A2 ∧ A3 → A4) ∧ (A1 ∧ A2 ∧ A4 → A5)

∧(A1 ∧ A2 ∧ A3 ∧ A4 → A6) ∧ (A5 ∧ A6 → A7) ∧ (A2 → A3) ∧ (A7 →⊥)

(b) (T → A1) ∧ (T → A2) ∧ (A1 ∧ A2 ∧ A4 → A3) ∧ (A1 ∧ A5 ∧ A6) ∧ (A2 ∧ A7 → A5)
∧(A1 ∧ A3 ∧ A5 → A7) ∧ (A2 → A4) ∧ (A4 → A8) ∧ (A2 ∧ A3 ∧ A4 → A9)

∧(A3 ∧ A9 → A6) ∧ (A6 ∧ A7 → A8) ∧ (A7 ∧ A8 ∧ A9 →⊥)

1.21. Consider the following formula in DNF.

(A1 ∧B1) ∨ (A2 ∧B2) ∨ · · · ∨ (An ∧Bn)

Given this formula as input, how many steps will it take the CNF
algorithm to halt and output a formula in CNF? Is this algorithm
polynomial-time?

1.22. Complete the proof of Theorem 1.37.

1.23. Complete the proof of Proposition 1.44.

1.24. Prove Proposition 1.45 by providing two formal proofs.

1.25. Prove Proposition 1.46.

1.26. What is wrong with the following claim? Why is the given “fake proof”
not a proof?

Claim: (A→ B) ∨ C is not a subformula of any formula.

Proof [Fake proof] Let F be any formula. We show that (A→ B) ∨C is
not a subformula of F by induction on the complexity of F .

If F is atomic, then clearly (A→ B) ∨ C is not a subformula.
Let F1 and F2 be two formulas. Our induction hypothesis is that

neither F1 nor F2 has (A→ B) ∨ C as a subformula.

Propositional logic 51

Suppose F is ¬F1. If (A→ B) ∨ C is a subformula of F , then either
(A → B) ∨ C is a subformula of F1 or is F itself. It is not a subformula
of F1 by our induction hypothesis. Moreover, since (A→ B)∨C does not
contain the symbol ¬, it cannot be F .

Suppose F is F1∧F2. If (A→ B)∨C is a subformula of F , then since
(A → B) ∨ C does not contain the symbol ∧, it must be a subformula of
either F1 or of F2. But by our induction hypothesis, this is not the case.

It follows that (A→ B)∨C is not a subformula of any formula.

1.27. Prove Proposition 1.48 by mathematical induction. That is, given formulas
{F1, . . . ,Fn} and {G1, . . . ,Gm}, prove each of the following by induction
on n.
(a) (

∧n
i=1 Fi) ∨ (

∧m
j=1Gj) ≡

∧n
i=1(

∧m
j=1(Fi ∨Gj))

(b) (
∨n

i=1 Fi) ∧ (
∨m

j=1Gj) ≡
∨n

i=1(
∨m

j=1(Fi ∧Gj)).

1.28. Prove Theorem 1.50 by induction on the complexity of H.

1.29. Let F and G be sets of formulas. We say that F is equivalent to G, denoted
F ≡ G, if for every assignment A, A |= F if and only if A |= G.
(a) Show that the following is true:

For any F and G, F ≡ G if and only if both:

F � G for each G ∈ G and

G � F for each F ∈ F .

(b) Demonstrate that the following is not true:

For any F and G, F ≡ G if and only if both:

for each G ∈ G there exists F ∈ F such that G |= F , and

for each F ∈ F there exists G ∈ G such that F |= G.

1.30. If a contradiction can be derived from a set of sentences, then the set
of sentences is said to be inconsistent. Otherwise, the set of sentences is
consistent. Let F be a set of sentences. Show that F is consistent if and
only if it is satisfiable.

1.31. Suppose that F is an inconsistent set of sentences (as defined in Exer-
cise 1.30). For each G ∈ F , let FG be the set obtained by removing G
from F .
(a) Prove that for any G ∈ F , FG � ¬G by using the result of

Exercise 1.30.

(b) Prove that for any G ∈ F , FG � ¬G by sketching a formal proof.

1.32. A set of sentences F is said to be closed under conjunction if for any F and
G in F , F ∧ G is also in F . Suppose that F is closed under conjunction

52 Propositional logic

and is inconsistent (as defined in Exercise 1.30). Prove that for any G ∈ F
there exists F ∈ F such that {F} � ¬G.

1.33. Call a set of sentences minimal unsatisfiable if it is unsatisfiable, but every
proper subset is satisfiable.
(a) Show that there exist minimal unsatisfiable sets of sentences of size

n for any n.

(b) Show that any unsatisfiable set of sentences has a minimal unsatis-
fiable subset.

1.34. (Craig’s interpolation theorem) Suppose |= (F → G) and F is not a con-
tradiction and G is not a tautology. Show that there exists a formula H
such that every atomic in H is in both F and G and |= (F → H) and
|= (H → G).

1.35. (Beth’s definability theorem) Let H be a subformula of F . Let A1, . . . ,Am

be the atomic subformulas of F that do not occur in H. Suppose that,
for any formula H ′, the formula H ↔ H ′ is a consequence of the formula
F ∧ F ′ where F ′ is the formula obtained by replacing each occurrence
of H in F with H ′. Suppose also that m ≥ 1. Show that there exists a
formula G having no atomic subformulas other than A1, . . . ,Am such that
|= F → (H ↔ G).

2 Structures and first-order logic

2.1 The language of first-order logic
First-order logic is a richer language than propositional logic. Its lexicon contains
not only the symbols ∧, ∨, ¬, →, and ↔ (and parentheses) from propositional
logic, but also the symbols ∃ and ∀ for “there exists” and “for all,” along with
various symbols to represent variables, constants, functions, and relations. These
symbols are grouped into five categories.

• Variables. Lower case letters from the end of the alphabet (. . . x, y, z)
are used to denote variables. Variables represent arbitrary elements of
an underlying set. This, in fact, is what “first-order” refers to. Variables
that represent sets of elements are called second-order. Second-order logic,
discussed in Chapter 9, is distinguished by the inclusion of such variables.

• Constants. Lower case letters from the beginning of the alphabet
(a, b, c, . . .) are usually used to denote constants. A constant represents a
specific element of an underlying set.

• Functions. The lower case letters f , g, and h are commonly used to denote
functions. The arguments may be parenthetically listed following the func-
tion symbol as f(x1,x2, . . . ,xn). First-order logic has symbols for functions
of any number of variables. If f is a function of one, two, or three variables,
then it is called unary, binary, or ternary, respectively. In general, a function
of n variables is called n-ary and n is referred to as the arity of the function.

• Relations. Capital letters, especially P , Q, R, and S, are used to denote
relations. As with functions, each relation has an associated arity.

We have an infinite number of each of these four types of symbols at our dis-
posal. Since there are only finitely many letters, subscripts are used to accomplish
this infinitude. For example, x1, x2, x3, . . . are often used to denote variables. Of
course, we can use any symbol we want in first-order logic. Ascribing the letters
of the alphabet in the above manner is a convenient convention. If you turn to a
random page in this book and see “R(a,x, y),” you can safely assume that R is
a ternary relation, x and y are variables, and a is a constant. However, we may
at times use symbols that we have not yet mentioned. We may use the symbol
♥ if we please. However, if we do so, we must say what this symbol represents,

54 Structures and first-order logic

whether it is a constant, a variable, a function of 23 variables, a ternary relation,
or what.

• Fixed symbols. The fixed symbols are ∧, ∨, ¬, →, ↔, (,), ∃, and ∀.

By “fixed” we mean that these symbols are always interpreted in the same
way. If you look on page 211 of this book and see the symbol ∧, it means the
same thing as it did on page 8. It means “and.” The same is true for each
of the fixed symbols. In contrast, the interpretation of the function symbol f
depends on the context. We may use this symbol to represent any function we
choose.

The fixed symbols ∃ and ∀, called quantifiers, make the language of first-
order logic far more expressive than propositional logic. They are called the
existential and universal quantifiers, respectively. In any first-order formula, each
quantifier is immediately followed by a variable. We read ∃x as “there exists x
such that” and ∀x as “for all x.”

The following is an example of a sentence of first-order logic: ∀y∃xR(f(x), y).
This sentence says that for all y there exists x such that the relation R holds for
the ordered pair (f(x), y). Here f is a unary function and R is a binary relation.
Whether this sentence is true or not depends on the context. If the relation R is
equality, then this sentence is true if and only if the function f is onto.

Because of the ubiquity of equality in mathematics, we add to our list of
fixed symbols the symbol = for “equals.” We still refer to this as “first-order
logic” although it is often called “first-order logic with equality.” The inclusion
of equality allows the quantifiers to actually quantify. For example, the sentence

∃x1∃x2∃x3(¬(x1 = x2) ∧ ¬(x1 = x3) ∧ ¬(x2 = x3))

says that there exist at least three distinct elements. Likewise, we can write
sentences that say there exist at least seven elements, or fewer than 23 elements,
or exactly 45 elements.

We have now completely listed the symbols of first-order logic. Our next
objective is to define the syntax and semantics. That is, we need to say which
strings of these symbols are permissable as formulas and also how to interpret
the formulas.

2.2 The syntax of first-order logic
The definition of a formula in first-order logic is analogous to the definition of
formula in propositional logic. We first define atomic formulas and then give rules
for constructing more complex formulas. We used upper case Roman letters such

Structures and first-order logic 55

as F , G, and H to denote formulas in propositional logic. In first-order logic, we
reserve these letters for other uses and instead use lower case Greek letters such
as ϕ, ψ, and θ to denote formulas.

Prior to defining formulas, we must define the term term. Terms are defined
inductively by the following two rules.

(T1) Every variable and constant is a term.
(T2) If f is an m-ary function and t1, . . . , tm are terms,
then f(t1, . . . , tm) is also a term.

Definition 2.1 An atomic formula is a formula that has the form t1 = t2 or
R(t1, . . . , tn) where R is an n-ary relation and t1, . . . , tn are terms.

As with propositional logic, we regard some of the fixed symbols as primitive.
The other symbols are defined in terms of the primitive symbols. We view ¬, ∧,
and ∃ as primitive. Every formula of first-order logic is built from atomic formulas
by repeated application of three rules. Each rule corresponds to a primitive
symbol.

(R1) If ϕ is a formula then so is ¬ϕ.
(R2) If ϕ and ψ are formulas then so is ϕ ∧ ψ.
(R3) If ϕ is a formula, then so is ∃xϕ for any variable x.

Note that (R1) and (R2) were also rules for propositional logic and only the rule
(R3) is new.

Definition 2.2 A string of symbols is a formula of first-order logic if and only
if it is constructed from atomic formulas by repeated application of rules (R1),
(R2), and (R3).

The definitions of ∨, →, and ↔ are the same as in propositional logic. We
define ∀xϕ as ¬∃x¬ϕ. For any formula ϕ, the two formulas ∀xϕ and ¬∃x¬ϕ are
interchangeable. So from (R1) and (R3) we have the following: if ϕ is a formula,
then so is ∀xϕ for any variable x.

Example 2.3 ∀yP (x, y)∨∃yQ(x, y) is a formula of first-order logic and
x(Q∀P)y∃)(∨ is not.

In the next section, we discuss the semantics of first-order logic. For this
we need to know the order of operations of the symbols. Parentheses dictate
the order of operations in any formula. In absence of parentheses, we use the
following rule: ¬,∃, and ∀ have priority over ∧,∨,→, and ↔ .

56 Structures and first-order logic

Example 2.4 ∃xP (x, y)∨Q(x, y) means (∃xP (x, y))∨(Q(x, y)) and ∀yP (x, y) →
Q(x, y) means (∀yP (x, y)) → (Q(x, y)).

We also use the following convention: the order in which to consider ¬, ∃,
and ∀ is determined by the order in which they are listed. We again employ
conventions (C1) and (C2) from Section 1.1. These allow us to drop parentheses
that are not needed.

Example 2.5 We write ¬∃x∀y∃zR(x, y, z) instead of ¬(∃x(∀y(∃z(R(x, y, z))))).

Having defined formulas, we next define the notion of a subformula.

Definition 2.6 Let ϕ be a formula of first-order logic. We inductively define what
it means for θ to be a subformula of ϕ as follows:

If ϕ is atomic, then θ is a subformula of ϕ if and only if θ = ϕ.
If ϕ has the form ¬ψ, then θ is a subformula of ϕ if and only if θ = ϕ or θ
is a subformula of ψ.
If ϕ has the form ψ1 ∧ ψ2, then θ is a subformula of ϕ if and only if θ = ϕ

or θ is a subformula of ψ1, or θ is a subformula of ψ2.
If ϕ has the form ∃xψ, then θ is a subformula of ϕ if and only if θ = ϕ or θ
is a subformula of ψ.

Example 2.7 Let ϕ be the formula ∃x∀yP (x, y) ∨ ∀x∃yQ(x, y) where P

and Q are binary relations. The subformulas of ϕ are ∃x∀yP (x, y),
∀yP (x, y),P (x, y),∀x∃yQ(x, y),∃yQ(x, y),Q(x, y) and ϕ itself .
Note that the formula P (x, y) ∨ ∀x∃yQ(x, y), occurring as part of ϕ, is not a
subformula of ϕ.

The free variables of a formula ϕ are those variables occurring in ϕ that
are not quantified. For example, in the formula ∀yR(x, y), x is a free vari-
able, but y is not since it is quantified by ∀. For any first-order formula ϕ, let
free(ϕ) denote the set of free variables of ϕ. We can define free(ϕ) inductively as
follows:

If ϕ is atomic, then free(ϕ) is the set of all variables occurring in ϕ,
if ϕ = ¬ψ, then free(ϕ) = free(ψ),
if ϕ = ψ ∧ θ, then free(ϕ) = free(ψ) ∪ free(θ), and
if ϕ = ∃xψ, then free(ϕ) = free(ψ) − {x}.

Definition 2.8 A sentence of first-order logic is a formula having no free
variables.

Structures and first-order logic 57

Example 2.9 ∃x∀yP (x, y)∨∀x∃yQ(x, y) is a sentence of first-order logic, whereas
∃xP (x, y) ∨ ∀xQ(x, y) is a formula but not a sentence (y is a free variable).

Example 2.10 Let ϕ be the formula ∀y∃xf(x) = y. Then ϕ is a sentence since
both of the variables occurring in ϕ are quantified. The formulas f(x) = y and
∃xf(x) = y are both subformulas of ϕ. Neither of these subformulas is a sentence.

In contrast to the free variables of a formula ϕ, the bound variables of ϕ are
those variables that do have quantifiers. For any first-order formula ϕ, bnd(ϕ)
denotes the set of bound variables occurring in ϕ. Again, this notion can be
precisely defined by induction.

If ϕ is atomic, then bnd(ϕ) = ∅,
if ϕ = ¬ψ, then bnd(ϕ) = bnd(ψ),
if ϕ = ψ ∧ θ, then bnd(ϕ) = bnd(ψ) ∪ bnd(θ), and
if ϕ = ∃xψ, then bnd(ϕ) = bnd(ψ) ∪ {x}.

Every variable occurring in ϕ is in free(ϕ) or bnd(ϕ). As the next example
shows, these two sets are not necessarily disjoint. A variable can have both free
and bound occurrences within the same formula.

Example 2.11 Consider the formula ∃x(R(x, y) ∧ ∃yR(y,x)). The variable y
occurs free in R(x, y) and bound in ∃yR(y,x). The variable x occurs only
as a bound variable. So, if ψ denotes this formula, then free(ψ) = {y} and
bnd(ψ) = {x, y}.

Notation We write ϕ(x1,x2, . . . ,xn) to denote a formula having free variables
x1,x2, . . . ,xn. We write ϕ(t1, t2, . . . , tn) to denote the formula obtained by repla-
cing each free occurrence of xi in ϕ with the term ti. When using this notation,
it should always be assumed that each ti contains none of the variables in bnd(ϕ).
(E.g., if ϕ(x) is ∃ y¬(x = y) then we do not allow the substitution ϕ(y)).

The presence of free variables distinguishes formulas from sentences. This
distinction did not exist in propositional logic. The notion of truth is defined
only for sentences. It does not make sense to ask whether the formula y = x+ 1
is true or not. But we can ask whether ∀y∃x(y = x+ 1) or c1 = c2 + 1 is true or
not. The answer, as we have already indicated, depends on the context.

2.3 Semantics and structures
As with propositional logic, the semantics for ∧ and ¬ can be described by saying
∧ behaves like “and” and ¬ behaves like “negation.” Likewise, the semantics for
the quantifiers ∃ and ∀ can be inferred from the phrases “there exists” and “for
all.” However, we must be more precise when defining the semantics of a logic.

58 Structures and first-order logic

The goal of this section is to formally define the semantics of first-order logic.
First, we intuitively describe the semantics with some examples.

Consider the first-order sentence

∀y∃xf(x) = y.

This sentence says that for all y there exists x so that f(x) = y. To determine
whether this sentence is true or not, we need a context. It depends on what
the variables represent and what the function f is. For example, suppose the
variables are real numbers and f is defined by the rule f(x) = x2. Then the
above sentence is false since there is no x such that f(x) = −1. If the function
f is defined by f(x) = x3 (or, if the variables represent complex numbers) then
the sentence is true.

Now consider ∀x∀y(R(x, y) → ∃z(z �= x ∧ z �= y ∧ (R(x, z) ∧R(z, y))). This
sentence says that for any x and y, if R(x, y) holds, then there exists some z
other than x and y so that R(x, z) and R(z, y) both hold. Suppose again that
the variables represent real numbers. If the relation R(x, y) means x < y, then
the above sentence is true since between any two real numbers there exists other
real numbers. That is, the real numbers are dense. However, if the variables
represent integers (or if R means ≤) then this sentence is false.

So whether a sentence is true or not depends on two things: our underlying
set and our interpretation of the function, constant, and relation symbols. This
observation leads us to the central concept of this chapter. A structure consists of
an underlying set together with an interpretation of various functions, constants,
and relations. The role of structures in first-order logic is analogous to the role
played by assignments in propositional logic. Given any sentence ϕ and any
structure M , we define what it means for M to model ϕ. Intuitively, this means
that the sentence ϕ is true with respect to M . As in propositional logic, we write
M |= ϕ to denote this concept. The formal definition of this concept will be
given later in this section.

Structures naturally arise in many branches of mathematics. For example,
a vector space is a structure. The groups, rings, and fields of abstract algebra
also provide examples of structures. In graph theory, the graphs can be viewed
as first-order structures (we shall discuss this in detail in Section 2.4). The real
numbers provide examples of structures that should be familiar to all readers.
The real numbers form not one structure, but many. Recall that a structure has
two components: and underlying set and an interpretation of certain functions,
constants, and relations. When we refer to the “real numbers” we are only spe-
cifying the underlying set and not the symbols to be interpreted. We may want to
consider the reals with the functions of addition and multiplication. That is one
structure. Another structure is the reals with the relation ≤ and the constant 0.
Depending on what aspect of the real numbers we wish to investigate, we may

Structures and first-order logic 59

choose various functions, constants, and relations on the reals. The functions,
constants, and relations that we choose to consider is called the vocabulary of the
structure. Each choice of a vocabulary determines a different structure having
the real numbers as an underlying set.

Definition 2.12 A vocabulary is a set of function, relation, and constant symbols.

Definition 2.13 Let V be a vocabulary. A V-structure consists of a nonempty
underlying set U along with an interpretation of V. An interpretation of V
assigns:

• an element of U to each constant in V,

• a function from Un to U to each n-ary function in V, and

• a subset of Un to each n-ary relation in V.

We say M is a structure if it is a V-structure for some vocabulary V.

We present structures by listing the underlying set, or universe, followed by
the function, relation, and constant symbols that it interprets.

Example 2.14 Let V = {f ,R, c} where f is a unary function, R is a binary
relation, and c is a constant. Then M = (Z|f ,R, c) denotes a V-structure. The
universe of M is the set of integers Z. To complete the description of M , we
must say how the symbols of V are to be interpreted. We may say, for example,
that M interprets f(x) as x2, R(x, y) as x < y, and the constant c as 3. This
completely describes the structure M .

Example 2.15 Let V = {P ,R} where P is a unary relation and R is a binary
relation. ThenM = (N|P ,R) denotes a V-structure. The universe ofM is the set
of natural numbers N. To complete the description of M , we must say how the
symbols of V are to be interpreted. We may say, for example, that M interprets

P (x) as “x is an even number,” and
R(x, y) as “x+ 1 = y.”

This information completely describes structure M .

Example 2.16 R = (R|+, ·,0,1) denotes a structure in the vocabulary {+, ·, 0, 1}
where + and · are binary functions and 0 and 1 are constants. The universe of
R is the set of real numbers R. To complete the description of R, we must say
how the symbols are to be interpreted. We may simply say that R interprets the
symbols in the “usual way.” This means that R interprets + as plus, · as times,
0 as 0, and 1 as 1. This completely describes the structure R.

60 Structures and first-order logic

Definition 2.17 Let V be a vocabulary. A V-formula is a formula in which every
function, relation, and constant is in V. A V-sentence is a V-formula that is a
sentence.

IfM is a V-structure, then each V-sentence ϕ is either true or false inM . If ϕ
is true inM , then we sayM models ϕ and writeM |= ϕ. Structures in first-order
logic play an analogous role to assignments in propositional logic. But whereas,
in propositional logic, there were only finitely many possible assignments for a
sentence, there is no end to the number of structures that may or may not model
a given sentence of first-order logic.

Intuitively, M |= ϕ means that the sentence ϕ is true of M . We must
precisely define this concept. Before doing so, we consider one more example.

Example 2.18 Consider again the structure R from Example 2.16. The vocabu-
lary for this structure is {+, ·, 0, 1} which we denote by Var (the vocabulary of
arithmetic).

Consider the V-sentence ∀x∃y(1 + x · x = y). This sentence says that for
any x there exists y that is equal to x2 + 1. This is true in R. If we take any
real number, square it, and add one, then the result is another real number. So
R |= ∀x∃y(1 + x · x = y).

Consider next the V-sentence ∀y∃x(1+x ·x = y). This sentence asserts that
for every y there is an x so that 1 + x2 = y. This sentence is not true in R. If
we take y = −2, for example, then there is no such x. So the structure R does
not model the sentence ∀y∃x(1 + x · x = y).

Let M be a V-structure and let ϕ be a V-sentence. We now formally define
what it means for M to model ϕ. First we define this concept for sentences ϕ
that do not contain the abbreviations ∨, →, ↔, or ∀. We define M |= ϕ by
induction on the total number of occurrences of the symbols ∧, ¬, and ∃. If ϕ
has zero occurences of these symbols, then ϕ is atomic.

• If ϕ is atomic, then ϕ either has the form t1 = t2 or R(t1, . . . , tm) where
t1, . . . , tm are terms and R is a relation in V. Since ϕ is a sentence, ϕ contains
no variables, and so each ti is interpreted as some element ai in the universe
U of M . In this case,

M |= t1 = t2 if and only if a1 and a2 are the same element of U , and

M |= R(t1, . . . , tm) if and only if the tuple (a1, . . . , am) is in the subset of
Um assigned to the m-ary relation R.

Now suppose that ϕ containsm+1 occurrences of ∧, ¬, and ∃. Suppose that
M |= ψ has been defined for any sentence ψ containing at most m occurrences of

Structures and first-order logic 61

these symbols. Since first-order formulas are constructed from atomic formulas
using rules (R1), (R2), and (R3), there are three possibilities for ϕ.

• If ϕ has the form ¬ψ, then M |= ϕ if and only if M does not model ψ.

• If ϕ has the form ψ∧θ, then M |= ϕ if and only if both M |= ψ and M |= θ.

The third possibility is that ϕ has the form ∃xψ. If x is not a free variable
of ψ then M |= ϕ if and only if M |= ψ. Otherwise, let ψ(x) be a formula having
x as a free variable. Before defining M |= ϕ in this case, we introduce the notion
of expansion.

Definition 2.19 Let V be a vocabulary. An expansion of V is a vocabulary
containing V as a subset.

Definition 2.20 Let M be a V-structure. A structure M ′ is an expansion of M
if M ′ has the same universe as M and interprets the symbols of V in the same
way as M .

If M ′ is an expansion of M , then, reversing our point of view, we say that
M is a reduct of M ′.

If M ′ is an expansion of M , then the vocabulary of M ′ is necessarily an
expansion of the vocabulary of M .

Example 2.21 The structure M ′ = (R|+,−, ·,<, 0, 1) is an expansion of M =
(R|+, ·,<, 0) where each of these structures interpret the symbols in the usual
way (see Example 2.16).

Example 2.22 Any structure is (trivially) an expansion of itself.

Our immediate interest is the expansion of a V-structure M obtained by
adding a new constant to the vocabulary for each element of the universe UM

of M . Let V(M) denote the vocabulary V ∪ {cm|m ∈ UM} where each cm is a
constant. Let MC denote the unique expansion of M to a V(M)-structure that
interprets each cm as the element m.

• If ϕ has the form ∃xψ(x), then M |= ϕ if and only if MC |= ψ(c) for some
constant c of V(M).

We have now defined M |= ϕ for any sentence ϕ that does not use ∨, →,
↔, or ∀. Since each of these symbols is defined in terms of ¬, ∧, and ∃, the
definition of M |= ϕ can be extended to all sentences in a natural way. Suppose
that, for some sentence ϕ′, M |= ϕ′ has been defined. Suppose further that ϕ′

has a subformula of the form ¬(¬ψ ∧ ¬θ). Let ϕ be the sentence obtained by
replacing an occurrence of the subformula ¬(¬ψ ∧ ¬θ) in ϕ′ with (ψ ∨ θ). We

62 Structures and first-order logic

define M |= ϕ to mean the same as M |= ϕ′. Likewise, if ϕ is obtained from
ϕ′ by replacing a subformula of the form (ψ → θ) with (¬ψ ∨ θ), (ψ ↔ θ) with
(ψ ← θ)∧ (θ ← ψ), or ¬∃x¬ψ(x) with ∀xψ(x) then, as definition, M |= ϕ if and
only if M |= ϕ′.

We have now defined what it means for a V-structure M to be a model of a
V-sentence ϕ. We further extend the definition to apply to all V(M)-sentences.
Recall that V(M) is the expansion of V obtained by adding a new constant for
each element in the universe ofM . There is a natural expansion ofM to a V(M)-
structure denoted by MC . For any V(M)-sentence ϕ, we define M |= ϕ to mean
MC |= ϕ. For any V-structure M , we refer to the constants of V(M) that are
not in V as parameters.

Example 2.23 Let V< be the vocabulary consisting of a single binary relation
<. Let R< be the V<-structure having underlying set R which interprets < in
the usual way. Then R< models

∀x∃y∃z((y < x) ∧ (x < z)),

∀x∀y((x < y) → ∃z((x < z) ∧ (z < y)))

(3 < 5) ∧ (−2 < 0), and

¬∃x((x < −2) ∧ (5 < x)).

The first two are V<-sentences. The other two are V<(R<)-sentences that are
not V<-sentences. We regard −2, 0, 3, and 5 as parameters.

Note that we have not defined the concept of “models” for formulas that
are not sentences. Conventionally, when one says that a structure M mod-
els a formula ϕ(x1, . . . ,xn), what is meant is that M models the sentence
∀x1 . . .∀xnϕ(x1, . . . ,xn). Of course, the formula ϕ(x1, . . . ,xn) may be true for
some values of x1, . . . ,xn and not for others. The set of n-tuples for which the
formula holds is called the set defined by ϕ.

Definition 2.24 Let ϕ(x1, . . . ,xn) be a V-formula. LetM be a V-structure having
underlying set UM . The set of all n-tuples (b1, . . . , bn) ∈ (UM)n for which M |=
ϕ(b1, . . . , bn) is denoted by ϕ(M). The set ϕ(M) is called a V-definable subset of
M (although it is actually a subset of (UM)n).

Typically, most subsets of a structure’s universe are not definable (as we will
see in Section 2.5). The definable subsets are special subsets and play a central
role in model theory (Chapters 4–6). The V-definable subsets are the subsets
that the vocabulary V is capable of describing. For the sake of model theory, the
notion of a first-order structure can be defined without reference to the syntax of

Structures and first-order logic 63

first-order logic. In general, a “structure” can be defined as a set with together
with special subsets having names. A first-order structure is a structure having
names for those sets that are definable by a first-order formula (see Exercises 2.11
and 2.12).

Example 2.25 Let V< and R< be as in the previous example. Consider the
V<(R<)-formulas

(x < y) ∨ (x > y) ∨ (x = y), and

(¬(x < 3) ∧ ¬(x = 3) ∧ (5 < x)) ∨ (x = 5) ∨ (x < −2).

Let ϕ(x, y) denote the first formula and let ψ(x) denote the second formula. Then
R< |= ϕ(x, y). By this we mean that R< models the sentence ∀x∀yϕ(x, y). It
follows that the set defined by ϕ(x, y) is all of R

2. In contrast, the formula ψ(x)
does not hold for all x in R. So R< does not model this formula. The set ψ(R<)
defined by ψ(x) is (−∞,−2) ∪ (3, 5]. Note that R< also does not model the
formula ¬ψ(x). The set ¬ψ(R<) is [2, 3] ∪ (5,∞), the complement of ψ(R<)
in R.

If M models ϕ, then we say ϕ holds in M , or simply, that ϕ is true in M .
A sentence may be true in one structure and not in another. If a V-sentence ϕ
holds in every V-structure, then it is valid, (or a tautology). If the sentence ϕ
holds in some structure, then it is satisfiable. Otherwise, if there is no structure
in which ϕ is true, then ϕ is unsatisfiable (or a contradiction).

We use the same terminology as in propositional logic. We give the analogous
definitions for consequence and equivalence. For V-sentences θ and ϕ, “θ is a
consequence of ϕ” means that, for every V-structure M , if M |= ϕ then M |= θ.
And “θ is equivalent to ϕ” means that θ and ϕ are consequences of each other.
Again, we use the following notation:

|= ϕ means that ϕ is a tautology,
ϕ |= ψ means ψ is a consequence of ϕ, and
ϕ ≡ θ means ϕ and ψ are equivalent.

The definition of satisfiability can be extended to apply to all formulas of
first-order logic (not just sentences). The formula ϕ(x1, . . . ,xm) is satisfiable if
and only if the sentence ∀x1 . . .∀xmϕ(x1, . . . ,xm) is satisfiable. Therefore, the
notions of unsatisfiability, tautology, and consequence also apply to formulas as
well as sentences (see Exercise 2.6).

A primary aim of ours is to resolve the following decision problems.

Validity problem: Given formula ϕ, is ϕ valid?
Satisfiability problem: Given formula ϕ, is ϕ satisfiable?

64 Structures and first-order logic

Consequence problem: Given formulas ϕ and ψ, is ψ a consequence of ϕ?
Equivalence problem: Given formulas ϕ and ψ, are ϕ and ψ equivalent?

These are, in some sense, variations of the same problem. For this reason we
focus on just one of these: the Satisfiability problem. If we could resolve this
problem, then we could also resolve the Validity problem (by asking if ¬ϕ is
unsatisfiable), the Consequence problem (by asking if ϕ ∧ ¬ψ is unsatisfiable),
and the Equivalence problem (by asking if ϕ and ψ are consequences of each
other).

The question of whether or not a given formula is satisfiable regards the
syntax of the formula rather than the semantics. For example, consider the
formula (y + 1) < y. If we interpret the vocabulary {+,<, 1} in the usual
manner, then this formula cannot be satisfied. The result of adding one to a
number cannot be less than the number. Under a different interpretation, how-
ever, this formula is satisfiable (suppose that we interpret < as “not equal”).
For the same reason, 2 + 2 = 4 is not a tautology. For an example of a
formula that is not satisfiable, consider ∀xR(x, y) → ∃x¬R(x, y). This for-
mula is unsatisfiable by virtue of its structure. It has the form “p implies
not p.” Regardless of how the binary relation R is interpreted, the formula is
contradictory.

The Satisfiability problem for first-order logic is decidedly more difficult
than the corresponding problem for propositional logic. In propositional logic we
could, in theory, compute a truth table to determine whether or not a formula
is satisfiable. In first-order logic, we would have to check every structure to do
this. We have no systematic way for doing this. So, for now, we have no way
of proving that a first-order formula is unsatisfiable. To show that a formula is
satisfiable, however, can be easy. We need only to find one structure in which it
is true.

Example 2.26 Let ϕ be the sentence ∀x∃yR(x, y)∧∃y∀x¬R(x, y). To show that
this is satisfiable, we must find a structure M that models ϕ.

Let M = (N|R) where N denotes the natural numbers and the binary rela-
tion R is interpreted as the successor relation. That is, R(x, y) holds if and only
if y = x+ 1 (y is the successor of x).

Under this interpretation, ϕ says that every element has a successor and
there exists an element that has no predecessor. This is true inM . Every natural
number has a successor, but 0 has no predecessor.

So M |= ϕ and ϕ is satisfiable.
It is also easy to see that ϕ is not a tautology. We need only to find one

structure that models ¬ϕ. Consider, for example, the structure N = (Z|R)

Structures and first-order logic 65

where Z denotes the set of integers and the binary relation R is interpreted as
the successor relation. This structure does not model ϕ since every integer has
a predecessor.

Example 2.27 Let VE be the vocabulary {E} consisting of one binary relation.
Let M be a VR-structure. The relation E is an equivalence relation on M if and
only if M models the three sentences

∀xE(x,x)

∀x∀y(E(x, y) → E(y,x))

∀x∀y∀z((E(x, y) ∧ E(y, z) → E(x, z))).

The first sentence, call it ϕ1, says that E is reflexive, the second sentence, ϕ2,
says that E is symmetric, and the third sentence ϕ3 says E is transitive.

We have seen equivalence relations before. “Equivalence” was the name
we gave to the relation ≡ between formulas of propositional logic. It is easy
to see that this relation warrants the name we bestowed it. It clearly satisfies
the three conditions of an equivalence relation. That is, the VE-structure (U |E)
models each ϕi, where U is the set of all formulas of propositional logic and E
is interpreted as ≡.

We can show that these three sentences are not redundant, that all three
are needed to define the notion of equivalence relation. To do this, we show that
none of these sentences is a consequence of the other two. For example, to show
that ϕ2 is not a consequence of ϕ1 and ϕ3, we must find a structure that is a
model of ϕ1 ∧ ϕ3 ∧ ¬ϕ2. That is, we must demonstrate a VE-structure where
E is reflexive and transitive, but not symmetric. The VE-structure (R|E) where
E is interpreted as ≤ on the real numbers is such a structure. Likewise, we can
show that ϕ1 is not a consequence of ϕ2 and ϕ3, and ϕ3 is not a consequence of
ϕ1 and ϕ2. We leave this as Exercise 2.4.

In these examples we are able to show that certain formulas are satis-
fiable by exhibiting structures in which they hold. Using this same idea, we
can show that a given formula is not a tautology, that one formula is not a
consequence of another, and that two given formulas are not equivalent. How-
ever, we have no way at present to show that a formula is unsatisfiable, or a
tautology, or that one formula is a consequence of another. This is the topic
of Chapter 3 where we define both formal proofs and resolution for first-order
logic.

66 Structures and first-order logic

2.4 Examples of structures
Let us now examine some specific structures. We consider four types of structures
that one encounters in mathematics and computer science: number systems,
linear orders, databases, and graphs.

2.4.1 Graphs. Graph theory provides examples of mathematical structures that
are both accessible and versatile.

Definition 2.28 A graph is a set of points, called vertices, and lines, called edges
so that every edge starts at a vertex and ends at a vertex. Two vertices are said
to be adjacent if they are connected by an edge.

The following are examples of graphs:

Graph 1 Graph 2 Graph 3 Graph 4

Instead of giving a picture, we can describe a graph by listing its vertices
and edges. The following data completely describes a graph.

Vertices: a, b, c, d, e
Edges: ab, ad, ae, bc, cd, ce, de

This graph has five vertices (a, b, c, d, and e) and seven edges (between vertices a
and b, a and d, and so forth). Note that both Graphs 2 and 3 fit this description.
We regard Graphs 2 and 3 as two depictions of the same graph.

We can view any graph as a structure G as follows. The underlying set U of
G is the set of vertices. The vocabulary VG ofG consists of a single binary relation
R. The structure G interprets R as the edge relation. That is, for elements a
and b of U , G |= R(a, b) if and only if the graph has an edge between vertices a
and b.

Each of the above graphs model each the following two VG-sentences.

∀x¬R(x,x)

∀x∀y(R(x, y) ↔ R(y,x))

The first of these sentences says that the binary relation R is not reflexive (no ver-
tex is adjacent to itself). The second sentence says that R is symmetric. Hence-
forth, when we speak of a graph, we mean a VG-structure that models the above

Structures and first-order logic 67

two sentences. Our notion of a “graph” is more accurately described in graph
theoretic terms as an “undirected graph with neither multiple edges nor loops.”

Graphs 1–4 also model the sentence ∀x∃yR(x, y) which asserts that each
vertex is adjacent to some other vertex. However, this is not true of all graphs.
For example, consider the following graph:

Graph 5

The vertex in the middle of the square is not adjacent to any vertex. There-
fore, this graph models ∃x∀y¬R(x, y) which is equivalent to the negation of
∀x∃yR(x, y). Any graph containing more than one vertex that models this
negation must not be connected. We now define this terminology.

Definition 2.29 For any vertices a and b of a graph, a path from a to b is a
sequence of vertices beginning with a and ending with b such that each vertex
other than a is adjacent to the previous vertex in the sequence.

Definition 2.30 A graph is connected if for any two vertices a and b in G, there
exists a path from a to b.

Each of the Graphs 1–4 is connected. Since each has more than one ver-
tex, each models ∀x∃yR(x, y). On the other hand, none of these graphs models
∃x∀yR(x, y). This sentence asserts that there exists a vertex that is adjacent
to every vertex. Since no vertex is adjacent to itself, no graph models this sen-
tence (i.e. the negation of ∃x∀yR(x, y) is a consequence of ∀x¬R(x,x)). However,
Graph 1 contains a vertex that is adjacent to every vertex other than itself. This
can be expressed in first-order logic as follows:

∃x∀y(¬(x = y) → R(x, y)).

Graph 4 also models this sentence.
To distinguish Graph 1 from Graph 4, we can say that Graph 1 contains

a unique vertex that is adjacent to every vertex other than itself. This can be
expressed as a sentence of first-order logic. To simplify this sentence, let ϕ(x)
denote the formula ∀y(¬(x = y) → R(x, y)). For any graph G and any vertex a
of G, G |= ϕ(a) if and only if a is adjacent to every vertex of G other than a
itself. The following sentence says there is a unique such element:

∃yϕ(y) ∧ ∀z(ϕ(z) → (z = y)).

This sentence distinguishes Graph 1 from Graphs 2–4.

68 Structures and first-order logic

Graph 4, on the other hand, is characterized by the following sentence that
says that ϕ(x) holds for every vertex x.

∀x∀y(¬(x = y) → R(x, y)).

Any graph that models this sentence is called a clique (or a complete graph). The
clique having n vertices is called the n-clique and is denoted by Kn. So Graph 4
is the 8-clique K8. Note that, when n is specified, we use the definite article
when referring to the n-clique. This is because any two n-cliques are essentially
the same. More precisely, they are isomorphic.

Definition 2.31 Graphs G1 and G2 are said to be isomorphic if there exists
a one-to-one correspondence f from the set of vertices of G1 onto the set of
vertices of G2 such that for any vertices a and b of G1, a and b are adjacent in
G1 if and only f(a) and f(b) are adjacent in G2. Such a function f is called an
isomorphism.

Isomorphic graphs are essentially the same.

Example 2.32 Consider the following two graphs.

Graph G:
Vertices: a, b, c, d
Edges: ab, bc, cd, ad.

Graph H:
Vertices: w, x, y, z
Edges: wx, wy, xz, yz.

The function f defined by

f(a) = w, f(b) = x, f(c) = z, and f(d) = y

is an isomorphism from G onto H. Both of these graphs can be depicted as
squares. The only difference between G and H are the letters used to represent
the vertices.

We have demonstrated a VG-sentence distinguishing Graph 1 from Graph 4.
We can do much better than this. There exists a VG-sentence distinguishing
Graph 1 from all graphs that are not isomorphic to Graph 1. That is, there
exists a VG-sentence ϕG such that for any graph H, H |= ϕG if and only if H is
isomorphic to G. We prove this in Section 2.6 as Proposition 2.81. In this sense,
first-order logic is a powerful language for describing finite graphs.

In another sense, however, first-order logic is not a powerful language.
Basic graph theoretic properties cannot be expressed using first-order logic. For
example, there is no first-order sentence that says a graph has an even number

Structures and first-order logic 69

of vertices. Also, first order logic cannot say that a graph is connected. Recall
that the sentence ∀x∃yR(x, y) holds in any connected graph having more than
one vertex. However, just because this sentence holds in a structure does not
mean that it is connected. There is no VG-sentence ϕ such that G |= ϕ if and
only if G is a connected graph. These and other limitations of first-order logic
are discussed in Section 4.7.

2.4.2 Relational databases. Relational databases provide concrete examples of
structures. Any collection of data can be viewed as a database, whether it be a
phone book, a CD catalog, or a family tree. A relational database is presented
as a set of tables. For example, the three tables below form a relational database
(Tables 2.1–2.3).

We now describe a structure D representing this relational database. The
underlying set of D consists of all items occuring as an entry in some column of
a table. So this set contains 13 names and four dates.

Table 2.1 Parent table

Parent Child

Ray Ken

Ray Sue

Sue Tim

Dot Jim

Bob Jim

Bob Liz

Jim Tim

Sue Sam

Jim Sam

Zelda Max

Sam Max

Table 2.2 Female table

Women

Dot

Zelda

Liz

Sue

70 Structures and first-order logic

Table 2.3 Birthday table

Person Birthday

Ann August 5

Leo August 8

Max July 28

Sam August 1

Sue July 24

The vocabulary V of D consists of a n-ary relation for each table where n
is the number of columns in the table. That is, the vocabulary contains a unary
relation F and binary relations P and B corresponding to the Female, Parent,
and Birthday tables.

The V-structure D interprets these relations as rows of the tables. For
example, D |= B(a, b) if and only if “ab” is a row of the Birthday table. This
completely describes the V-structure D. For example, we see that

D |= F (Dot),D |= P (Zelda,Max), and

D |= ¬B(Zelda, July 28).

In addition to B, F , and P , we can define first-order formulas expressing
various other relations in D. For example, the formula ¬F (x) says that x is male.
The formula∃z(P (x, z)∧P (z, y)) says thatx is a grandparent of y. The conjunction
of this formula with F (x) says that x is a grandmother of y. The formula ∃yB(x, y)
says that x is a date and the negation of this formula says that x is a person. The
formula ∃z(B(x, z)∧B(y, z)) asserts that x and y share the same birthday. There
is no end to the relations that can be defined (see Exercise 2.2).

We return to this example at the end of Chapter 3 where we discuss Prolog.
Prolog is a programming language based on first-order Horn logic that can be
used to present and search any relational database.

2.4.3 Linear orders. Next, we look at some structures in the vocabulary V<

consisting solely of the binary relation<. Rather than use the notation “< (x, y)”
we use the more familiar “x < y” to express that the binary relation < holds for
the ordered pair (x, y). As our choice of symbols indicates, each of the structures
we consider interprets < as “less than.”

We consider four V<-structures denoted by N<, Z<, Q<, and R<. To define
each structure, we must state what the underlying set is and how the symbols
are to be interpreted. The underlying sets of the above structures are, in order,
the natural numbers, the integers, the rational numbers, and the real numbers.

Structures and first-order logic 71

Each of these structures interprets < in the usual way. We can present these
structures more concisely as follows:

• N< = (N| <)

• Z< = (Z| <)

• Q< = (Q| <)

• R< = (R| <).

These four structures have a lot in common. They are all V<-structures and
each of them models the following V<-sentences:

∀x∀y((x < y) → ¬(y < x))

∀x(¬(x < x))

∀x∀y((x < y) ∨ (y < x) ∨ (x = y))

∀x∀y∀z(((x < y) ∧ (y < z)) → (x < z)).

Taken together, these sentences say that < linearly orders the underlying set.
Each of the four structures models each of these four sentences. However, this
is not true for all V<-sentences. Let ϕ be the sentence ∀x∃y(y < x), saying
that there is no smallest element. Clearly, R<, Q<, and Z< are models of ϕ.
However, N< does have a smallest element, namely 1. So N< does not model ϕ,
rather N< models the sentence ∃x∀y¬(y < x), asserting that there is a smallest
element. Call this sentence θ. Note that θ is equivalent to ¬ϕ. The sentence θ
distinguishes N< from the other three models.

Next let us find a first-order sentence distinguishing Z< from the other
three structures. Observe that Z< has no smallest element and it is not dense.
A linearly ordered set is dense if between any two elements, there is another
element. This property can be expressed in first-order logic by the following
V<-sentence

∀x∀y((x < y) → ∃z((x < z) ∧ (z < y))).

Call this sentence δ. Both Q< and R< model δ. Between any two rational
numbers a and b there exist infinitely many rational numbers [(a+ b)/2 for one].
The same is true for the real numbers. However, the integers are not dense.
Between 1 and 2 there are no other integers. So Z< |= ¬δ. The V<-sentence
ϕ ∧ ¬δ distinguishes Z< from the other three structures.

Now suppose that we want to distinguish between Q< and R<. We may
use the fact that R< is bigger than Q<. (In the next section, we discuss the size
of a structure in detail and show that, is some precise sense, there are more real

72 Structures and first-order logic

numbers than rational numbers.) Another distinguishing characteristic is order-
completeness. A linear order is order-complete if it cannot be split into two open
intervals. The set of rational numbers, for example, is the union of the intervals
(−∞,

√
2) and (

√
2,∞). The parentheses “(” and “)” indicate that the intervals

do not contain the end points (this is what we mean by “open”). Since
√

2 is
not a rational number, every rational number is in one of these two intervals.
So Q< does not have order-completeness. The structure R<, on the other hand,
does have order-completeness. This is a distinguishing characteristic of the real
numbers.

However, if we attempt to find a V<-sentence that distinguishes R< from
Q<, we will fail. For every V<-sentence ϕ, R< |= ϕ if and only if Q< |= ϕ.
We give an elementary proof of this in Section 5.2. Our first-order language
is too weak to express any difference in these structures. We noted that R<

is order-complete whereas Q< is not, but we cannot express this with a first-
order sentence (try it). Rather, order-completeness is a second-order concept. In
second-order logic we can express things like “there do not exist two subsets such
that. . . ” We also noted that R is bigger than Q, but, as we will see in Chapter 4,
first-order logic can not distinguish between one infinite number and another.
Both Q< and R< are infinite, and that is all first-order logic can say. From the
point of view of V<-sentences, the structures R< and Q< are identical.

2.4.4 Number systems. Although first-order logic cannot tell the difference
between the V<-structures Q< and R<, it can tell the difference between the
real numbers and the rational numbers in vocabularies other than V<. Consider
the vocabulary of arithmetic {+, ·, 0, 1} having binary functions + and ·, and
constants 0 and 1. Let Var denote this vocabulary and consider the following
Var-structures:

• A = (Z|+, ·,0,1),

• Q = (Q|+, ·,0,1),

• R = (R|+, ·,0,1),

• C = (C|+, ·,0,1).

The underlying sets of these structures are, in order, the integers, the
rational numbers, real numbers, and the complex numbers. Each of these
structures interprets the symbols of Var in the usual way.

Rather than use the formal notation “+(x, y) = z” we use the more conven-
tional “x+ y = z.” Likewise, we write x · y instead of ·(x, y). We let 2 abbreviate
(1 + 1), x2 abbreviate x · x, and so on. Any polynomial having natural numbers

Structures and first-order logic 73

as coefficients is a Var-term. Equations such as (for example)

x5 − 9x+ 3 = 0

are Var-formulas. Again, 3 and x5 are not symbols in Var, they are abbreviations
for the Var terms (1 + (1 + 1)) and x · (x · (x · (x · x))), respectively.

We still cannot express order-completeness in this vocabulary, but we can
distinguish between the structures R and Q. The Var-sentence ∃x(x2 = 2) asserts
the existence of

√
2. It follows that R models this sentence and Q does not.

Likewise, the equation 2x + 3 = 0 has a solution in Q but not in A. So Q |=
∃x(2x + 3 = 0), whereas A |= ¬∃x(2x + 3 = 0).

To progress from N to Z to Q, we add solutions for more and more polyno-
mials. We reach the end of the line with the complex numbers C. The complex
numbers are obtained by adding to the reals, the solution i =

√
−1 of the equa-

tion x2 +1 = 0. The Var-sentence ∃x(x2 +1 = 0) distinguishes C from the other
structures in our list. The set C consists of all numbers of the form a+ bi where
a and b are both real numbers. The Fundamental Theorem of Algebra states
that for any nonconstant polynomial P (x) having coefficients in C, the equation
P (x) = 0 has a solution in C (this is true even for polynomials of more than one
variable). So there is no need to extend to a bigger number system. By virtue
of adding a solution of x2 + 1 = 0 to R, we have added a solution for every
polynomial.

The names of these number systems reflect historical biases. The counting
numbers 1, 2, 3, . . . are the “natural” numbers to consider in mathematics. Negat-
ive numbers are not natural, the square root of 2 is irrational, and the square
root of −1 is imaginary. The names suggest that things get more complicated as
we progress from “natural” numbers to “complex” numbers. From the point of
view of first-order logic, however, this is backwards. The structure C is the most
simple. The structure R is not simple like C, but it does have many desirable
properties. We will discuss the properties of these two structures in Chapter 5.
The structure A is not so nice. The “A” stands for arithmetic, which sounds
quite elementary. However, from the point of view of first-order logic, A is most
complex. We investigate the structure A in Chapter 8.

2.5 The size of a structure
For any set U , |U | denotes the number of elements in U . For a V-structure M ,
|M | means |UM |, the number of elements in the underlying set UM of M . We
refer to |M | as the size of M . For example, if M2 is Graph 2 from Section 2.1,
then |M2| = 5. If the underlying set of M is infinite, then we could just write

74 Structures and first-order logic

|M | = ∞ and say no more, but this oversimplifies the situation. It implies that
any two infinite sets have the same size. This is not the case. To explain this, we
need to say precisely what we mean by “same size.”

Let A and B be two finite sets. Picture each set as a box of ping pong balls.
Imagine reaching into box A with your left hand and box B with your right hand
and removing one ball from each. Repeat this process. Reach in to the boxes and
simultaneously remove a ball from each, and again, and again. Eventually, one
of the boxes is emptied. If box B is emptied first, then we conclude that box A
must have contained at least as many balls as box B at the outset. That is,
|B| ≤ |A|. Since A and B are finite, this is elementary. For infinite sets we take
this idea as definition of “|B| is less than or equal to |A|.”

Definition 2.33 Let A and B be sets. We define “|B| ≤ |A|” as follows: |B| ≤ |A|
if there exists a one-to-one function f from B into A.

The function in this definition plays the same role as our right and left hands
in the preceding discussion. The definition requires that f is one-to-one and has
domain B. Given any element b in B, the function “picks out” an element f(b)
from A. If such a function exists, we conclude that |B| ≤ |A|.

Example 2.34 Let P be the set of all prime natural numbers and let E be the
set of all even natural numbers. Let f : P → E be defined by f(p) = 2p. This
function is one-to-one. We conclude that |P | ≤ |E|. That is, there are at least as
many even numbers as there are prime numbers.

Example 2.35 Recall that N × N denotes the set of all ordered pairs (m,n) of
natural numbers. Let f : N → N × N be defined by f(n) = (n, 1) for all n ∈ N.
This function is one-to-one. We conclude that |N| ≤ |N × N|. The reader should
not be surprised by this fact. Less obvious is the fact that the opposite is true.
Consider the function g : N × N → N defined by g(m,n) = 2m3n. This too is a
one-to-one function. So not only is |N| less than or equal to |N × N|, but also
|N × N| is less than or equal to |N|. Naturally, we conclude that these two sets
have the same size.

Definition 2.36 Let A and B be sets. We say A and B have the same size and
write |A| = |B| if both |B| ≤ |A| and |A| ≤ |B|. We write |A| < |B| if both
|A| ≤ |B| and it is not the case that |A| = |B| .

So to show that two sets A and B have the same size we must demonstrate
a one-to-one function from A to B and a one-to-one function from B to A. It
suffices to show there exists a function f from A to B (or from B to A) that is
both one-to-one and onto (since f−1 is also one-to-one and onto). Such a function
is called a one-to-one correspondence or a bijection.

Structures and first-order logic 75

Example 2.37 Let N be the natural numbers and again let E denote the even
natural numbers. In some sense there are “more” natural numbers than even
numbers (since E ⊂ N). However, these two sets have the same size. This is
witnessed by the function f(x) = 2x defining a bijection from N onto E.

Example 2.38 Let R be the real numbers and let I be (0, 1), the set of all reals
between 0 and 1. The function f : R → I defined by f(x) = (2/π) arctan x is a
bijection from R onto I. So |R| = |I|.

If sets A and B can be put into one-to-one correspondence with each other,
then they must have the same size. The following theorem states that the con-
verse is also true. If |A| ≤ |B| and |B| ≤ |A|, then there must exist a bijection
between A and B. This provides an alternative definition for “same size.”

Theorem 2.39 Sets A and B have the same size if and only if there exists a
bijection from A onto B.

Proof Only one direction requires proof. As we previously remarked, if there
exists a bijection between A and B, then A and B must have the same size. We
now prove the opposite: if |A| = |B|, then such a bijection necessarily exists.

Suppose A and B have the same size. By the definition of “same size” there
exist one-to-one functions f :A→ B and g :B → A. Our goal is to demonstrate
a bijection h : A→ B. Before defining h, we define some sequences.

Given any a ∈ A, we define a (possibly finite) sequence sa as follows. Let
a1 = a. Now suppose am ∈ A has been defined for some m ∈ N. Take bm ∈ B
such that g(bm) = am. If no such bm exists, then the sequence ends. Otherwise, if
bm does exist, the sequence continues. Take am+1 ∈ A such that f(am+1) = bm.
Again, if no such am+1 exists, the sequence terminates. Note that the sequence
alternates between elements of A and elements of B. The sequence sa can be
depicted as follows:

a1
g← b1

f← a2
g← b2

f← a3
g← b3 · · ·

There are three possibilities for the sequence sa. Either it terminates with some
element ai ∈ A, or it terminates with some element bi ∈ B, or it never terminates.
These three possibilities partition the set A into three subsets.

• Let AA be the set of all a ∈ A such that sa terminates in A.

• Let AB be the set of all a ∈ A such that sa terminates in B.

• Let AN be the set of all a ∈ A such that sa never terminates.

Similarly, we can define sequences sb that begin with b ∈ B and partition
B as follows:

• Let BA be the set of all b ∈ B such that sb terminates in A.

76 Structures and first-order logic

• Let BB be the set of all b ∈ B such that sb terminates in B.

• Let BN be the set of all b ∈ B such that sb never terminates.

The function f , when restricted to AA, is a bijection f : AA → BA. We know
that f is one-to-one. To see that it is onto, take any b ∈ BA. Since the sequence
sb terminates in A, there must exist a ∈ AA such that f(a) = b. (Otherwise, sb
would be the one-element sequence b). Likewise g, when restricted to BB , forms
a bijection g : BB → AB . Finally, AN and BN are in one-to-one correspondence
by either g or f . A bijection h : A → B can now be defined by putting these
three parts together.

h(a) =



f(a), a ∈ AA

g−1(a), a ∈ AB

f(a), a ∈ AN

For finite sets, Theorem 2.39 is elementary. To determine how many ping
pong balls are in a given box, we put the ping pong balls into one-to-one corres-
pondence with the set {1, 2, 3, . . . , k} for some k ∈ N (that is, we count them).
We say that two boxes contain the same number of ping pong balls if each can
be put into one-to-one correspondence with the same set {1, 2, 3, . . . , k} and,
hence, with each other. If A and B are infinite, we may have difficulty visualiz-
ing them as boxes of ping pong balls. We extrapolate our definitions for infinite
sets from the corresponding definitions for finite sets. Furthermore, we employ
the following assumption.

Assumption: If A and B are sets, then |A| ≤ |B| or |B| ≤ |A|.

For finite A and B, this assumption is a fact that can be proved. If we
remove ping pong balls one at a time from each of two given boxes, eventually
one (or both) of the boxes will be emptied. We must be careful, however, when
handling boxes containing infinitely many ping pong balls (see Exercise 2.43).
For infinite A and B, we accept this assumption without proof. It is equivalent
to an axiom of mathematics known as the Axiom of Choice.

It follows from this assumption that, for any infinite set A, |N| ≤ |A|. This
leads to a crucial dichotomy of infinite sets: either |N| = |A| or |N| < |A|.

Definition 2.40 A set A is denumerable if there exists a bijection between A
and N.

Definition 2.41 A set A is countable if it is either finite or denumerable.
Otherwise, A is uncountable.

Proposition 2.42 The set of rational numbers Q is countable.

Structures and first-order logic 77

Proof Clearly, |N| ≤ |Q| (since N ⊂ Q). Conversely, each nonzero element in Q

can be written in a unique way as a reduced fraction of natural numbers times
(−1)m for m = 1 or 2. Let f : Q → N be defined by f(a

b (−1)m) = 2a3b5m where
a
b is reduced. Further, let f(0) = 0. Now f is a one-to-one function from Q into
N. By definition, |Q| ≤ |N|. Hence Q and N have the same size.

In a similar manner, we showed in Example 2.35 that N×N has the same size
as N. So N×N is a countable set. We use this to prove the following useful fact.

Proposition 2.43 The union of countably many countable sets is countable.

Proof For each n ∈ N, let An be a countable set. Let U denote the union of these
sets. If the Ans are each denumerable and are disjoint from one another, then U
is as big as possible. Suppose this is the case. So each An can be enumerated as
{a1, a2, a3, . . .}. Let f(m,n) denote the mth element in the enumeration of An.
This defines a bijection f : N × N → U . We conclude that U has the same size
as N × N. Since N × N is countable, so is U .

An example of an uncountable set is provided by the set of all subsets of N.
For any set A, the set of all subsets of A is called the power set of A, denoted
by P(A). We show that |P(A)| is always strictly bigger than |A|.

Proposition 2.44 For any set A, |A| < |P(A)|.

Proof To show that |A| < |P(A)| we must show that both |A| ≤ |P(A)| and
|A| �= |P(A)|.

The one-to-one function f : A → P(A) defined by f(a) = {a} (for each
a ∈ A) shows that |A| ≤ |P(A)|.

To show that |A| �= |P(A)|, we must show that there does not exist a
bijection between A and P(A). Let g be an arbitrary one-to-one function from A

to P(A). We show that g is necessarily not onto. (Note that the above one-to-one
function f is not onto.) For each element a in A, either a is in the set g(a) or a
is not in g(a). Let X be the set of those elements a in A for which a is not in
g(a). Then a ∈ X if and only if a �∈ g(a). For each a ∈ A, it cannot be the case
that g(a) = X (otherwise we would have a ∈ X if and only if a �∈ X which is
absurd). Since X is not in the range of g, g is not onto. Since g was arbitrary,
we conclude that no one-to-one function from A to P(A) is onto.

Corollary 2.45 Any denumerable set has uncountably many subsets.
In particular, there are uncountably many subsets of N. We use this fact to

show that there are uncountably many real numbers.

Proposition 2.46 The set of real numbers R is uncountable.

78 Structures and first-order logic

Proof We define a one-to-one function f from P(N) into R.
Let X be an element of P(N). Then, as a subset of the natural numbers,

X contains at most 10 single-digit numbers, at most 90 two-digit numbers, at
most 900 three-digit numbers, and so forth. Let rX be the real number between
0 and 1 described as follows. The first two digits following the decimal point
represent the number of single-digit numbers in X. These are succeeded by each
of the single-digit numbers in X listed in ascending order. The next two digits
in the decimal expansion of rX represent the number of two-digit numbers in
X. These are followed by the list of the two-digit numbers in X. The next three
digits state how many three-digit numbers are in X, and so forth.

For example, letX = {2, 4, 5, 6, 7, 8, 9, 10, 24, 213, 3246}. There are 07 single-
digit numbers in X (namely 2, 4, 5, 6, 7, 8, and 9), there are 02 two-digit numbers
(namely 10 and 24), there is 001 three-digit number (213), and 0001 four-digit
number (3246). So we have

rX = 0.0724567890210240012130001324600000000 . . .

The number rX contains a complete description of the set X. It follows that the
function f : P(N) → R defined by f(X) = rX is a one-to-one function. Hence
|P(N)| ≤ |R|. Since P(N) is uncountable, so is R.

We next show that there are only countably many V-formulas for any
countable vocabulary V.

Proposition 2.47 If the vocabulary V is countable, then so is the set of all
V-formulas.
Proof We define a one-to-one function f from the set of all V-formulas into N.

Since V is countable, we can assign a different natural number to each
symbol occurring in a V-formula. Then to each V-formula, there is an associ-
ated finite sequence of natural numbers. Suppose that a given V-formula ϕ has
a1, a2, . . . , am as its associated sequence of natural numbers. Define f(ϕ) as the
product

2a1 · 3a2 · 5a3 · · · · · pan
n

where pn denotes the nth prime number. We recall two basic facts about the
natural numbers: there are infinitely many primes and there is a unique way
to factor any given natural number into primes. So we can factor the natural
number f(ϕ) to recover the sequence a1, . . . , an and the formula ϕ. It follows
that f is a one-to-one function as was required.

By Proposition 2.47, most subsets of N are not definable in any countable
vocabulary. The same idea used to prove Proposition 2.47 can be used to show
that there are countably many sentences in English or any other natural lan-
guage. So there exist uncountably many real numbers that elude description in

Structures and first-order logic 79

any natural language. Likewise, there exist uncountably many subsets of the
natural numbers that cannot be defined. The following proposition shows that
this is also true of functions on the natural numbers.

Proposition 2.48 The set of all functions from N to N is uncountable.

Proof Let F denote the set of all functions from N to N. We show that |I| ≤ |F |.
Recall that I is the interval (0, 1) consisting of real numbers between 0 and 1.
By Example 2.38, I and R have the same size. By the previous proposition, I is
uncountable. Let r be an arbitrary element of I. Let fr : N → N be defined by
letting fr(n) be the nth digit in the decimal expansion of r. Clearly, if r1 and r2
are distinct numbers in I, then fr1 and fr2 are distinct functions. Therefore, the
function assigning fr to input r is a one-to-one function from I to F . It follows
that |I| ≤ |F | and |F | is uncountable. (In fact, we have shown that there exist
uncountably many functions from N to the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}).

A function f(x) is said to be computable if there exists a computer program
that outputs f(x) when given input x. Applying Proposition 2.47 to computer
languages, we see that there are only countably many possible computer pro-
grams. It follows that there are uncountably many functions from N to N that
cannot be computed. This is also true for functions on the reals. Most functions
are not computable. This fact defies empirical evidence. Most of the functions
with which we are familiar (most functions one encounters in calculus, say) are
computable. The notion of computability is discussed in detail in Chapter 7. In
Section 7.6.1, we shall give examples of functions that are precisely defined but
not computable.

At the outset of this section, we said that having a single notion of “infinity”
is misleading. We have replaced this with two notions. An infinite set is either
countable or uncountable. Many of the infinite sets we encounter either have
the same size as N or the same size as R. (Both P(N) and F have the same size
as R. See Exercises 2.41 and 2.42.) This dichotomy is still crude. Proposition 2.44
guarantees the existence of arbitrarily large uncountable sets, so having a single
notion of “uncountable” is now misleading. In Section 4.2, we introduce cardinal
numbers to represent the size of a set and study the plethora of uncountable
numbers in more depth. For now, we end our digression into the infinite and
return to our discussion of structures.

2.6 Relations between structures
We consider certain relations that may or may not hold between two structures
in the same vocabulary.

80 Structures and first-order logic

2.6.1 Embeddings. Let M and N be structures. The notation f : M → N is
used to denote “f is a function from M to N .” When using this notation, it is
understood that f is not a symbol in the vocabularies of M or N . Each unary
function in the vocabulary of M is interpreted as a function from the universe
of M to itself. When we speak of a function from M to N , we actually mean a
function from the underlying set of M to the underlying set of N . That is, to
each element a from the universe UM of M , f assigns an element f(a) in the
universe UN of N . We are most interested in the case where, for some vocabulary
V, M , and N are both V-structures and f preserves certain V-formulas.

Definition 2.49 Let V be a vocabulary and let M and N be V-structures. A
function f : M → N preserves the V-formula ϕ(x̄) if, for each tuple ā of elements
in M , M |= ϕ(ā) implies N |= ϕ(f(ā)).

Definition 2.50 Let M and N be V-structures and let f : M → N be a function.
If f preserves all V-formulas that are literals, then f is a literal embedding (or just
an embedding). If f preserves all V-formulas, then f is an elementary embedding.

Example 2.51 Consider the following two graphs:

A a b

d c

e

f

B

D C

Let f :M → N be defined by

f(A) = a, f(B) = b, f(C) = c, and f(D) = d.

Let g :M → N be defined by

f(A) = b, f(B) = e, f(C) = d, and f(D) = f .

Then g is a literal embedding and f is not.

Example 2.52 Recall the structures N<, Z<, Q<, and R< from Section 2.4.3.
Let id : N< → Z< be the identity function defined by id(x) = x. This is a

literal embedding. Since N< |= ¬∃x(x < 0) and Z< |= ∃x(x < 0) this embed-
ding does not preserve the formula ¬∃x(x < y), and so it is not an elementary
embedding.

The identity function id : Z< → Q< is also a literal embedding that is not
elementary (it does not preserve the formula ¬∃x(y < x ∧ x < z)).

The identity function from Q< to R<, on the other hand, is an elementary
embedding. This will be proved in Chapter 5.

Structures and first-order logic 81

We next show that literal embeddings necessarily preserve formulas other
than literals.

Definition 2.53 A quantifier-free formula is a formula in which the quantifiers
∃ and ∀ do not occur.

Definition 2.54 An existential formula is a formula of the form ∃y1∃y2 . . .∃ym

ϕ(x̄, y1, y2, . . . , ym), where ϕ(x̄, ȳ) is a quantifier-free formula and m ≥ 0.

We show that embeddings preserve existential formulas. First we prove the
following proposition regarding quantifier-free formulas.

Proposition 2.55 Let f :M → N be an embedding. Then for any quantifier-free
formula ϕ(x̄) and any tuple ā of elements from the universe of M ,

M |= ϕ(ā) if and only if N |= ϕ(f(ā)).

Proof We proceed by induction on the complexity of ϕ.
Suppose ϕ(x̄) is atomic. Then, since f preserves literals, if M |= ϕ(ā), then

N |= ϕ(f(ā)). Conversely, if N |= ϕ(f(ā)) then, since ¬ϕ(x̄) is a literal preserved
by f , it must be the case that M |= ϕ(ā).

Now suppose that, for formulas ψ and θ,

M |= ψ(ā) if and only if N |= ψ(f(ā)), and

M |= θ(ā) if and only if N |= θ(f(ā))

for any tuple ā of elements from the universe of M . This is our induction hypo-
thesis. Since we want to prove the proposition only for quantifier-free formulas,
the induction step, as in propositional logic, comprises three parts correspond-
ing to ¬, ∧, and ≡. We must show that M |= ϕ(ā) if and only if N |= ϕ(f(ā))
when ϕ is ¬ψ, when ϕ is ψ ∧ θ, and when ϕ ≡ ψ. The first two of these follow
immediately from the semantics of first-order logic and the latter follows from
the definition of ≡.

Proposition 2.56 Embeddings preserve existential formulas.

Proof Let f : M → N be an embedding and let ϕ(x̄) be an existential for-
mula. We must show that, for any tuple ā of elements from the universe UM of
M , if M |= ϕ(ā) then N |= ϕ(f(ā)). Since ϕ(x̄) is existential, it has the form
∃y1∃y2 . . .∃ymϕ0(x̄, y1, y2, . . . , ym), where ϕ0(x̄, ȳ) is a quantifier-free formula
and m ≥ 0.

By the semantics of ∃, M |= ϕ(ā) means that M |= ϕ0(ā, b̄) for some tuple
b̄ of elements from UM . Since ϕ0 is quantifier-free, we have N |= ϕ0(f(ā), f(b̄))
by the previous proposition. Again by the semantics of ∃, N |= ϕ(f(ā)).

82 Structures and first-order logic

Note that if f : M → N is a literal embedding then, by Proposition
2.55, M |= a �= b if and only if N |= f(a) �= f(b). It follows that any literal
embedding is necessarily a one-to-one function. Note too that any elementary
embedding is a literal embedding. In general, “elementary” is a much stronger
adjective that “literal.” However, if f happens to be onto, then these two notions
coincide.

Proposition 2.57 Let M and N be V-structures. If the function f : M → N

is onto, then f is a literal embedding if and only if f is an elementary
embedding.

Proof Let f : M → N be an literal embedding that is onto. Then f−1 is
a one-to-one function from N onto M . We show that both f and f−1 pre-
serve each V-formula. That is, for each V-formula ϕ(x̄) and each tuple ā of
elements from M , M |= ϕ(ā) if and only if N |= ϕ(f(ā)). We prove this by
induction on the complexity of ϕ(x̄). If ϕ(x̄) is atomic, then this is precisely
Proposition 2.55.

Our induction hypothesis is that both f and f−1 preserve V-formulas ψ and
θ. If ϕ is equivalent to ψ then it is also preserved by f and f−1. Moreover, if ϕ
is either ¬ψ or ψ ∧ θ, then, by the semantics of ¬ and ∧, ϕ is preserved by f
and f−1. It remains to be shown that ϕ is preserved in the case where ϕ is the
formula ∃yψ.

Let ϕ(x̄) be the formula ∃yψ(x̄, y). First we show that f preserves ϕ.
Suppose that M |= ϕ(ā) for some tuple ā of elements in M . Then, by the
semantics of ∃, M |= ψ(ā, b) for some element b of M . Since ψ is preserved by
f , N |= ψ(f(ā), f(b)). Again by the semantics of ∃, N |= ϕ(f(ā)).

Now we show that f−1 preserves ϕ. Suppose that N |= ϕ(f(ā)). Then, by
the semantics of ∃, N |= ψ(f(ā), c) for some element c of N . Since f is onto,
c = f(b) for some element b of M . Since f−1 preserves ψ, M |= ψ(ā, b). Finally,
again by the semantics of ∃, M |= ϕ(ā).

Definition 2.58 Let M and N be V-structures. A function from M to N is an
isomorphism if it is a one-to-one correspondence that preserves every V-formula.
If such an isomorphism exists, then M and N are isomorphic, denoted
by M ∼= N .

Definition 2.59 Let M and N be V-structures. If M and N model the same
V-sentences, then M and N are said to be elementarily equivalent, denoted
M ≡ N .

Example 2.60 The V<-structures Q< and R< from Section 2.4.3 are element-
arily equivalent.

Proposition 2.61 Let M and N be V-structures. If M ∼= N , then M ≡ N .

Structures and first-order logic 83

Proof Let f :M → N be an isomorphism. Then both f and f−1 preserve every
formula. In particular, for any sentence ϕ, M |= ϕ if and only if N |= ϕ.

If V-structures M and N are elementarily equivalent, then we cannot dis-
tinguish them using first-order logic. Moreover, if M and N are isomorphic,
then they are essentially the same. The only difference between isomorphic
structures is the names given to the elements of the underlying sets (recall
Example 2.32).

2.6.2 Substructures. If B is a set, then A ⊂ B means that A is a subset of B.
If N is a structure, then M ⊂ N means that M is a substructure of N . We now
define this concept.

Definition 2.62 For any structure N , M is a substructure of N , denoted M ⊂
N , if

1. M is a structure having the same vocabulary as N ,

2. the underlying set UM of M is a subset of the underlying set UN of N , and

3. M interprets the vocabulary in the same manner as N on UM .

Example 2.63 Recall the structures N<, Z<, Q<, and R from Section 2.4.3.
We have N< ⊂ Z< ⊂ Q< ⊂ R. Likewise, for the structures discussed in
Section 2.4.4, A ⊂ Q ⊂ R ⊂ C.

Example 2.64 Let G be the following graph:

Vertices: a, b, c, d, e
Edges: ab, ac, ad, ae, bc, cd, de

If we choose any subset of these vertices and any subset of edges involving the
chosen vertices, then we obtain what is known in graph theory as a subgraph.

Let H be the following subgraph of G.

Vertices: a, b, c, d
Edges: ab, ad, bc, cd

Although H is a subgraph of G, H is not a substructure of G (viewing G
and H as VG-structures). Since G |= R(a, c) and H |= ¬R(a, c), H does not
interpret the binary relation R the same way as G does on the set {a, b, c, d}.
The notion of substructure corresponds to the graph theoretic notion of induced
subgraph.

Let N be a V-structure and let UN be the underlying set for N . Not every
subset of UN may serve as the universe for a substructure of N . Since a substruc-
ture is itself a V-structure, it must interpret each constant and function in V.

84 Structures and first-order logic

Since N is a V-structure, it interprets each constant c in V as an element ac of
UN . Let C be the subset of UN defined by C = {ac|c a constant in V}. Let f be
an n-ary function in V. A subset D of UN is closed under f if and only if, for
each n-tuple ā of elements of D, f(ā) is also an element of D. For D to be the
universe of a substructure of N , it is necessary and sufficient that D contains
each element in C and is closed under each function in V.

Example 2.65 Let N be the structure (N|S) that interprets the binary relation
S as the successor relation. That is, for any a and b in N, N |= S(a, b) if and
only if b = a+ 1. Since the vocabulary contains neither constants nor functions,
every subset of N is the universe for a substructure of N . It follows that there
are uncountably many substructures of N . Moreover, there exist uncountably
many substructures, no two of which are isomorphic. We leave the verification
of this fact as Exercise 2.35.

Example 2.66 Let N be the structure (N|s) that interprets the unary function
s as the successor function. That is, for any a and b in N, N |= s(a) = b if and
only if b = a+ 1. Only those subsets of N that are closed under s may serve as
the universe of a substructure. The closed subsets of N are the sets of the form
{n|n ≥ d} for some d ∈ N. It follows that there are countably many substructures
of N . Moreover, all of these substructures are isomorphic. So there is only one
substructure up to isomorphism.

Example 2.67 Let N be the structure (N|s, 1) that interprets the unary function
s as the successor function and the constant 1 as the element 1 in N. If D ⊂ N

is the universe of a substructure of N , then D must contain 1 and be closed
under the function s. It follows that D must be all of N. Therefore, the only
substructure of N is N itself.

An alternative definition of substructure is provided by the notion of
embedding.

Proposition 2.68 Let N and M be structures in the same vocabulary. Then M
is a substructure of N if and only if the identity function id : M → N defined
by id(x) = x is an embedding.

Proof Exercise 2.26.

If M ⊂ N , then, reversing our point of view, N is said to be an extension
of M . Note the distinction between an “extension” and an “expansion” of a
structure. A structure has both an underlying set and a vocabulary. An expansion
of a structure has the same underlying set, but the vocabulary may be increased.
An extension of a structure has the same vocabulary, but the underlying set may
be enlarged.

Structures and first-order logic 85

Definition 2.69 The formula ϕ(x̄) is said to be preserved under extensions if,
whenever M ⊂ N and ā is a tuple of elements from the universe of M , if
M |= ϕ(ā) then N |= ϕ(ā).

Definition 2.70 The formula ϕ(x̄) is said to be preserved under substructures
if, whenever M ⊂ N and ā is a tuple of elements from the universe of M , if
N |= ϕ(ā) then M |= ϕ(ā).

Proposition 2.71 Quantifier-free formulas are preserved under substructures and
extensions.

Proof This follows immediately from Proposition 2.55.

Proposition 2.72 Existential formulas are preserved under extensions.

Proof This follows immediately from Proposition 2.56.

In particular, existential sentences are preserved under extensions. Intuit-
ively, an existential sentence asserts that a quantifier-free formula ϕ0(ȳ) holds
for some tuple ȳ of elements in the universe. If this is true in M and M ⊂ N ,
then it must also be true in N since every tuple of elements from the universe
of M is also a tuple of elements from the universe of N . Likewise, if ϕ0(ȳ) holds
for all tuples ȳ of elements in the universe of N , then, in particular, it holds
for all elements in any substructure of N . So sentences of the form ∀ȳϕ0(ȳ) are
preserved under substructures.

Definition 2.73 A universal formula is a formula of the form

∀y1∀y2 . . .∀ymϕ(x̄, y1, y2, . . . , ym),

where ϕ(x̄, ȳ) is a quantifier-free formula and m ≥ 0.

Proposition 2.74 Universal formulas are preserved under substructures.

Proof Exercise 2.32.

In Chapter 4, we prove converses of these propositions. We show in
Section 4.5.1 that if a formula ϕ is preserved under substructures, then ϕ is
equivalent to an universal formula. Likewise, if ϕ is preserved under extensions,
then ϕ is equivalent to an existential formula.

The notion of elementary embedding yields the following strengthening of
the notion of substructure.

Definition 2.75 Let N and M be structures in the same vocabulary. Then M is
an elementary substructure of N (or, equivalently, N is an elementary extension
of M), denoted M ≺ N , if and only if the identity function id :M → N defined
by id(x) = x is an elementary embedding.

86 Structures and first-order logic

If N is an elementary extension of M , then for any formula ϕ(x̄) and any
tuple ā of elements from the universe of M , M |= ϕ(ā) if and only if N |= ϕ(ā).
It follows that if M ≺ N , then M ≡ N . The converse of this does not hold. In
the following example, M is a substructure of N and M ≡ N , but M is not an
elementary substructure of N .

Example 2.76 Let N be the natural numbers with the successor function. That
is, N = (N|s) from Example 2.66. Let M be the substructure of N having
universe {2, 3, 4, . . .}. Let f : N →M be defined by f(n) = n+1 for each n in N.
Then f is an isomorphism from N onto M . We have both M ⊂ N and M ∼= N .
However, M is not an elementary substructure of N . There exists an elementary
embedding ofM into N , but it is not the identity function. In particular, let ϕ(x)
be the formula ¬∃y(s(y) = x) saying that x has no predecessor. ThenM |= ϕ(2),
but N |= ¬ϕ(2).

2.6.3 Diagrams. The concept of a diagram (and, more specifically, an element-
ary diagram) of a V-structure M is a fundamental concept that we shall use
repeatedly in this book (primarily in Chapter 4). Intuitively, a diagram of M
is a set of first-order sentences that together say “M can be embedded into
me.” That is, M can be embedded into any model of the diagram of M . Like-
wise, the elementary diagram of M is a set of sentences such that M can be
elementarily embedded into any model. We now explicitly define these sets of
sentences. Recall that V(M) denotes the expansion of V obtained by adding
a constant for each element of the underlying set of M and MC denotes the
expansion of M to a V(M)-structure that interprets these constants in the
natural way.

Definition 2.77 Let M be a V-structure.
The elementary diagram of M , denoted ED(M) is the set of all V(M)-

sentences that hold in MC .
The literal diagram of M , denoted D(M), is the set of all literals in ED(M).

We often refer to the literal diagram of M as simply the diagram of M .

Example 2.78 Consider the graph defined by the following information:

Vertices: a, b, c, d
Edges: ab, bc, cd, bd.

Let G denote the VG-structure represented by this graph. The diagram D(G)
contains the atomic formulas

R(a, b),R(b, c),R(c, d), and R(b, d)

Structures and first-order logic 87

stating the edges of G. It also contains the negated atomic formulas

¬R(a, c) and ¬R(a, d)

stating the edges that are not in G. There are also negated atomic formulas
indicating that a, b, c, and d are distinct:

¬(a = b),¬(a = c),¬(a = d),¬(b = c),¬(b = d), and ¬(c = d).

Note that G can be embedded into any graph which models these 12 literals in
D(G). Moreover, D(G) contains the literals

R(b, a),R(c, b),R(d, c), and R(d, b)

along with
¬R(a, a),¬R(b, b),¬R(c, c),¬R(d, d),

and
a = a, b = b, c = c, d = d,¬(b = a),¬(c = a), . . .

and so forth. In all, there are 32 different (although redundant) literals in D(G).
Note that G can be embedded into any VG-structure that models all of these
sentences.

Proposition 2.79 Let M and N be V-structures. The following are equivalent:

(i) M can be embedded into N .

(ii) Ñ |= D(M) for some expansion Ñ of N .

(iii) N ′ ∼= N for some extension N ′ of M .

Proof Let UM and UN denote the underlying sets of M and N , respectively.
First, we show (iii) implies (i). Suppose that M ⊂ N ′ and N ′ ∼= N . Let

f : N ′ → N be an isomorphism. Then f restricted to M is an embedding of M
into N .

To see that (i) implies (ii), suppose that f : M → N is an embedding. Let
C = {cm : m ∈ UM} be constants not in V. Let V(C) be the expansion V ∪C of
V. Let Ñ be the expansion of N to a V(C)-structure that interprets each cm ∈ C
as the element f(m) ∈ UN . Then Ñ |= D(M).

Finally, let Ñ be as in (ii). We want to show that (iii) holds. The set UM

might not be a subset of UN . However, for each m ∈ UM , there must exist
m′ ∈ UN that Ñ interprets as the constant cm. Let UN ′ be the set obtained by
replacing each m′ ∈ UN with m. Now UM ⊂ UN ′ . Let N ′ be the V-structure
having underlying set UN ′ that interprets V in the same manner as N . Then the
function f defined by f(m) = m′ for m ∈ UM and f(x) = x for x ∈ UN −UM is
and isomorphism from N onto N ′.

Likewise we have the following.

88 Structures and first-order logic

Proposition 2.80 LetM andN be V-structures. The following are equivalent:

(i) M can be elementarily embedded into N .

(ii) Ñ |= ED(M) for some expansion Ñ of N .

(iii) N ′ ∼= N for some elementary extension N ′ of M .

Proof Exercise 2.27.

If M is a finite structure in a finite vocabulary, then D(M) is finite. It
follows that any finite structure is completely described by a single sentence of
first-order logic.

Proposition 2.81 Let V be a finite vocabulary. For any finite V-structure M ,
there exists a V-sentence ϕM such that, for any V-structure N , N |= ϕM if and
only if N ∼=M .

Proof Let {a1, a2, . . . , an} be the underlying set of M . Let ϕ(ā) be the con-
junction of the finitely many sentences in D(M) where ā denotes the n-tuple
(a1, a2, . . . , an). Let ϕ(x̄) denote the V-formula obtained by replacing each ai

in ϕ(ā) with the variable xi (which we assume does not occur in ϕ(ā)). We
abbreviate the sentence ∃x1∃x2 . . .∃xnϕ(x̄) by simply writing ∃x̄ϕ(x̄).

Let ψn be the sentence

∀x1∀x2 . . .∀xn+1


∨

i �=j

(xi = xj)




saying that, given any n+ 1 elements, there must exist two that are equal.
Now let ϕM be the sentence ψn ∧∃x̄ϕ(x̄). We must verify that this sentence

works. Suppose N |= ϕM . Then, since N |= ∃x̄ϕ(x̄), N contains n elements
b1, . . . , bn so that N |= ϕ(b1, . . . , bn). By Proposition 2.79, M can be embedded
into N . Let f : M → N be an embedding. Since N |= ψn, |N | ≤ n. It fol-
lows that f must be onto. By Proposition 2.57, f is elementary and, hence, an
isomorphism.

Corollary 2.82 If M is finite, then, for any structure N , M ∼= N if and only if
M ≡ N .

As we previously mentioned, this corollary is not true for infinite structures.
If M is infinite, then there exist many non-isomorphic structures N for which
M ≡ N . This is proved in Chapter 4. Phrased another way, first-order logic is not
capable of fully describing infinite structures. First-order logic is, in this sense,
a weak language. Ironically, as a consequence of this weakness, first-order logic

Structures and first-order logic 89

has many desirable properties (discussed in Chapter 4) that make it a prom-
inent logic. The weakness of first-order logic gives rise to the subject of model
theory.

2.7 Theories and models
Model theory is the branch of logic concerned with the interplay between math-
ematical structures and sentences of a formal language. First-order logic serves
as a primary language for this subject. Any structure M determines a set of
first-order sentences Th(M) called the theory of M .

Definition 2.83 For any V-structure M , the theory of M , denoted Th(M), is
the set of all V-sentences ϕ such that M |= ϕ.

Conversely, any set of first-order sentences Γ determines a class of structures
Mod(Γ).

Definition 2.84 For any set of V-sentences, a model of Γ is a V-structure that
models each sentence in Γ. The class of all models of Γ is denoted by Mod(Γ).

Note: The word class is used instead of set for Mod(Γ) because of the following
technicality: Mod(Γ) is sometimes unbounded. It is unbounded precisely when
Γ has an infinite model. By unbounded we mean that for any set X, Mod(Γ) is
strictly bigger than X. If this is the case, then Mod(Γ) must not be a set (it
cannot be strictly bigger than itself).

Under certain conditions on Γ, the theory of any model of Γ is Γ itself. If
this is the case, then Th(M) = Γ if and only if M ∈Mod(Γ). This happens only
if Γ is a complete theory, a notion that we presently define.

Definition 2.85 Let Γ be a set of V-sentences. Then Γ is a complete V-theory if,
for any V-sentence ϕ either ϕ or ¬ϕ is in Γ and it is not the case that both ϕ
and ¬ϕ are in Γ.

Proposition 2.86 For any V-structure M , Th(M) is a complete V-theory.

Proof We show that for any vocabulary V, any V-structure M , and any V-
sentence ϕ:

† either ϕ or ¬ϕ is in Th(M) and it is not the case that both ϕ and ¬ϕ are
in Th(M).

With no loss of generality, we may assume that ϕ contains no occurrences
of ∨, →, ↔, or ∀. This is because these symbols are defined in terms of the
primitive symbols ¬, ∧, and ∃. We proceed by induction on the number of total
occurences of ¬, ∧, and ∃ in ϕ.

90 Structures and first-order logic

If ϕ contains no occurrence of the primitive symbols, then ϕ has the form
R(t1, . . . , tn) or t1 = t2 where t1, . . . , tn are V-terms. That is, ϕ is atomic. Since
ϕ is a sentence, each ti is variable-free. Since M is a V-structure and each ti is
a variable-free V-term, M interprets each ti as an element ai of the universe U
of M . By the definition of |=, M |= t1 = t2 if and only if a1 and a2 are the same
element of U , and M |= R(t1, . . . , tn) if and only if the tuple (a1, . . . , an) is in
the subset of Un that the interpretation of M assigns to R.

In either case, we see that M |= ϕ or M |= ¬ϕ and not both.
We have verified (†) for any vocabulary V, any V-structure M , and any

atomic V-sentence ϕ. Now suppose that we have shown this for any V-sentence
containing at most m total occurences of ¬, ∧, and ∃. This is our induction
hypothesis.

Suppose ϕ has the form ¬ψ or ψ∧ θ. By our induction hypothesis, (†) holds
for both ψ and θ. By the semantics of ¬ and ∧, the above statement also holds
for ϕ. Finally, suppose that ϕ has the form ∃ψ(x). By the semantics of ∃, M |= ϕ
if and only if MC |= ψ(c) for some constant c in the vocabulary of MC . Again
by our induction hypothesis, the above statement holds for ψ(c), and therefore
it holds for ϕ as well.

It follows from induction that (†) holds for all sentences ϕ.

This proposition, although quite elementary, is of fundamental importance.
This proposition verifies that first-order logic avoids the ambiguities and para-
doxes that arise in natural languages. In any set of first-order sentences describing
a given structure, there is nothing contradictory.

Definition 2.87 A set of sentences Γ is said to be consistent if no contradiction
can be derived from Γ.

The word “derived” is formally defined for first-order logic in the next
chapter, but the idea is analogous to the notion of “derived” for propositional
logic.

Definition 2.88 A theory is a consistent set of sentences. If T is a theory, then
Mod(T) is called an elementary class.

Let V be a vocabulary. Then a V-theory is a consistent set of V-sentences.
A V-theory T is a complete theory if it is maximal in the following sense: any set
of V-sentences that contains T as a proper subset is not consistent. This agrees
with our previous definition of “complete theory.”

Model theory studies theories and models and the interaction between them.
Understanding the theory of a structure lends insight into the structure. The
theory describes the structure. On the other hand, understanding the models
of a theory lends insight into the theory. A theory T can be classified based on
various properties of Mod(T).

Structures and first-order logic 91

We continue our study of model theory in Chapters 4–6. Chapter 4 con-
siders the properties of first-order logic that make it an appropriate language
for model theory. In Chapter 5 we focus on theories and consider some proper-
ties that a theory may or may not posses. In Chapter 6, we consider individual
models of a theory that have special properties. Prior to this, in Chapter 3, we
consider the basic problem of determining whether a given sentence of first-order
logic is satisfiable. Toward this aim we develop formal proofs and resolution for
first-order logic.

Exercises
2.1. Let V be the vocabulary {+,<, 1, 2, 3} where + is a binary function, <

is a binary relation, and 1, 2, and 3 are constants. We write (x + y) for
+(x, y) and x < y for < (x, y). Consider the following V-formulas:
1. ∀x∃y((x+ y) = 1)

2. ∀x¬(x < 1)

3. ((1 + 1) = 2)

4. 2 < 1

5. ∀x(2 < 1) → (x+ 2 < x+ 1)

6. ∀x∀y∃z(x+ y = z)

7. ∀x∀y∀z(((x+ 3 = y) ∧ (x+ 3 = z)) → (y = z))

8. ∀x∀y∀z(((x+ y = 3) ∧ (x+ z = 3)) → (y = z))

9. ∀x∀y(((x+ 3) < (y + 3)) → (x < y))

10. ∀x∀y((x < 2) → ((x+ 3) = 4))

(a) Which of these 10 formulas are sentences?

(b) Which of these 10 formulas are satisfiable?

(c) Which of these 10 formulas are tautologies?

(d) Let N+ be the V-structure having universe N that interprets the
symbols of V in the usual way. Which of the above sentences
does N+ model?

(e) Let R+ be the V-structure having universe R that interprets the
symbols of V in the usual way. Which of the above sentences
does R+ model?

(f) List the terms occurring in the above formulas.

(g) For each of the ten formulas, state the number of subformulas.
How many atomic subformulas does each formula have?

92 Structures and first-order logic

2.2. Let V be the vocabulary consisting of a binary relation P and a unary
relation F . Interpret P (x, y) as “x is a parent of y” and F (x) as “x is
female.”
(a) Define a V-formula ϕB(x, y) that says that x is a brother of y.

(b) Define a V-formula ϕA(x, y) that says that x is an aunt of y.

(c) Define a V-formula ϕC(x, y) that says that x and y are cousins.

(d) Define a V-formula ϕO(x) that says that x is an only child.

(e) Define a V-formula ϕT (x) that says that x has exactly two
brothers.

(f) Give an example of a family relationship that cannot be defined by
a V-formula.

2.3. The finite spectrum of a first-order sentence ϕ is the set of natural numbers
n such that ϕ has a model of size M . Find a first-order sentence ϕ having
S as a finite spectrum for each of the following sets S:
(a) S is the set of even natural numbers.

(b) S is the set of odd natural numbers.

(c) S is the set of prime numbers.

(d) S is the set of perfect squares.

2.4. Refer to Example 2.27.
(a) Show that ϕ1 is not a consequence of ϕ2 and ϕ3.

(b) Show that ϕ3 is not a consequence of ϕ1 and ϕ2.

2.5. Let Vgp be the vocabulary {+, 0} where + is a binary function and 0 is a
constant. We use the notation x+ y to denote the term +(x, y). Consider
the following V-sentences.

∀x∀y∀z(x+ (y + z) = (x+ y) + z)

∀x((x+ 0 = x) ∧ (0 + x = x))

∀x(∃y(x+ y = 0) ∧ ∃z(z + x = 0)),

Let γ be the conjunction of these three sentences.
(a) Show that γ is satisfiable by exhibiting a model.

(b) Show that γ is not a tautology.

(c) Let α be the sentence ∀x∀y((x+ y) = (y + x)).
Show that α is not a consequence of γ.

(d) Show that γ is not equivalent to the conjunction of any two of the
above three sentences.

Structures and first-order logic 93

2.6. A first-order formula ϕ(x) is said to be satisfiable if and only if the sentence
∀xϕ(x) is satisfiable. Prove that a formula ϕ(x) is a tautology if and only
if the sentence ∃xϕ(x) is a tautology.

2.7. Let VN = {+, ·, 1}. Let N be the VN -structure having underlying set N

that interprets this vocabulary in the usual manner.
(a) Define a VN -formula ε(x) such that, for any a ∈ N, N |= ε(a) if and

only if a is even.

(b) Define a VN -formula π(x) such that, for any a ∈ N, N |= π(a) if and
only if a is prime.

(c) Define a VN -formula µ(x, y) such that, for any a and b in N, N |=
µ(a, b) if and only if a and b are relatively prime (that is, the greatest
common divisor of a and b is 1).

(d) Define a VN -formula ν(x, y, z) such that, for any a, b, and c in N,
N |= ν(a, b, c) if and only if c is the least number divisible by both a
and b.

2.8. Goldbach’s conjecture states that every even integer greater than 2 is
the sum of two primes. Whether or not this is true is an open question
of number theory. State Golbach’s conjecture as a Var-sentence where
Var = {+, ·, 0, 1}.

2.9. Let Var = {+, ·, 0, 1} be the vocabulary of arithmetic. Let R be the
Var-structure that has universe R and interprets the vocabulary in the
usual manner.
(a) Define a Var-formula α(x) such that, for any a ∈ R, R |= α(a) if and

only if a is positive.

(b) Define a Var-formula β(x, y) such that, for any a and b in R, A |=
β(a, b) if and only if a ≤ b.

(c) Define a Var-formula γ(x) such that, for any a in R, R |= γ(a) if and
only if the absolute value of a is less than 1.

2.10. Let Var and R be as in the previous exercise. Let V+ = Var ∪ {f} be
the expansion of Var obtained by adding a unary function f . Define
a V+-sentence ζ such that, for any expansion R+ of R to a V+-
structure, R+ |= ζ if and only if R+ interprets f as a continuous
function.

2.11. Let A and B be definable subsets of structure M . Suppose that A and B
are both sets of n-tuples of elements from the underlying set of M .
(a) Show that A ∪B is definable.

(b) Show that A ∩B is definable.

(c) Show that A−B = {a|a ∈ A and a �∈ B} is definable.

94 Structures and first-order logic

2.12. Let UM be the underlying set for structure M . Suppose that A ⊂ (UM)3

and B ⊂ (UM)3 are definable subsets of M .
(a) Show that A×B ⊂ (UM)6 is definable.

(b) Suppose we rearrange the order of the n-tuples. Consider the set
of all (z,x, y) such that (x, y, z) is in A. Show that this set is
definable.

(c) Show that C ⊂ (UM)2 is definable where C is the set of ordered pairs
(x, y) such that (x, y, z) is in A for some z.

(d) Show that D ⊂ (UM)2 is definable where D is the set of ordered pairs
(x, y) such that both (x, y, z) ∈ A for some z and (x, y, z) ∈ B for
some z.

(e) Show that E ⊂ (UM)2 is definable where E is the set of ordered pairs
(x, y) such that, for some z, (x, y, z) is in both A and B.

2.13. We define the distance d(a, b) between two vertices a and b of a graph as
the least number of edges in a path from a to b. If no such path exists,
then d(a, b) = ∞. Recall that VG is the vocabulary of graphs.
(a) Show that, for any n ∈ N, there exists a VG-formula δn(x, y) so that,

for any graph G, G |= δn(a, b) if and only if d(a, b) = n. (Define the
formulas δn(x, y) by induction on n.)

(b) Does there exist a VG-formula δ∞(x, y) so that, for any graph G,
G |= δ∞(a, b) if and only if d(a, b) = ∞? Explain your answer.

2.14. (a) Define a VG-sentence ϕ such that ϕ has arbitrarily large finite models
and, for any model G, G is a connected graph.

(b) Find a connected graph that does not model the sentence ϕ you
found in part (a).

2.15. (a) Define a VG-sentence ϕ such that ¬ϕ has arbitrarily large finite
models and, G |= ϕ for any connected graph G.

(b) Find a graph that is not connected and models the sentence ϕ from
part (a).

2.16. (a) Define a VG-sentence ϕ such that ϕ has arbitrarily large finite models
and, for any finite model G of ϕ, |G| is even.

(b) Find a finite graph G such that |G| is even and G does not model
the sentence ϕ from part (a).

2.17. (a) Define a VG-sentence ϕ such that ¬ϕ has arbitrarily large finite
models and, for any finite graph G, if |G| is even, then G |= ϕ.

(b) Find a finite model G for the sentence ϕ from in part (a) such that
|G| is odd.

Structures and first-order logic 95

2.18. (a) Explain the difference between the first-order prefixes ∃x∀y and ∀x∃y.
(b) Explain the difference between the first-order prefixes ∃x∀y∃z and

∀x∃y∀z.
(c) Explain the difference between the first-order prefixes ∀x∃y∀z∃w and

∃x∀y∃z∀w.

2.19. Show that the sentences ∀x∃y∀z(R(x, y) ∧ R(x, z) ∧ R(y, z)) and
∃x∀y∃z(R(x, y) ∧R(x, z) ∧R(y, z))
are not equivalent by exhibiting a graph that models one but not both of
these sentences.

2.20. For each n ∈ N, ∃≥n denotes a counting quantifier. Intuitively, ∃≥n means
“there exists at least n such that.” First-order logic with counting quan-
tifiers is the logic obtained by adding these quantifiers (for each n ∈ N)
to the fixed symbols of first-order logic. The syntax and semantics of this
logic are defined as follows.

Syntax: for any formula ϕ of first-order logic with counting quantifiers,
∃≥nxϕ is also a formula.
Semantics:M |= ∃≥nϕ(x) if and only ifM |= ϕ(ai) for each of n distinct
elements a1, a2, . . . , an in the universe of M .

(a) Using counting quantifiers, define a sentence ϕ7 such that M |= ϕ7

if and only if |M | > 7.

(b) Using counting quantifiers, define a sentence ϕ23 such that M |= ϕ23

if and only if |M | ≤ 23.

(c) Using counting quantifiers, define a sentence ϕ45 such that M |= ϕ45

if and only if |M | = 45.

(d) Define a first-order sentence ϕ (not using counting quantifiers) that
is equivalent to the sentence ∃≥nx(x = x).

(e) Show that every formula using counting quantifiers is equivalent to a
formula that does not use counting quantifiers. Conclude that first-
order logic with counting quantifiers has the same expressive power
as first-order logic.

2.21. Suppose we are presented with a graph G that has multiple edges. This
means that there may be more than one edge between two vertices of
G (so, by our strict definition of “graph,” a graph with multiple edges
is not a graph). Describe G as a first-order V-structure for a suitable
vocabulary V.

2.22. Let Kn be the n-clique for some n ∈ N. Then any graph having at most
n vertices is a subgraph of Kn.

96 Structures and first-order logic

(a) How many substructures does Kn have?

(b) How many substructures does Kn have up to isomorphism?

(c) How many elementary substructures does Kn have?

2.23. Define an infinite structure having exactly n substructures where n is a
natural number greater than 1.

2.24. Let G be Graph 1 from Section 2.4.1.
(a) How many sentences are in the diagram of G?

(b) Find a sentence ϕG such that H |= ϕG if and only if H ∼= G.

2.25. Repeat Exercise 2.24 with Graph 4 from Section 2.4.1.

2.26. Prove Proposition 2.68.

2.27. Prove Proposition 2.80.

2.28. (a) Let N = (N|S, 1). Show that any proper substructure of N is not
elementarily equivalent to N .

(b) Let N< be the structure (N| <) from Section 2.4.3. Show that any
infinite substructure of N< is elementarily equivalent to N< but no
proper substructure is an elementary substructure of N<.

2.29. Let A, B, and C be V-structures with A ⊂ B ⊂ C. For each of the
following, either prove the statement or provide a counter-example.
(a) If A ≺ B and B ≺ C, then A ≺ C.

(b) If A ≺ C and B ≺ C, then A ≺ B.

(c) If A ≺ B and A ≺ C, then B ≺ C.

2.30. Let V be the vocabulary {s,P} consisting of a unary function s and a unary
relation P . Let M be the V-structure with universe N that interprets s as
the successor function and P as the predicate “even.” That is, for natural
numbers a and b, M |= s(a) = b if and only if a+ 1 = b, and M |= P (a)
if and only if a is even.

Let N be the V-structure with universe N that interprets s as the
successor function and P as the predicate “odd.” That is, N interprets s
the same way as M , but N |= P (a) if and only if a is odd.
(a) Show that there exist embeddings f1 :M → N and f2 : N →M .

(b) Show that M and N are not isomorphic.

2.31. Define structures M and N in the same vocabulary so that there exist
elementary embeddings f :M → N and g : N →M , but M �∼= N .

2.32. Using the fact that existential formulas are preserved under exten-
sions, prove that universal formulas are preserved under
substructures.

Structures and first-order logic 97

2.33. Let M and N be V-structures. A function f : M → N is said to be a
homomorphism if it preserves atomic V-formulas. Suppose that f is onto
(i.e each element in the universe of N is in the range of f). Let ϕ be a
V-formula that does not contain the symbols ¬, →, nor ↔. Show that f
preserves ϕ.

2.34. Let M be a V-structure having underlying set U . For any n-tuple ā =
(a1, . . . , an) of elements from U , let 〈ā〉 be the substructure ofM generated
by ā. That is, the underlying set of 〈ā〉 is the smallest subset of U that
contains each ai and also contains all of the constants of V and is closed
under each function of V. Let ā and b̄ be two n-tuples of elements from U .
Show that the following are equivalent:
(i) For every quantifier-free V-formula ϕ(x̄), M |= ϕ(ā) if and only if

M |= ϕ(b̄).

(ii) 〈ā〉 ∼= 〈b̄〉.
2.35. Let N be the structure (N|S) that interprets the binary relation S as the

successor relation. Show that N has uncountably many non-isomorphic
substructures.

2.36. Let A be a set. Prove that the following are equivalent.
(i) A is infinite.

(ii) |N| ≤ |A|.
(iii) |A ∪B| = |A| for any finite set B.

(iv) |PF (A)| = |A| where PF (A) is the set of all finite subsets of A.

(v) There exists a function f : A→ A that is one-to-one but not onto.

(vi) For any B with |B| < |A| and any function f : A→ B, there exists
b ∈ B such that f(a) = b for infinitely many a ∈ A.

2.37. Find a V<-sentence ϕ so that the only models of ϕ interpret < as a dense
linear order. Show that ϕ has only infinite models.

2.38. Let Vf be the vocabulary consisting of a single unary function f . Find a
Vf -sentence that has only infinite models.

2.39. Find a set of sentences that has only uncountable models.

2.40. (a) Let F be the set of all finite strings of letters of the alphabet. Show
that F is countable.

(b) Let I be the set of all infinite strings of letters of the alphabet. Show
that I is uncountable.

2.41. (a) Let U = {1, 2, 3}. List the elements of P(U).

(b) Show that for any finite set U , if |U | = n then |P(U)| = 2n.

98 Structures and first-order logic

(c) Show that the power set of the natural numbers P(N) and the real
numbers R have the same size.

2.42. Let F be the set of all functions from N to N. Show that F and R have
the same size.

2.43. Box A contains infinitely many ping pong balls that are numbered
1, 2, 3, . . .
(a) Reach into box A and take out 100 balls and put them in your

lap. Then put one back. Repeat this. Take out another 100 balls,
put them in your lap, and then put one back. Suppose we do this
countably many times. How many balls will you have in your lap?

(b) Suppose you began, in part (a), by taking out balls numbered 1–100
and then put ball 1 back. Suppose you then removed balls 101–200
and put ball 2 back. Then you took balls 201–300 into your lap, found
ball 3, and put it back. And so forth. After doing this countably many
times, which balls are left in your lap?

(c) Now suppose that we repeatedly remove 99 balls from box A and
never return any of these balls to the box. First we take balls 1–99
into our lap and, instead of putting ball 1 back, we take a marker,
add two zeros, and turn it into 100. We then take balls 101–199 out
of A, take ball 2 from our lap, turn it into 200, and keep them all in
our lap. After repeating this countably many times, how many balls
are in your lap and what numbers do they have on them?

(d) Do the processes in (b) and (c) have different results? If so, explain
why this is the case (if not, look at (b) and (c) again). Note that after
each stage, we have the same numbered balls in our lap. Suppose
someone else put the ping pong balls in our lap and we do not know
if a marker was used or not. What then? Why should the use of a
marker affect the outcome?

3 Proof theory

As with any logic, the semantics of first-order logic yield rules for deducing
the truth of one sentence from that of another. In this chapter, we develop
both formal proofs and resolution for first-order logic. As in propositional logic,
each of these provides a systematic method for proving that one sentence is a
consequence of another.

Recall the Consequence problem for propositional logic. Given formulas F
and G, the problem is to decide whether or not G is a consequence of F . From
Chapter 1, we have three approaches to this problem:

• We could compute the truth table for the formula F → G. If the truth
values are all 1s then we conclude that F → G is a tautology and G is a
consequence of F . Otherwise, G is not a consequence of F .

• Using Tables 1.5 and 1.6, we could try to formally derive G from {F}. By
the Completeness Theorem for propositional logic, G is a consequence of F
if and only if {F} � G.

• We could use resolution. By Theorem 1.76, G is a consequence of F if and
only if ∅ ∈ Res(H) where H is a formula in CNF equivalent to (F ∧ ¬G).

Using these methods not only can we determine whether one formula is a con-
sequence of another, but also we can determine whether a given formula is a
tautology or a contradiction. A formula F is a tautology if and only if F is a
consequence of (A ∨ ¬A) if and only if ¬F is a contradiction.

In this chapter, we consider the analogous problems for first-order logic.
Given formulas ϕ and ψ, how can we determine whether ψ is a consequence of
ϕ? Equivalently, how can we determine whether a given formula is a tautology
or a contradiction? We present three methods for answering these questions.

• In Section 3.1, we define a notion of formal proof for first-order logic by
extending Table 1.5.

• In Section 3.3, we “reduce” formulas of first-order logic to sets of formulas
of propositional logic where we use resolution as defined in Chapter 1.

• Finally, in Section 3.4, we modify the notion of resolvents and develop
resolution for first-order logic.

100 Proof theory

One aim of resolution is to provide an automated proof system. Toward this
aim, we consider variations of resolution such as SLD-resolution. We close this
chapter with a section on Prolog, a programming language that implements
SLD-resolution.

3.1 Formal proofs
Let ϕ be a first-order formula and let Γ be a set of first-order formulas. We use
the notation Γ � ϕ to express that ϕ can be formally derived from Γ. As with
propositional logic, the definition of this notion consists of a list of several rules.
For propositional logic, formal proofs were defined as sequences of statements
each of which is justified by one of the rules in Tables 1.5 or 1.6. Changing the
Roman letters to Greek letters yields Tables 3.1 and 3.2 below.

For first-order logic, this list of rules is incomplete. In contrast, if F and G
are formulas of propositional logic andG is a consequence of F , then we can form-
ally prove that G is a consequence of F using the rules of Table 1.5 or Table 1.6.
This is the Completeness theorem for propositional logic. To obtain an analogous

Table 3.1 Rules for derivations

Premise Conclusion Name

ϕ is in Γ Γ � ϕ Assumption

Γ � ϕ and Γ ⊂ Γ′ Γ′ � ϕ Monotonicity

Γ � ϕ Γ � ¬¬ϕ Double negation

Γ � ψ, Γ � ϕ Γ � (ψ ∧ ϕ) ∧-Introduction
Γ � (ψ ∧ ϕ) Γ � ψ ∧-Elimination

Γ � (ψ ∧ ϕ) Γ � (ϕ ∧ ψ) ∧-Symmetry

Γ � ϕ Γ � (ϕ ∨ ψ) ∨-Introduction
Γ � (ψ ∨ ϕ),

Γ ∪ {ψ} � θ, Γ ∪ {ϕ} � θ Γ � θ ∨-Elimination

Γ � (ψ ∨ ϕ) Γ � (ϕ ∨ ψ) ∨-Symmetry

Γ ∪ {ϕ} � ψ Γ � (ϕ → ψ) →-Introduction

Γ � (ϕ → ψ), Γ � ϕ F � ψ →-Elimination

Γ � ψ Γ � (ψ) (,)-Introduction

Γ � (ψ) Γ � ψ (,)-Elimination

Γ � ((ψ ∧ ϕ) ∧ θ) Γ � (ψ ∧ ϕ ∧ θ) ∧-Parentheses rule
Γ � ((ψ ∨ ϕ) ∨ θ) Γ � (ψ ∨ ϕ ∨ θ) ∨-Parentheses rule

Proof theory 101

Table 3.2 More rules for derivations

Rules Name

Γ � (ϕ ∨ ψ) if and only if Γ � ¬(¬ϕ ∧ ¬ψ) ∨-Definition
Γ � (ϕ → ψ) if and only if Γ � (¬ϕ ∨ ψ) →-Definition

Γ � (ϕ ↔ ψ) if and only if both Γ � (ϕ → ψ) and Γ � (ψ → ϕ) ↔-Definition

Γ � ∀xϕ(x) if and only if Γ � ¬∃x¬ϕ(x) ∀-Definition

Table 3.3 Yet more rules for derivations

Premise Conclusion Restriction Name

Γ � ϕ(t) Γ � ∃yϕ(y) t is a term and y is a
variable not in bnd(ϕ)

∃-Introduction

Γ � ϕ(t0) Γ � ∀yϕ(y) (y) /∈ bnd(ϕ) ant t0 is a
variable or a constant not
occurring in Γ

∀-Introduction

Γ � θ → ψ Γ � ∃xθ → ∃xψ none ∃-Distribution
Γ � θ → ψ Γ � ∀xθ → ∀xψ none ∀-Distribution
Γ � Q1x(Q2yθ) Γ � Q1xQ2yθ Each Qi is a quantifier Q-Parentheses rule

None Γ � t = t t is a term Reflexivity

Γ � ϕ(t), Γ � t = t′ Γ � ϕ(t′) t and t′ are terms Equality Substitution

result for first-order logic, we must add rules to this list pertaining to quantifiers
and equality. For example, we certainly should include the definition of ∀:

Γ � ∀xϕ(x) if and only if Γ � ¬∃x¬ϕ(x).

This and other rules are listed in Table 3.2.
Table 3.3 contains rules regarding quantifiers and substitutions. Recall that

ϕ(t) is the formula obtained by replacing each free occurrence of x in ϕ(x) with
the term t (assuming t does not use variables in bnd(ϕ)). In the above rules,
ϕ(x) may have free variables other than x. Also, we may use any letters in place
of x and y. We demonstrate the rules in Table 3.3 with a couple of examples.

Example 3.1 We demonstrate the rules ∃-Introduction and ∀-Introduction. Sup-
pose that Γ � R(a, b) where R is a binary relation and a and b are constants that
do not occur in Γ. Then we can derive each of the following sentences (along
with many others) from Γ:

∃zR(a, z) by ∃-Introduction

∀wR(w, b) by ∀-Introduction

102 Proof theory

∀w∀zR(w, z) by ∀-Introduction (twice), and

∃z∀wR(w, z) by ∀-Introduction followed by ∃-Introduction.

Suppose now that Γ � R(f(b), b) where f is a unary function. Since f(b) is a
term that is not a constant, we can derive from Γ the sentence ∃zR(z, b) but not
the sentence ∀zR(z, b). Likewise, we cannot derive the sentence ∃z∀wR(w, z)
from Γ. However, we can derive each of the following sentences:

∀wR(f(w),w) by ∀-Introduction

∃w∃zR(w, z) by ∃-Introduction (twice), and

∀z∃wR(w, z) by ∃-Introduction followed by ∀-Introduction.

Example 3.2 We illustrate the usefulness of ∃-Distribution. Suppose we want to
formally prove that ¬∃xψ(x) is a consequence of ∀x¬ψ(x). By ∀-Definition, we
know that

{∀x¬ψ(x)} � ¬∃x¬¬ψ(x).

It remains to be shown that

{¬∃x¬¬ψ(x)} � ¬∃xψ(x).

Using ∃-Distribution, we can formally prove this in three steps. First, show that
ψ(x) → ¬¬ψ(x) is a tautology. By the completeness of propositional logic, there
exists a formal proof for this fact. Second, use ∃-Distribution to obtain the valid
implication ∃xψ(x) → ∃x¬¬ψ(x). Third, by →-Contrapositive (Exercise 1.12),
¬∃¬¬ψ(x) → ¬∃xψ(x) is also valid. We conclude that, if Γ � ∀x¬ψ(x) then
Γ � ¬∃xψ(x). This argument can be made into a formal proof defined as follows
(see Proposition 3.7).

Definition 3.3 A formal proof in first-order logic is a finite sequence of state-
ments of the form “X � Y ” each of which follows from the previous statements
by one of the rules we have listed (including the definition of ∀ and the rules in
Tables 3.1–3.3). We say that ϕ can be derived from Γ if there is a formal proof
concluding with the statement Γ � ϕ.

Our first priority is to show that this notion of formal proof is sound. We
must show that if ϕ can be derived from Γ, then ϕ is in fact a consequence of Γ.
We restate this as the following theorem.

Theorem 3.4 (Soundness) If Γ � ϕ then Γ |= ϕ.

Note: This theorem follows from the semantics of first-order logic (that is, the
definition of “|=”) given in Section 2.3. When we say something is true “by the
semantics” the reader is referred to this section.

Proof theory 103

Proof We check that each rule for deduction is sound. In Theorem 1.37 we
verified each of the rules in Table 1.5. It follows that each of the rules in Table 3.1
are also sound. Moreover, ∀-Definition and each of the rules in Table 3.2 are
sound by the definition of the symbols. Reflexivity and Equality substitution are
sound by the definition of =. The Q-Parentheses rule is one of our conventions
regarding the use of parentheses. It remains to be shown that the first four rules
of Table 3.3 are sound.

First, consider ∃-Introduction. This rule states that if Γ � ϕ(t), then Γ �
∃xϕ(x). To show that this rule is sound, we must verify that if Γ |= ϕ(t) then
Γ |= ∃xϕ(x). It suffices to show that, for any structure M , M |= ϕ(t) implies
M |= ∃xϕ(x). This follows immediately from the semantics of ∃.

For ∀-Introduction, suppose that Γ |= ϕ(c) where c is a constant that does
not occur in Γ. Suppose that M is a V-structure that models Γ. For any element
a of the underlying set UM of M , let Mc=a be the structure having underlying
set UM that interprets c as a and interprets the other symbols of V in the same
manner as M (if c �∈ V, then Mc=a is an expansion of M). Since c does not occur
in Γ, Mc=a models Γ (since M does). Since Γ |= ϕ(c), Mc=a |= ϕ(c). It follows
that M |= ϕ(a). Since a is an arbitrary element from UM , M |= ∀xϕ(x) by the
semantics of ∀. This shows that Γ |= ∀xϕ(x) and verifies ∀-Introduction.

Now consider ∃-Distribution. Suppose that M |= θ → ψ and M |= ∃xθ. Let
UM denote the universe of M . We want to show that M |= ∃xψ.

Case 1: x is not a free variable of θ. By the semantics of ∃, θ is equivalent
to ∃xθ. So if M |= ∃xθ, then M |= θ and, by the semantics of →, M |= ψ. Now
if x is not a free variable of ψ, then ψ ≡ ∃xψ. Otherwise, M |= ψ(x) means
M |= ∀xψ(x) which means M |= ψ(a) for any a in UM . Either way, we see that
M |= ∃xψ as we wanted to show.

Case 2: x is a free variable of θ but not of ψ. In this case, M |= θ → ψ

means M |= ∀x(θ(x) → ψ). By the semantics of ∀, M |= θ(a) → ψ for any a
in UM . Since M |= ∃xθ, M |= θ(a) for some a ∈ UM . By the semantics of →,
M |= ψ. Finally, M |= ∃xψ since ψ ≡ ∃xψ.

Case 3: x is a free variable of both θ and ψ. Here M |= θ → ψ means
M |= ∀x(θ(x) → ψ(x)). This means that, for all a in UM , M |= θ(a) → ψ(a).
Since M |= ∃xθ it follows that M |= θ(a) for some a in UM . Hence M |= ψ(a).
Again by the semantics of ∃, M |= ∃xψ.

The verification of ∀-Distribution is similar and is left as Exercise 3.4.

Corollary 3.5 If both {ϕ} � ψ and {ψ} � ϕ, then ϕ ≡ ψ.

The Completeness theorem for first-order logic states that the converse of
Theorem 3.4 is true. If ϕ is a consequence of Γ, then we can formally prove that
it is a consequence. The rules for derivations we have given form a complete

104 Proof theory

set of rules for first-order logic. It follows that the converse of Corollary 3.5
holds as well. However, the Completeness theorem will not be proved until the
next chapter. For this reason, we presently do not assume that the converses
of Theorem 3.4 and Corollary 3.5 hold. In the present chapter, just because
two formulas are equivalent does not mean that we can formally prove that
they are equivalent. For this, we again use the terminology “provably equivalent”
previously defined in Section 1.5.

For the remainder of this section, we verify various instances of the converses
of Theorem 3.4 and Corollary 3.5. For example, by the semantics of ∀, ϕ(t) is a
consequence of ∀xϕ(x) for any term t. We now show that ϕ(t) can be formally
derived from ∀xϕ(x).

Proposition 3.6 For any formula ϕ(x) and any term t, {∀xϕ(x)} � ϕ(t).
Proof We use proof by Contradiction as defined in Example 1.36.

Premise: Γ � ∀xϕ(x)

Conclusion: Γ � ϕ(t)

Statement Justification

1. Γ � ∀xϕ(x) Premise

2. Γ ∪ {¬ϕ(t)} � ∀xϕ(x) Monotonicity applied to 1

3. Γ ∪ {¬ϕ(t)} � ¬∃x¬ϕ(x) ∀-Definition applied to 2

4. Γ ∪ {¬ϕ(t)} � ¬ϕ(t) Assumption

5. Γ ∪ {¬ϕ(t)} � ∃x¬ϕ(x) ∃-Introduction applied to 4

6. Γ � ¬¬ϕ(t) Proof by Contradiction applied to 3 and 5

7. Γ � ϕ(t) Double negation (from Example 1.43) applied to 6

Recall that M |= ϕ(x1, . . . ,xn) means the same as M |=
∀y1 · · · ∀ynϕ(y1, . . . , yn). This is how the symbol |= was defined in section 2.3
for formulas having free variables. It follows that the formula ϕ(x1, . . . ,xn) is
equivalent to the sentence ∀y1 · · · ∀ynϕ(y1, . . . , yn). By Proposition 3.6 and ∀-
Introduction, they are provably equivalent. We next show that the two formulas
from Example 3.2 are provably equivalent.

Proposition 3.7 The formulas ∀x¬ϕ(x) and ¬∃xϕ(x) are provably equivalent
for any formula ϕ(x).
Proof Example 3.2 provides proof that {∀x¬ϕ(x)} � ¬∃xϕ(x). We now provide
a formal proof for the converse.

Premise: Γ � ¬∃xϕ(x)

Conclusion: Γ � ∀x¬ϕ(x)

Proof theory 105

Statement Justification

1. Γ ∪ {¬¬ϕ(x)} � ¬¬ϕ(x) Assumption

2. Γ ∪ {¬¬ϕ(x)} � ϕ(x) Example 1.43

3. Γ � ¬¬ϕ(x) → ϕ(x) →-Introduction applied to 2

4. Γ � ∃x¬¬ϕ(x) → ∃xϕ(x) ∃-Distribution applied to 3

5. Γ � ¬∃xϕ(x) → ¬∃x¬¬ϕ(x) →-Contrapositive (Exercise 1.12)

6. Γ � ¬∃xϕ(x) Premise

7. Γ � ¬∃x¬¬ϕ(x) →-Elimination applied to 5 and 6

8. Γ � ∀x¬ϕ(x) ∀-Definition

By the semantics ∀, ∀xϕ(x) ≡ ∀yϕ(y) (ϕ(x) holds for each element x of
some model if and only if ϕ(y) holds for each element y of that same model).
We show that ∀xϕ(x) and ∀yϕ(y) are provably equivalent.

Corollary 3.8 Let x and y be variables that do not occur in the formula ϕ(z).
Then ∀xϕ(x) and ∀yϕ(y) are provably equivalent.

Proof By Proposition 3.6, {∀xϕ(x)} � ϕ(t) for any term t. In particular,
{∀xϕ(x)} � ϕ(y). By ∀-Introduction, {∀xϕ(x)} + ∀yϕ(y). Likewise (switching
the roles of x and y), we see that {∀yϕ(y)} � ∀xϕ(x).

Likewise, we have the following.

Corollary 3.9 Let x and y be variables that do not occur in formula ϕ(z). Then
∃xϕ(x) and ∃yϕ(y) are provably equivalent.

We leave the proof of Corollary 3.9 to the reader (see Exercise 3.7).

Corollary 3.10 For any formula ϕ(x), {∀xϕ(x)} � ∃xϕ(x).

Proof {∀xϕ(x)} � ϕ(x) by Proposition 3.6.

{ϕ(x)} � ∃xϕ(x) by ∃-Introduction.

Putting these two facts together, we see that {∀xϕ(x)} � ∃xϕ(x).

By the semantics of first-order logic, we know that ∃xϕ(x) is a consequence
of ∀xϕ(x) (if ϕ(x) holds for all elements of in a certain structure, then it holds
for some elements in that structure). Corollary 3.10 states that we can formally
prove this. Note that ∀xϕ(x) is not a consequence of ∃xϕ(x). So these formulas
are not equivalent. However, if (and only if) the variable x has no free occurences

106 Proof theory

in ψ, then ∃xψ and ∀xψ are equivalent formulas. Moreover, they are provably
equivalent.

Proposition 3.11 Let x be a variable that does not occur as a free variable in
the formula ψ. Then ψ, ∃xψ, and ∀xψ are provably equivalent.

Proof We demonstrate that {ψ} � ∀xψ and {∃xψ} � ψ. The proposition then
follows from Corollary 3.10 which implies {∀xψ} � ∃xψ.

First we show that {ψ} � ∀xψ

Premise: Γ � ψ and c is a constant that does not occur in Γ

Conclusion: Γ � ∀xψ

Statement Justification

1. Γ � ψ Premise

2. Γ � (ψ ∨ ¬(x = x)) ∨-Introduction applied to 1

3. Γ � (¬(x = x) ∨ ψ) ∨-Symmetry applied to 2

4. Γ � (x = x) → ψ →-Definition applied to 3

5. Γ � ∀x(x = x) → ∀xψ ∀-Distribution applied to 4

6. Γ � (c = c) Reflexivity

7. Γ � ∀x(x = x) ∀-Introduction applied to 6

8. Γ � ∀xψ →-Elimination applied to 5 and 7

Next, we show that {∃xψ} � ψ

Premise: Γ � ∃xψ
Conclusion: Γ � ψ

Statement Justification

1. Γ � ∃xψ Premise

2. Γ ∪ {¬ψ} � ∃xψ Monotonicity applied to 1

3. Γ ∪ {¬ψ} � ¬ψ Assumption

4. Γ ∪ {¬ψ} � ∀x¬ψ The previous proof applied to 3

5. Γ ∪ {¬ψ} � ¬∃xψ Example 3.2 applied to 4

6. Γ � ¬¬ψ Proof by Contradiction applied to 2 and 5

7. Γ � ψ Double negation (from Example 1.43) applied to 6

Proof theory 107

Proposition 3.12 The formulas ∀x(ϕ(x) ∧ ψ(x)) and ∀xϕ(x) ∧ ∀xψ(x) are
provably equivalent.

Proof We leave the verification of this as Exercise 3.8.

It is not true that ∃x(ϕ(x)∧ψ(x)) and ∃xϕ(x)∧ ∃xψ(x) are provably equi-
valent. We can show that {∃x(ϕ(x) ∧ ψ(x))} � ∃xϕ(x) ∧ ∃xψ(x), but not the
converse. However, if (and only if) x does not occur as a free variable of ψ, the
converse is true.

Proposition 3.13 If x does not occur as a free variable of ψ, then ∃xϕ(x)∧∃xψ
and ∃x(ϕ(x) ∧ ψ) are provably equivalent.

Proof We only prove this equivalence in one direction. The other direction is
straight forward and is left as Exercise 3.13.

Premise: Γ � ∃xϕ(x) ∧ ∃xψ
Conclusion: Γ � ∃x(ϕ(x) ∧ ψ)

Statement Justification

1. Γ � ∃xϕ(x) ∧ ∃xψ Premise

2. Γ � ∃xψ ∧-Elimination applied to 1

3. Γ � ψ Proposition 3.11 applied to 2

4. Γ � ¬ϕ(x) ∨ ψ ∨-Introduction and ∨-symmetry applied to 3

5. Γ � ¬ϕ(x) ∨ ϕ(x) Tautology rule (Example 1.32)

6. Γ � (¬ϕ(x) ∨ ϕ(x)) ∧ (¬ϕ(x) ∨ ψ) ∧-Introduction applied to 4 and 5

7. Γ � ¬ϕ ∨ (ϕ(x) ∧ ψ) ∨-Distributivity (Proposition 1.46) applied to 6

8. Γ � ϕ(x) → (ϕ(x) ∧ ψ) →-Definition applied to 7

9. Γ � ∃xϕ(x) → ∃x(ϕ(x) ∧ ψ) ∃-Distribution applied to 8

10. Γ � ∃xϕ(x) ∧-Symmetry and ∧-Elimination applied to 1

11. Γ � ∃x(ϕ(x) ∧ ψ) →-Elimination applied to 9 and 10

The previous propositions can be generalized as follows.

Proposition 3.14 Let x1,x2, . . . ,xn be variables that occur free in the formula
ϕ but not in the formula ψ. Let Q1, . . . ,Qn be quantifiers (that is, for each i, Qi

is either ∃ or ∀). Then the following two formulas are provably equivalent:

Q1x1Q2x2 · · ·Qnxnϕ(x1,x2, . . . ,xn) ∧ ψ, and

Q1x1Q2x2 · · ·Qnxn(ϕ(x1,x2, . . . ,xn) ∧ ψ).

108 Proof theory

Proof We prove this by induction on n. We use the following claim.

Claim If θ(x) and ψ(x) are provably equivalent, then so are Q1xθ(x) and
Q1xψ(x).

Proof of Claim If θ(x) and ψ(x) are provably equivalent, then ∅ � θ(x) →
ψ(x). By ∃-Distribution or ∀-Distribution (depending on which quantifier is Q1),
we have ∅ � Q1xθ(x) → Q1xψ(x). Likewise, ∅ � Q1xψ(x) → Q1xθ(x). The claim
follows.

We now prove the proposition. If n = 1 then this follows from
Proposition 3.12 or 3.13 (depending on which quantifier is Q1). Suppose now
that n = m+1. Our induction hypothesis implies that the following two formulas
are provably equivalent:

Q2x2 · · ·Qm+1xm+1ϕ(x1,x2, . . . ,xm+1) ∧ ψ, and

Q2x2 · · ·Qm+1xm+1(ϕ(x1,x2, . . . ,xm+1) ∧ ψ).

It follows from the claim that the following two formulas are provably equivalent:

Q1x1(Q2x2 · · ·Qm+1xm+1ϕ(x1,x2, . . . ,xm+1) ∧ ψ), and

Q1x1(Q2x2 · · ·Qnxn(ϕ(x1,x2, . . . ,xn) ∧ ψ)).

The former of these, again by Proposition 3.12 or 3.13, is provably equivalent
with

Q1x1Q2x2 · · ·Qm+1xm+1ϕ(x1,x2, . . . ,xm+1) ∧ ψ.

The latter of the above two formulas, by the Q-Parentheses rule, is provably
equivalent with

Q1x1Q2x2 · · ·Qm+1xm+1(ϕ(x1,x2, . . . ,xm+1) ∧ ψ).

This completes the induction step and the proposition follows.
Similarly, we have the following.

Proposition 3.15 Let Q1, . . . ,Qn denote quantifiers. For each i, let Qi denote
the quantifier that is not Qi. That is, for each i, {Qi,Qi} = {∃,∀}. For any
formula ϕ(x1, . . . ,xn),

¬Q1x1 · · ·Qnxnϕ(x1, . . . ,xn) is provably equivalent to

Q1x1 · · ·Qnxn¬ϕ(x1, . . . ,xn).

Proof It suffices to show that both

¬∀x1ϕ(x1) is provably equivalent to ∃x1¬ϕ(x1), and

¬∃x1ϕ(x1) is provably equivalent to ∀x1¬ϕ(x1) (see Example 3.2).

Proof theory 109

The proposition can then be proved by induction on n in a similar manner to
Proposition 3.14. We leave the details as Exercise 3.15.

It follows from the previous propositions that any formula is provably equi-
valent to a formula in which the quantifiers preceed all other fixed symbols.
Informally, the quantifiers can be “pulled out in front” of any formula. We make
this idea precise and prove it in the following section.

3.2 Normal forms
One of our goals in this chapter is to develop resolution for first-order logic. Recall
that, in propositional logic, we needed to have the formulas in CNF before we
could proceed with resolution. Likewise, in first-order logic the formulas will need
to be in a nice form. In this section, we define what we mean by “nice.”

3.2.1 Conjunctive prenex normal form.

Definition 3.16 A formula ϕ is in prenex normal form (PNF) if it has the form
Q1x1 · · ·Qnxnψ where each Qi is a quantifier (either ∃ or ∀) and ψ is a quantifier-
free first-order formula. Moreover, if ψ is a conjunction of disjunctions of literals
(atomic or negated atomic formulas), then ϕ is in conjunctive prenex normal
form.

So a formula is in prenex normal form if all of its quantifiers are in front.

Example 3.17 ∀y∃x(f(x) = y) is in PNF, and ¬∀x∃yP (x, y, z) and ∃x∀y
¬P (x, y, z) ∧ ∀x∃yQ(x, y, z) are not.

Theorem 3.18 For any formula of first-order logic, there exists an equivalent
formula in conjunctive prenex normal form.

Proof Let ϕ be an arbitrary formula. First we show that there exists an equi-
valent formula ϕ′ in prenex normal form. We prove this by induction on the
complexity of ϕ.

If ϕ is atomic, then ϕ is already in PNF, so we can just let ϕ′ be ϕ.
Suppose ψ and θ are formulas and there exist ψ′ and θ′ in PNF such that

ψ ≡ ψ′ and θ ≡ θ′. Clearly, if ϕ ≡ ψ then we can let ϕ′ be ψ′. To complete the
induction step, we must consider three cases corresponding to ¬, ∧, and ∃.

First, suppose ϕ is the formula ¬ψ. Then ϕ ≡ ¬ψ′. Since ψ′ is in PNF, ψ′ has
the form Q1x1 · · ·Qmxmψ0 for some quantifier-free formula ψ0 and quantifiers
Q1, . . . ,Qm. So ϕ ≡ ¬Q1x1 · · ·Qmxmψ0. By Proposition 3.15, this is equivalent
to Q1x1 · · ·Qmxm¬ψ0 where {Qi,Qi} = {∃,∀}. This formula is in PNF, and so
it may serve as ϕ′.

110 Proof theory

Next, suppose ϕ is the formula ψ ∧ θ. Then ϕ ≡ ψ′ ∧ θ′. Since ψ′ and θ′ are
in PNF,

ψ′ is Q1x1 · · ·Qmxmψ0(x1, . . . ,xm), and

θ′ is q1x1 · · · qnxnθ0(x1, . . . ,xn)

for some quantifiers Qi and qi and some quantifier-free formulas ψ0 and θ0. Let
y1, . . . , ym and z1, . . . , zn be new variables (that is, variables not occurring in ψ′

or θ′). Then by Corollaries 3.8 and 3.9,

ψ′ ≡ Q1y1 · · ·Qmymψ0(y1, . . . , ym),

θ′ ≡ q1z1 · · · qnznθ0(z1, . . . , zn), and so

ϕ ≡ Q1y1 · · ·Qmymψ0(y1, . . . , ym) ∧ q1z1 · · · qnznθ0(z1, . . . , zn).

Applying Proposition 3.14 twice,

ϕ ≡ Q1y1 · · ·Qmymq1z1 · · · qnzn(ψ0(y1, . . . , ym) ∧ θ0(z1, . . . , zn))

which is in PNF. Let ϕ′ be this formula.
Finally, suppose ϕ is the formula ∃xψ. Then ϕ ≡ ∃x0ψ

′ for some variable x0.
Since ψ′ is in PNF, ∃x0ψ

′ is in PNF. So in this case, we can let ϕ′ be ∃x0ψ
′.

Given an arbitrary formula ϕ we have shown that there exists an equivalent
formula ϕ′ in prenex normal form. Let Q1x1 · · ·Qnxnϕ0 be the formula ϕ′. Each
Qi denotes a quantifier and ϕ0 is a quantifier-free formula. We want to show that
ϕ is equivalent to a formula in conjunctive prenex normal form. It remains to be
shown that ϕ0 is equivalent to a formula that is a conjunction of disjunctions.
This can be done by induction on the complexity of ϕ0. Since it is quantifier-free,
we do not have to consider the part of the induction step corresponding to ∃.
Therefore, the proof is identical to the proof of Theorem 1.57 where it was shown
that every formula of propositional logic is equivalent to a formula in CNF.

Example 3.19 Let ϕ be the formula ¬(∀x∃yP (x, y, z)∨∃x∀y¬Q(x, y, z)) having
free variable z. By the previous theorem, there exists a formula ϕ′ in PNF that
is equivalent to ϕ. Moreover, the proof of the theorem indicates a method for
finding such ϕ′. First, noting that ϕ has the form ¬ψ, we distribute the negation
to obtain

ϕ ≡ ∃x∀y¬P (x, y, z) ∧ ∀x∃yQ(x, y, z).

So ϕ is equivalent to a formula of the form ψ ∧ θ. By renaming variables, we get

ϕ ≡ ∃x∀y¬P (x, y, z) ∧ ∀u∃vQ(u, v, z).

By applying Proposition 3.14 twice,

ϕ ≡ ∃x∀y∀u∃v(¬P (x, y, z) ∧Q(u, v, z))

which is in PNF. Moreover, this formula is in conjunctive PNF.

Proof theory 111

Our goal is to find a method for determining whether a given formula is
satisfiable or not. By Theorem 3.18, it suffices to have a method that works
for formulas in conjunctive prenex normal form (although, as we shall see in
later chapters, no method “works” entirely). Next we show that we can simplify
our formulas further. We show that we need only consider formulas that are
universal: formulas in PNF in which the existential quantifier ∃ does not occur.

3.2.2 Skolem normal form.

Definition 3.20 A formula is in Skolem normal form (SNF), if it is universal and
in conjunctive prenex normal form.

Given any formula ϕ of first-order logic we define a formula ϕS that is in
SNF. We prove in Theorem 3.22 that ϕ is satisfiable if and only if ϕS is satisfiable.
The formula ϕS is called a Skolemization of ϕ. The following is a step-by-step
procedure for finding ϕS .

• First we find a formula ϕ′ in conjunctive prenex normal form such that
ϕ′ ≡ ϕ. So

ϕ′ is Q1x1 · · ·Qmxmϕ0(x1, . . . ,xm)

for some quantifier-free formula ϕ0 and quantifiers Q1,Q2, . . . ,Qm.

• If each Qi is ∀, then ϕ′ is a universal formula. In this case let ϕS be ϕ′.

• Otherwise, ϕ′ has existential quantifiers. In this case we define a formula
s(ϕ′) that has fewer existential quantifiers than ϕ′. (So if ϕ′ has just one
existential quantifier, then s(ϕ′) is universal.) Let i be least such that Qi

is ∃.

If i = 1, then ϕ′ is ∃x1Q2x2 · · ·Qmxmϕ0(x1, . . . ,xm).

Let s(ϕ′) be Q2x2 · · ·Qmxmϕ0(c,x2, . . . ,xm) where c is a constant symbol
that does not occur in ϕ′.

If i > 1, then ϕ′ is ∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxmϕ0(x1, . . . ,xm).
Let s(ϕ′) be the formula

∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxm

ϕ0(x1, . . . ,xi−1, f(x1, . . . ,xi−1),xi+1, . . . ,xm),

where f is an (i− 1)-ary function symbol that does not occur in ϕ′.
So if the first quantifier in ϕ′ is ∃, we replace x1 with a new constant.

And if the ith quantifier in ϕ′ is ∃ and all previous quantifiers are ∀, replace
xi with f(x1, . . . ,xi−1) where f is a new function symbol.

112 Proof theory

• Since s(ϕ′) has fewer existential quantifiers than ϕ′, by repeating this pro-
cess, we will eventually obtain the required universal formula ϕS . That is,
ϕS is sn(ϕ′) = s(s(s · · · s(ϕ′))) for some n.

Example 3.21 Suppose ϕ is the formula ¬(∀x∃yP (x, y, z) ∨ ∃x∀y¬Q(x, y, z)).
First, we find a formula ϕ′ in conjunctive prenex normal form that is equivalent
to ϕ. In Example 3.19 it was shown that ϕ is equivalent to

∃x∀y∀u∃v(¬P (x, y, z) ∧Q(u, v, z)).

Let ϕ′ be this formula.
Next we find s(ϕ′) as defined above. Then we find s(s(ϕ′)) and s(s(s(ϕ′))),

and so forth, until we get a formula in SNF. In this example, since ϕ′ has only
two existential quantifiers, we will stop at s(s(ϕ′)).

We have s(ϕ′) is ∀y∀u∃v(¬P (c, y, z) ∧Q(u, v, z)), and
s(s(ϕ′)) is ∀y∀u(¬P (c, y, z) ∧Q(u, f(y,u), z))

which is in SNF. So we have successfully Skolemized the given formula ϕ
and obtained the formula ∀y∀u(¬P (c, y, z)∧Q(u, f(y,u), z)). This is the formula
denoted by ϕS .

Theorem 3.22 Let ϕ be a formula of first-order logic and let ϕS be the
Skolemization of ϕ. Then ϕ is satisfiable if and only if ϕS is satisfiable.

Proof By Theorem 3.18, we may assume that ϕ is in conjunctive prenex normal
form. By induction, it suffices to show that ϕ is satisfiable if and only if s(ϕ) is
satisfiable. There are two possibilities for s(ϕ).

Case 1: If ϕ′ has the form ∃x1Q2x2 · · ·Qmxmϕ0(x1, . . . ,xm), then s(ϕ′) is
Q2x2 · · ·Qmxmϕ0(c,x2, . . . ,xm) for some constant c. Let ψ(x1) be the formula

Q2x2 · · ·Qmxmϕ0(x1, . . . ,xm)

so that ϕ′ is ∃x1ψ(x1) and s(ϕ′) is ψ(c). By the semantics for ∃,

M |= ∃x1ψ(x1) if and only if MC |= ψ(c),

where MC is an expansion of M by constants one of which is c . It follows that
∃x1ψ(x1) is satisfiable if and only if ψ(c) is satisfiable.

Case 2: If ϕ′ is ∀x1 · · · ∀xi−1∃xiQi+1xi+1 · · ·Qmxmϕ0(x1, . . . ,xm) then s(ϕ′)
is the formula

∀x1 · · · ∀xi−1Qi+1xi+1 · · ·Qmxmϕ0(x1, . . . ,xi−1, f(x1, . . . ,xi−1),xi+1, . . . ,xm),

where f is an (i− 1)-ary function symbol that does not occur in ϕ′.
Now let ψ(x1, . . . ,xi) be the formula Qi+1xi+1 · · ·Qmxmϕ0(x1, . . . ,xm).

Suppose that ∀x1 · · · ∀xi−1∃xiψ(x1, . . . ,xi) is satisfiable. Let M be a model.

Proof theory 113

Let Mf be an expansion of MC that interprets f in such a way that for all
constants c1, . . . , ci−1, Mf |= ψ(c1, . . . , ci−1, f(c1, . . . , ci−1)). Then

Mf |= ∀x1 · · · ∀xi−1ψ(x1, . . . ,xi−1, f(x1, . . . ,xi−1)).

So if ∀x1 · · · ∀xi−1∃xiψ(x1, . . . ,xi) is satisfiable, then so is

∀x1 · · · ∀xi−1ψ(x1, . . . ,xi−1, f(x1, . . . ,xi−1)).

Conversely, if M |= ∀x1 · · · ∀xi−1ψ(x1, . . . ,xi−1, f(x1, . . . ,xi−1)), then, by
the meaning of ∃, M |= ∀x1 · · · ∀xi−1∃xiψ(x1, . . . ,xi).

It follows that ϕ is satisfiable if and only if s(ϕ) is satisfiable.

Note that ϕ and ϕS are not necessarily equivalent. Theorem 3.22 merely
states that one is satisfiable if and only if the other is. For example, if ϕ is the
formula ∃xψ0(x, y) for atomic ψ0(x, y), then ϕS is ψ(c, y) which is equivalent to
∀xψ(x, y). Of course, ∃xψ(x, y) and ∀xψ(x, y) are not equivalent formulas, but
if one of these formulas is satisfiable, then so is the other. For our purposes,
this is all we need. To determine whether ϕ is satisfiable, it suffices to determine
whether ϕS is satisfiable.

3.3 Herbrand theory
In this section we “reduce” sentences of first-order logic to sets of sentences in
propositional logic. More precisely, given ϕ in SNF we find a (possibly infinite)
set E(ϕ) of sentences of propositional logic such that ϕ is satisfiable if and only if
E(ϕ) is satisfiable. We know E(ϕ) is unsatisfiable if and only if ∅ ∈ Res∗(E(ϕ)).
So we can use the method of resolution from propositional logic to show that a
first-order sentence ϕ in SNF is unsatisfiable. By Theorem 3.22, we can use this
method to determine whether any sentence of first-order logic is unsatisfiable.

The method we describe in this section will not necessarily tell us if a sen-
tence ϕ is satisfiable. Since E(ϕ) may be infinite, there may be no way to tell
whether ∅ is not in Res∗(E(ϕ)). But if ∅ is in Res∗(E(ϕ)), then, by the compact-
ness of propositional logic, we can derive it in a finite number of steps. Recall that
to show that ϕ is satisfiable, we must exhibit a model for ϕ. We have done this in
previous examples. But to show that ϕ is unsatisfiable, we must show that it does
not hold in any structure. Previously, we had no way of doing this. Theorem 3.25
provides the key. We show that, in certain circumstances, it suffices to show that
ϕ does not hold in a specific type of structure called a Herbrand structure.

3.3.1 Herbrand structures.

Definition 3.23 Let V be a vocabulary. The Herbrand universe for V is the set
of all variable free V-terms.

114 Proof theory

For example, if V contains constant a and unary function f , then the
Herbrand universe for V contains a, f(a), f(f(a)), and so forth. If, in addition,
V contains a binary function g, then the Herbrand universe will also contain
g(a, a), g(a, f(a)), g(g(f(a), f(a)), f(f(a))), f(g(f(a), a)), and so forth.

Recall that a V-structure is a set together with an interpretation for each
of the symbols in V. Suppose that we take the Herbrand universe for V as our
underlying set. Call this set H. If V has no constant symbols, then H is empty.
Suppose this is not the case. Then we can turn the Herbrand universe H into a
V-structure by giving an interpretation for V. There is a natural interpretation
for each of the constants and functions on H. Any V-structure that has H as its
underlying set and interprets the constants and functions in this “natural” way
is called a Herbrand V-structure.

For example, suppose V = {f ,R, c} where f is a unary function, R is a
binary relation, and c is a constant. Then the Herbrand universe for V is

H = {c, f(c), f(f(c)), f(f(f(c))), . . .}.

Let M = (H | f ,R, c) be a V-structure having underlying set H. The set H has
an element called c (the first element in the above listing of H). If M interprets
the constant c as any element of H other than the one denoted by c, there would
be serious ambiguity. If M is a Herbrand structure, then there is no ambiguity,
the constant c in V is interpreted as the element c of H. This is the natural
interpretation for the constant c. Likewise, there is a natural interpretation for
the function f . The interpretation assigns to f a function from H to H. Given an
element of H as input, f outputs an element of H. If M is a Herbrand structure,
then the function f when applied to the element c outputs the element f(c) (the
second element in the above listing of H). Likewise, given input f(c), f outputs
the element ofH denoted by f(f(c)). This is the natural interpretation of f onH.

So a V-structure M is a Herbrand structure if it has universe H and inter-
prets the constants and functions in the manner suggested by the names given
to the elements of H. It is a Herbrand structure regardless of how the relations
are interpreted. So, if V contains a relation and a constant, then there are many
Herbrand V-structures.

Let H be the Herbrand universe and let M be a Herbrand structure for the
vocabulary V. We list a few basic facts:

• H is empty if and only if V contains no constants.

• H is finite if and only if V contains no functions.

• M is the unique Herbrand V-structure if and only if V contains no relations
or H is empty.

Proof theory 115

Definition 3.24 Let Γ be a set of sentences. The Herbrand vocabulary for Γ,
denoted VΓ, is defined as follows. Let V0 be the set of functions, relations, and
constants occurring in Γ. If V0 contains no constants, then VΓ = V0∪{c}. Other-
wise, VΓ = V0. The Herbrand universe for Γ, denoted H(Γ), is the Herbrand
universe for VΓ. M is a Herbrand model of Γ, if M is a Herbrand VΓ-structure
and M |= ϕi for each ϕi in Γ.

In the case where Γ contains a single sentence ϕ, we will replace Γ in the
above notation with ϕ.

Consider, for example, the sentence ∀x((f(x) �= x) ∧ (f(f(x)) = x)). Call
this sentence ϕ. The Herbrand vocabulary for ϕ is Vϕ = {f , c}, where f is a
unary function and c is a constant. The Herbrand universe for ϕ is H(ϕ) =
{c, f(c), f(f(c)), . . .}. In any Herbrand Vϕ-structure, c and f(f(c)) are distinct
elements of the universe H(ϕ). Since ϕ asserts that for all x, f(f(x)) = x, the
sentence ϕ has no Herbrand model. Yet ϕ is satisfiable (find a model for ϕ). The
following theorem shows that this only happens when ϕ uses the symbol “=”. So
if ϕ is a satisfiable sentence that is equality-free, then ϕ has a Herbrand model.

Theorem 3.25 Let Γ = {ϕ1,ϕ2, . . .} be a set of equality-free sentences in SNF.
Then Γ is satisfiable if and only if Γ has a Herbrand model.

Proof If Γ has a Herbrand model, then, of course, Γ is satisfiable.
Conversely, suppose Γ is satisfiable. Let VΓ be the Herbrand vocabulary

for Γ. Let N be a VΓ-structure that models each ϕi ∈ Γ. Let M ′ be a Herbrand
VΓ-structure.

We define a VΓ-structure M that is a hybrid of N and M ′. The universe
of M is H(Γ), the Herbrand universe for VΓ. Let M interpret functions and
constants the same way as M ′ and relations the same way as N . Since, M and
N may have different universes, this requires some explaining.

“M interprets functions and constants the same way as M ′” means that
M is a Herbrand VΓ-structure. To complete our description of M we must
say how M interprets relations. For any n-ary relation R in VΓ and t1, . . . , tn
in the universe H(Γ) of M , we must say whether M |= R(t1, . . . , tn) or
M |= ¬R(t1, . . . , tn). Since each ti ∈ H(Γ) is a variable free VΓ-term and N is a
VΓ-structure, either N |= R(t1, . . . , tn) or N |= ¬R(t1, . . . , tn). We define M so
that M |= R(t1, . . . , tn) if and only if N |= R(t1, . . . , tn).

The theorem follows from two claims.

Claim 1 For any VΓ-sentence ψ that is both quantifier-free and equality-free,
M |= ψ if and only if N |= ψ.

Claim 2 For any SNF VΓ-sentence ψ that is equality-free, if N |= ψ thenM |= ψ.

116 Proof theory

If Claim 2 is true, then M must model Γ. This is because, for each ϕi ∈ Γ,
N |= ϕi and ϕi is in SNF and equality-free. Since M is a Herbrand VΓ-structure,
M is a Herbrand model of Γ. So if we can prove Claim 2, then the theorem follows.
We first prove Claim 1, and then show that Claim 2 follows from Claim 1.

Proof of Claim 1 Let ψ be quantifier-free. We show that M |= ψ if and only
if N |= ψ by induction on the complexity of ψ.

If ψ is atomic, then, since ψ does not use “=”, ψ must be R(t1, . . . , tn) for
some n-ary R in VΓ and VΓ-terms ti. Since ψ is a sentence, each ti must be
variable free. That is, each ti is in H(Γ). By the definition of M , M |= ψ if and
only if N |= ψ.

Suppose M |= ψ1 if and only if N |= ψ1 and M |= ψ2 if and only if N |= ψ2.
Then clearly, M |= ¬ψ1 if and only if N |= ¬ψ1 and M |= ψ1 ∧ ψ2 if and only if
N |= ψ1 ∧ψ2. It follows that M |= ψ if and only if N |= ψ for any quantifier-free
sentence ψ, completing the proof of Claim 1.

Proof of Claim 2 We prove this claim by induction on the number of quan-
tifiers in ψ. If ψ has no quantifiers, then by Claim 1, M |= ψ if and only if
N |= ψ.

Suppose ψ is ∀x1 · · · ∀xnψ0(x1, . . . ,xn) where ψ0 is quantifier (and equality)
free. Our induction hypothesis is that Claim 2 holds for any equality-free sentence
in SNF having fewer than n quantifiers. Let t be a variable free VΓ-term. Let
ψ′(x1) be the formula ∀x2 · · · ∀xnψ0(x1,x2, . . . ,xn) obtained by removing the
first quantifier from the sentence ψ. Let t be any variable free VΓ-term. That is,
t is in H(Γ). We have

N |= ψ implies N |= ψ′(t) (by the semantics of ∀)

which implies M |= ψ′(t) (by our induction hypothesis).

So if N |= ψ then M |= ψ′(t). But t was an arbitrary element of H(Γ). So, if
N |= ψ, then M |= ψ′(t) for all t ∈ H(Γ). Since H(Γ) is the universe of M ,
M |= ∀x1ψ

′(x1) (by the semantics of ∀). Since ∀x1ψ
′(x1) and ψ are the same,

the proof of Claim 2 is complete.

In particular, if Γ from the previous theorem contains a single sentence ϕ,
we get the following.

Corollary 3.26 Let ϕ be an equality-free sentence in SNF. Then ϕ is satisfiable
if and only if ϕ has a Herbrand model.

3.3.2 Dealing with equality. Now suppose ϕ is in SNF and does use “=”. We
define a formula ϕE that does not use equality. Whereas Corollary 3.26 does not

Proof theory 117

apply to ϕ, it does apply to ϕE . Moreover, we prove that ϕ is satisfiable if and
only if ϕE is satisfiable.

Let V be the vocabulary of ϕ. That is, V is the finite set of constants,
relations, and functions that occur in ϕ. Let E be a binary relation that is not
in V. Let ϕ �= be the sentence obtained by replacing each occurrence of t1 = t2 in
ϕ (for V-terms t1 and t2) with E(t1, t2). Let ϕER be the following sentence.

∀x∀y∀z(E(x,x) ∧ (E(x, y) ↔ E(y,x)) ∧ (E(x, y) ∧ E(y, z) → E(x, z))).

This sentence says “E is an equivalence relation.”
For each relation R in V, let ϕR be the formula

∀x1 · · · ∀xn∀y1 · · · ∀yn

((
n∧

i=1

E(xi, yi) ∧R(x1, . . . ,xn)

)
→ R(y1, . . . , yn)

)
,

where n is the arity of R. Let ϕ1 be the conjunction of all ϕR taken over all
relations R ∈ V.

Likewise, for each function f in V, let ϕf be the formula

∀x1 · · · ∀xn∀y1 · · · ∀yn

(
n∧

i=1

E(xi, yi) → E(f(x1, . . . ,xn), f(y1, . . . , yn))

)
,

where n is the arity of f . Let ϕ2 be the conjunction of all ϕf taken over all
functions f ∈ V.

Now let ϕ′
E be the sentence ϕ �= ∧ ϕER ∧ ϕ1 ∧ ϕ2.

The formulas ϕER, ϕ1, and ϕ2 together say that the binary relation E
behaves like equality. Note that ϕ �=, ϕER, ϕ1, and ϕ2 are each equality-free
formulas in SNF. If we put ϕ′

E into prenex normal form (by pulling the quantifiers
out front, renaming variables if need be) we obtain an equality-free formula ϕE

that is in SNF.

Lemma 3.27 For any formula ϕ in SNF, ϕ is satisfiable if and only if ϕE is
satisfiable.

Proof Let V be the vocabulary of ϕ and let VE = V ∪ {E} where E is a binary
relation that is not in V.

If M |= ϕ, then we can obtain a model for ϕE by interpreting E as
equality in M .

Conversely, suppose ϕE has a model N . Then E is an equivalence relation on
N . Let U be the underlying set of N and let U/E be the set of all E-equivalence
classes in U . We define a V-structure NE having U/E as an underlying set. We
must say how NE interprets the constants, relations, and functions of V.

For each a ∈ N , let [a] denote the E-equivalence class containing a.

118 Proof theory

For each constant c in V, NE interprets c as [c], the E-equivalence class of
the interpretation of c in N .

Let R be an n-ary relation in V. For any n-tuple ([a1], . . . , [an]) of elements
of U/E,

NE |= R([a1], . . . , [an]) if and only if N |= R(a1, . . . , an).

Let f be an n-ary relation in V. For any [b] ∈ U/E and n-tuple ([a1], . . . , [an])
of elements of U/E,

NE |= f([a1], . . . , [an]) = [b] if and only if N |= f(a1, . . . , an) = b.

Because N models both ϕ1 and ϕ2, the structure NE is well defined.
Finally, it can be shown that NE |= ϕE by induction on the

complexity of ϕ.

Example 3.28 Consider the sentence ∀x((f(x) �= x) ∧ (f(f(x)) = x)). If this
sentence is ϕ, then ϕ �= is the sentence

∀x(¬E(f(x),x) ∧ E(f(f(x)),x))

and ϕ2 is the sentence

∀x∀y(E(x, y) → E(f(x), f(y))).

Since ϕ contains no relations, we need not consider ϕ1. The conjunction ϕ′
E of

ϕ �=, ϕ2, and ϕER, is equivalent to the following sentence ϕE in SNF.

∀x∀y∀z(¬E(f(x),x) ∧ E(f(f(x)),x) ∧ (E(x, y) → E(f(x), f(y)))

∧E(x,x) ∧ (E(x, y) ↔ E(y,x)) ∧ ((E(x, y) ∧ E(y, z)) → E(x, z))).

Now, by Corollary 3.26, ϕE has a Herbrand model. That is, there is a model
for ϕE having universe H(ϕ) = {c, f(c), f(f(c)), . . .}. Indeed, we may interpret
E on H(ϕ) to be the equivalence relation having the following two classes:

Codd = {t ∈ H(ϕ) | t has an odd number of fs}, and

Ceven = {t ∈ H(ϕ) | t has an even number of fs}.

It follows that ϕ has a model having only two elements. Let N be the structure
having universe {codd, ceven} that interprets the function f by the rule f(codd) =
ceven and f(ceven) = codd. Clearly, N |= ϕ.

3.3.3 The Herbrand method. We now describe a method for determining
whether an arbitrary sentence ϕ of first-order logic is unsatisfiable. We have

Proof theory 119

shown that we may assume ϕ is equality-free and is in SNF. Let ϕ be

∀x1 · · · ∀xnϕ0(x1, . . . ,xn),

where ϕ0 is quantifier-free and equality-free. Let H(ϕ) be the Herbrand universe
of ϕ. Let E(ϕ) be the set

{ϕ0(t1, . . . , tn) | t1, . . . , tn ∈ H(ϕ)}.

So E(ϕ) is the set obtained by substituting terms from H(ϕ) for the variables
of ϕ0 in every possible way. Let {ϕ1,ϕ2, . . .} be an enumeration of E(ϕ).

We claim that ϕ is satisfiable if and only if E(ϕ) is satisfiable. IfM is a model
of ϕ, then M |= ∀x1 · · · ∀xnϕ0(x1, . . . ,xn). In particular, M |= ϕ0(t1, . . . , tn) for
all variable free Vϕ-terms ti. That is, M models each ϕi in E(ϕ) and so E(ϕ) is
satisfiable.

Conversely, suppose E(ϕ) is satisfiable. Then, by Theorem 3.25, E(ϕ) has a
Herbrand model M . Note that the Herbrand vocabulary for E(ϕ) is the same as
the Herbrand vocabulary for ϕ. So the universe ofM is H(ϕ). For each t1, . . . , tn
in H(ϕ), M models ϕ0(t1, . . . , tn) since this sentence is in E(ϕ). It follows from
the semantics of ∀ that M |= ∀x1 · · · ∀xnϕ0(x1, . . . ,xn). That is, M |= ϕ and ϕ
is satisfiable.

So ϕ is unsatisfiable if and only if E(ϕ) is unsatisfiable. Since E(ϕ)
contains sentences with no quantifiers, we can view E(ϕ) as a set of sentences
of propositional logic. Since ϕ is in SNF, each ϕi in E(ϕ) is in CNF. We
know from propositional logic that the set E(ϕ) is unsatisfiable if and only
if ∅ ∈ Res∗(E(ϕ)). By the compactness of propositional logic, E(ϕ) is unsatis-
fiable if and only if some finite subset {ϕ1, . . . ,ϕm} is unsatisfiable. So if ϕ is
unsatisfiable, then ∅ ∈ Res∗({ϕ1, . . . ,ϕm}) for some m.

This gives us a method for showing that ϕ is unsatisfiable. Check if ∅ is in
Res∗({ϕ1, . . . ,ϕm}) for some m. Recall that Res∗({ϕ1, . . . ,ϕm}) is a finite set.
If ∅ is in Res∗({ϕ1, . . . ,ϕm}) we stop and conclude that ϕ must be unsatisfiable.
Otherwise we continue and check Res∗({ϕ1, . . . ,ϕm,ϕm+1}). If ϕ is unsatisfiable,
then this method will eventually find ∅ and conclude that ϕ is unsatisfiable in a
finite number of steps. If ϕ is satisfiable, however, this procedure will continue
forever.

So, in principle, we have a method to show that a given sentence of first-
order logic is unsatisfiable. The first step is to find ϕ that is in SNF and does
not use “=”. This can be done relatively quickly (in polynomial time). But to
show that ∅ ∈ Res∗(E(ϕ)) can take an arbitrarily large amount of time. This
method is far from efficient. Even if ∅ is in Res∗(E(ϕ)), it may take a very long
time to find it.

In the next section, we define another way to show that a formula is unsat-
isfiable. We define resolution for first-order logic. This method is not polynomial

120 Proof theory

time, but it is more systematic than the method described here. Herbrand theory
will be useful in proving that the resolution we define works.

3.4 Resolution for first-order logic
We now define resolution for first-order logic. Let ϕ be any sentence in SNF.
Then ϕ has the form ∀x1∀x2 · · · ∀xmϕ0 where ϕ0 is a conjunction of disjunctions
of literals. In particular, ϕ0 is quantifier-free, and so it can be viewed as a formula
of propositional logic that is in CNF. Let C(ϕ0) denote the set of all clauses in
the CNF formula ϕ0. We define C(ϕ) to be C(ϕ0). That is, C(ϕ) = {C1, . . . ,Cm}
where Ci is the set of all literals occurring in the ith disjunction.

For example, if ϕ is the sentence

= ∀x∀y∀z((P (x, y) ∨ ¬Q(x, z)) ∧ ((R(x, y, z) ∨ ¬P (f(x, y), z)),

then C(ϕ) is the set

{{P (x, y),¬Q(x, z)}, {R(x, y, z),¬P (f(x, y), z)}}.

Note that a sentence ϕ in SNF uniquely determines C(ϕ). Conversely, by
Proposition 1.67, C(ϕ0) determines ϕ0 up to equivalence. It follows that C(ϕ)
determines ϕ up to equivalence. That is, if C(ϕ) = C(ψ) for sentences ϕ and ψ
in SNF, then ϕ ≡ ψ. For this reason, we need not distinguish between formulas
in SNF and sets of clauses.

We want to say what it means for a clause R to be a resolvent of two clauses
C1 and C2. As in propositional logic, a resolvent of C1 and C2 is a consequence
of the conjunction of C1 and C2. Before giving a formal definition for resolvents,
we consider a couple of examples.

Example 3.29 Let C1 = {¬Q(x, y),P (f(x), y)} and C2 = {¬P (f(x), y),
R(x, y, z)}. The clause R = {¬Q(x, y),R(x, y, z)} is a resolvent of C1 and C2.
This works the same way as in propositional logic. Since the literal P (f(x), y)
occurs in one clause and the negation of this same literal occurs in the other, the
resolvent can be formed by taking the union of C1 and C2 less P (f(x), y) and
¬P (f(x), y).

Example 3.30 Let C1 = {¬Q(x, y),P (f(x), y)} and C2 = {¬P (z, y),R(x, y, z)}.
Then we cannot directly find a resolvent of C1 and C2 as in the previous example.
Let C ′

2 be the clause obtained by substituting f(x) for z in the clause C2. That
is, C ′

2 = {¬P (f(x), y),R(x, y, f(x))}. We make two observations. First, we can
easily find a resolvent of C1 and C ′

2, namely R = {¬Q(x, y),R(x, y, f(x))}.
Second, note that C ′

2 is a consequence of C2. This is because the SNF sentence
represented by C2 asserts that the formula ¬P (z, y) ∨ R(x, y, z) holds for every

Proof theory 121

x, y, and z. In particular, this formula holds in the specific case where z = f(x).
That is, C2 implies C ′

2. Hence, R, which is a consequence of {C1,C ′
2}, is also a

consequence of {C1,C2}. We define resolvents so that R is a resolvent of C1 and
C2 (and of C1 and C ′

2 as well). We diagram this situation as follows:

C2

C1 C ′
2

� �

R

So prior to finding a resolvent, we must first make substitutions for vari-
ables to make certain literals look the same. In the previous example, we did a
substitution that made P (f(x), y) and P (z, y) identical. This process is called
unification and we postpone the formal definition of “resolvent” until after we
have discussed unification in detail.

3.4.1 Unification. Let L = {L1, . . . ,Ln} be a set of literals. We say L is unifi-
able if there exist variables x1, . . . ,xm and terms t1, . . . , tm such that substituting
ti for xi (for each i) makes each literal in L look the same. We denote such a
substitution by sub = (x1/t1,x2/t2, . . . ,xm/tm). For any sentence ϕ in SNF, we
denote the result of applying this substitution to ϕ by ϕsub.

For example, if sub = (x/w, y/f(a), z/f(w)) and ϕ = {¬Q(x, y),R(a,w, z)},
then ϕsub = {¬Q(w, f(a)),R(a,w, f(w))}.

If L is a set of literals, then Lsub denotes the set of all Lisub such that
Li ∈ L. So L is unifiable if and only if there exists a substitution sub such that
Lsub contains only one literal. If this is the case, we call sub a unifier for L and
say that sub unifies L.

Example 3.31 Let L = {P (f(x), y),P (f(a),w)}. Let sub1 = (x/a, y/w) and
sub2 = (x/a, y/a,w/a). Then both sub1 and sub2 unify L. We have Lsub1 =
{P (f(a),w)} and Lsub2 = {P (f(a), a)}. Note that, by making another substi-
tution, we can get Lsub2 from Lsub1. Namely, if sub3 = (w/a), then sub1sub3
(sub1 followed by sub3) has the same effect as sub2. However, we cannot generate
Lsub1 from Lsub2 since Lsub2 has no variables. So, in some sense, the unifier
sub1 is better for our purposes. It is more versatile. “Our purposes” will be res-
olution, and if we choose sub2 as our unifier instead of sub1, we might needlessly
limit our options.

Definition 3.32 Let L be a set of literals. The substitution sub is a most gen-
eral unifier for L if it unifies L and for any other unifier sub′ for L, we have
subsub′ = sub′.

122 Proof theory

In Example 3.31, sub1 is the most general unifier. As we pointed out, this
is the best unifier for our purposes.

Proposition 3.33 A finite set of literals is unifiable if and only if it has a most
general unifer.

There are two possiblities for a finite set L of literals, either it is unifiable
or it is not. Proposition 3.33 asserts that if L is unifiable, then it automatically
has a most general unifier. We prove this by exhibiting an algorithm that, given
L as input, outputs “not unifiable” if no unifier exists and otherwise ouputs a
most gerneal unifier for L. The algorithm runs as follows.

The unification algorithm
Given: a finite set of literals L.

Let L0 = L and sub0 = ∅.

Suppose we know Lk and subk. If Lk contains just one literal, output
“sub0sub1 · · · subk is a most general unifier for L.”

Otherwise, there exist Li and Lj in Lk such that the nth symbol of Li differs
from the nth symbol of Lj (for some n). Suppose n is least in this regard. If the
nth symbol of Li is a variable v and the nth symbol of Lj is the first symbol of a
term t that does not contain v or vice versa (with Li and Lj reversed) then:

Let subk+1 = (v/t) and Lk+1 = Lksubk+1.

If any of the hypotheses of the previous sentence do not hold, output “L is not
unifiable.”

We must verify that this algorithm works. First we give a demonstration.

Example 3.34 Let L = {R(f(g(x)), a,x),R(f(g(a)), a, b),R(f(y), a, z)}. First
set L0 = L and sub0 = ∅.

As we read each of the three literals in L0 from left to right, we see that
each begins with “R(f(. . . ”, but then there is a discrepency. Whereas the second
literal continues with “g(a)”, the third literal has “y”. We check that one of these
two terms is a variable and the other is a term that does not contain that variable.
This is the case and so we let

sub1 = (y/g(a)), and
L1 = L0sub1 = {R(f(g(x)), a,x),R(f(g(a)), a, b),R(f(g(a)), a, z)}.

We note that L1 contains more than one literal and proceed. Now all literals
begin with R(f(g(. . . , but then the first literal has “x” and the second has “a”.

Proof theory 123

One of these is a variable and the other is a term that does not contain that
variable, and so we let

sub2 = (x/a), and
L2 = L1sub2 = {R(f(g(a)), a, a),R(f(g(a)), a, b),R(f(g(a)), a, z)}.

The set L2 still contains more than one literal, and so we continue. Each
literal in L2 looks the same up to R(f(g(a)), a, . . . , but then the first literal has
“a” and the second has “b.” Neither of these is a variable, and so the algorithm
concludes with output “L is not unifiable.”

If the algorithm outputs “not unifiable,” it is for one of two reasons. One
is illustrated by the previous example. Here we had a discrepency between two
literals that did not involve a variable. Where one literal had the constant a,
the other had b. Clearly, this cannot be reconciled by a substitution and the set
is, in fact, not unifiable. The other possibility is that the dicrepency involves
a variable and a term, but the variable occurs in the term. For example, the
set {P (x, y),P (x, f(y))} is not unifiable. No matter what we substitute for the
variables x and y, the second literal will have one more occurrence of f than
the first literal. The algorithm, noting a discrepency occurs with y and f(y), will
terminate with “not unifiable” because the variable y occurs in the term f(y).
Both reasons for concluding “not unifiable” are good reasons. If the algorithm
yields this output, then the set must not be unifiable.

Note that, when applied to the set L from Example 3.31, this algorithm
outputs sub1 as the most general unifier. So, in these examples, the algorithm
works. We want to show that it always works.

If the set L is a finite set, then only finitely many variables occur in L.
It follows that the algorithm when applied to L must terminate in a finite
number of steps. If it terminates with “L is not unifiable,” then, as we have
already mentioned, L must not be unifiable. Otherwise, the algorithm out-
puts “sub0sub1 · · · subk is a most genral unifier.” We must show that, when
this statement is the output, it is true.

The algorithm outputs “sub0sub1 · · · subk is the most genral unifier” only
if Lk = Lsub0sub1 · · · subk contains just one literal. If this is the output, then
sub0sub1 · · · subk is a unifier. We must show that it is a most general unifier.

Let sub′ be any other unifier for L. We know that sub0sub′ = sub′ because
sub0 is empty. Now suppose that we know sub0 · · · submsub′ = sub′ for some m,
0 ≤ m < k. Then Lmsub

′ = Lsub0 · · · submsub′ = Lsub′ = {L}. That is, since
sub′ unifies L, it also unifies Lm.

Suppose subm+1 is (x/t). By the definition of the algorithm, t must be a
term in which the variable x does not occur. Moreover, for some literals Li and
Lj in Lm, x occurs in the nth place of Li and t begins in the nth place of Lj

124 Proof theory

(for some n). Since sub′ unifies Lm, sub′ must do the same thing to both x
and t. That is, xsub′ = tsub′. It follows that subm+1sub

′ = (x/t)sub′ = sub′.
By induction, we have sub0 · · · subm+1sub

′ = sub′ for all m < k. In particular,
sub0 · · · subksub′ = sub′ and sub0 · · · subk is the most general unifier for L.

3.4.2 Resolution. We now define resolution for first-order logic. Recall that for
any literal L, L is the literal defined by L = ¬L or ¬L = L.

Definition 3.35 Let C1 and C2 be two clauses. Let s1 and s2 be any substitutions
such that C1s1 and C2s2 have no variables in common. Let L1, . . . ,Lm ∈ C1s1
and L′

1, . . . ,L
′
n ∈ C2s2 be such that L = {L1, . . . ,Lm,L′

1, . . . ,L
′
n} is unifiable.

Let sub be a most general unifier for L.
Then R = [(C1s1 −{L1, . . . ,Lm})∪ (C2s2 −{L′

1, . . . ,L
′
n})]sub is a resolvent

of C1 and C2.

Let ϕ be a sentence in SNF. Then ϕ = {C1, . . . ,Cn} for some
clauses C1, . . . ,Cn.
Let Res(ϕ) = {R| R is a resolvent of some Ci and Cj in ϕ}.
Let Res0(ϕ) = ϕ, and Resn+1 = Res(Resn(ϕ)).
Let Res∗(ϕ) =

⋃
nRes

n(ϕ).

The same notation was used in propositional logic. However, unlike the proposi-
tional case, Res∗(ϕ) may be an infinite set. To justify this notation and the
definition of “resolvent” we need to show that ∅ ∈ Res∗(ϕ) if and only if ϕ is
unsatisfiable. First we look at an example.

Example 3.36 Let C1 = {Q(x, y),P (f(x), y)}, and C2 = {R(x, c),¬P (f(c),x),
¬P (f(y),h(z))}.

Suppose we want to find a resolvent of C1 and C2. First, we need to rename
some variables since x and y occur in both C1 and C2. Let s1 = (x/u, y/v). Then
C1s1 = {Q(u, v),P (f(u), v)} which has no variables in common with C2.

Second, note that C1s1 contains a literal of the form P (,) and C2 contains
literals of the form ¬P (,). Namely, P (f(u), v) is in C1s1 and ¬P (f(c),x) and
¬P (f(y),h(z)) are in C2. Let

L = {P (f(u), v),P (f(c),x),P (f(y),h(z))}.

By applying the unification algorithm, we see that L is unifiable and sub =
(u/c, y/c, v/h(z),x/h(z)) is a most general unifier. We conclude that C1 and C2

have resolvent

R = [(C1s1 − {P (f(u), v)}) ∪ (C2 − {¬P (f(c),x),¬P (f(y),h(z))})]sub
= {Q(u, v),R(x, c)}sub = {Q(c,h(z)),R(h(z), c)}.

Proof theory 125

We verify that the resolvent R from the previous example is in fact a
consequence of C1 and C2. Recall that C1 and C2 represent sentences in SNF.

C1 represents ∀x∀y(Q(x, y)) ∨ P (f(x), y)), and

C2 represents ∀x∀y∀z(R(x, c)) ∨ ¬P (f(c),x) ∨ ¬P (f(y),h(z)).

Suppose C1 and C2 hold (in some structure). Then, since these sentences are
universal, they hold no matter what we plug in for the variables. In particular,

C1s1sub ≡ ∀z(Q(c,h(z)) ∨ P (f(c),h(z))), and

C2sub ≡ ∀z(R(h(z), c)) ∨ ¬P (f(c),h(z))

both hold. That is, C1s1sub is a consequence of C1 and C2sub is a consequence
of C2. Put another way,

C1s1sub ≡ ∀z(¬Q(c,h(z)) → P (f(c),h(z))), and

C2sub ≡ ∀z(P (f(c),h(z)) → R(h(z), c)).

From these two sentences, we can deduce

∀z(¬Q(c,h(z)) → R(h(z), c))

which is equivalent to
∀z(Q(c,h(z)) ∨R(h(z), c))

which is the sentence represented by R. Hence, R is a consequence of the
conjunction of C1 and C2.

In a similar manner, we can show that any resolvent of any two clauses
is necessarily a consequence of the conjunction of the two clauses. It follows
that if ∅ ∈ Res∗(ϕ), then ϕ must be unsatisfiable. Conversely, suppose ϕ is
unsatisfiable. We need to show that ∅ ∈ Res∗(ϕ).

At the end of the previous section we showed that ϕ is unsatisfiable if and
only if the set E(ϕ) is unsatisfiable. Recall that E(ϕ) is the set of all sentences
obtained by replacing each variable of ϕ with a term from the Herbrand universe.
These sentences can be viewed as sentences of propositional logic. Suppose that
C ′

1 and C ′
2 are in E(ϕ) and R′ is a resolvent of C ′

1 and C ′
2 in the sense of

propostional logic. Then there are some clauses C1 and C2 of ϕ such that C ′
1 =

C1sub1 and C ′
2 = C2sub2. In the following lemma we show that there exists a

resolvent R of C1 and C2 (in the sense od first-order logic) and a substitution
sub such that Rsub = R′. So, essentially, this lemma says that any R′ that can
be derived from E(ϕ) using propositional resolution can also be derived from ϕ

using first-order resolution.

126 Proof theory

Lemma 3.37 (Lifting lemma) Let ϕ be a sentence in SNF. If R′ ∈ Res(E(ϕ)),
then there exists R ∈ Res(ϕ) such that such that Rsub′ = R′ for some
substitution sub′.

This is called the “Lifting lemma” because we are “lifting” the resolvent R′

from propositional logic to first-order logic.
Let ϕ be a sentence in SNF and let C1 and C2 be two clauses of ϕ. Let s1 be

a substitution such that C1s1 and C2 have no variables in common. Let C ′
1 and

C ′
2 in E(ϕ) be such that C1s1sub1 = C ′

1 and C2sub2 = C ′
2 for some substitutions

sub1 and sub2. Let R′ be a resolvent (in propositional logic sense) of C ′
1 and C ′

2.
This setup can be diagramed as follows:

C1

C1s1 C2

sub1 sub2
C ′

1 C ′
2

� �

R′

The lemma says that if this setup holds, then there exists a resolvent R of
C1s1 and C2 (in the sense of first-order logic) such that Rsub′ = R′ for some
substitution sub′. This conclusion can be diagramed as follows:

C1

C1s1 C2

� �

R

R′

In the first diagram, the resolvent is taken as in propositional logic. In the
second diagram, the resolvent R is as in Definition 3.35. The vertical lines in
each diagram refers to a substitution. The lemma can be summarized as saying
“if the first diagram holds, then so does the second diagram.”

Proof of Lemma Supose the first diagram holds. Then there must exist some
literal L ∈ C ′

1 such that L ∈ C ′
2 and R′ = (C ′

1 − {L}) ∪ (C ′
2 − {L}). This is the

definition of resolvent for propositional logic.

Proof theory 127

Let sub′ = sub1sub2. Since C1s1 and C2 have no variables in common,
C1s1sub

′ = C1s1sub1 = C ′
1 and C2sub

′ = C2sub2 = C ′
2.

Let L1 = {L1, . . . ,Ln} be the set of all Li in C1s1 such that Lisub
′ = L.

Likewise, let L2 = {L′
1, . . . ,L

′
m} be the set of all L′

i in C2 such that L′
isub

′ = L.
We have the following diagram:

L1 ⊂ C1s1 C2 ⊃ L2

sub′ sub′

L ∈ C ′
1 C ′

2 � L

� �

R′

Let L = {L1, . . . ,Ln,L′
1, . . . ,L

′
m} (that is L = L̄1∪L2). This set is unifiable

since Lsub′ = {L}. Let sub be a most general unifier for L. Then we can apply
Definition 3.35 to find the following resolvent of C1 and C2:

R = [(C1s1 − L1) ∪ (C2 − L2)]sub.

Referring to the second diagram of the lemma, we see that it remains to be
shown that R′ can be obtained from R by a substitution. We complete the proof
of the lemma by showing that Rsub′ = R′. By applying sub′ we get

Rsub′ = [(C1s1 − L1) ∪ (C2 − L2)]subsub′.

Since sub′ is a unifier for L and sub is a most general unifier for L, we know
subsub′ = sub′. So we have

Rsub′ = [(C1s1 − L1) ∪ (C2 − L2)]sub′

= (C1s1sub
′ − L1sub

′) ∪ (C2sub
′ − L2sub

′)

= (C ′
1 − {L}) ∪ (C ′

2 − {L}) = R′.

Corollary 3.38 Let ϕ be a sentence in SNF. If C ′ ∈ Res∗(E(ϕ)), then there
exists C ∈ Res∗(ϕ) and a substitution sub′ such that Csub′ = C ′.

Proof If C ′ ∈ Res∗(E(ϕ)), then C ′ ∈ Resn(E(ϕ)) for some n. We prove the
corollary by induction on n. If n = 0, then C ′ ∈ E(ϕ). Then, by the definition
of E(ϕ), C ′ is obtained by substituting variable free terms in for the variables
of some C ∈ ϕ.

For the induction step, we utilize the Lifting lemma. Suppose that for some
m, each clause of Resm(E(ϕ)) is obtained from some clause of Res∗(ϕ) via
substitution. Let ϕ̃ ⊂ Res∗(ϕ) be such that every clause of Resm(E(ϕ)) comes
from some clause in ϕ̃. Then Resm(E(ϕ)) ⊂ E(ϕ̃). If C ′ ∈ Resm+1(E(ϕ)), then
C ′ ∈ Res(E(ϕ̃)). By the Lifting lemma, there is some C ∈ Res(ϕ̃) such that
Csub′ = C ′ for some substitution sub′. Since ϕ̃ ⊂ Res∗(ϕ), C ∈ Res∗(ϕ).

128 Proof theory

In particular, if ∅ ∈ Res∗(E(ϕ)), then there exists some C ∈ Res∗(ϕ) such
that Csub′ = ∅ for some substitution sub′. But this is only possible if C = ∅.
So if ∅ ∈ Res∗(E(ϕ)), then ∅ ∈ Res∗(ϕ). We conclude that if ϕ is unsatisfiable,
then ∅ ∈ Res∗(ϕ). We have shown that the notion of resolution defined in this
section works. We state this as a theorem.

Theorem 3.39 Let ϕ be a sentence in SNF. Then ϕ is unsatisfiable if and only
if ∅ ∈ Res∗(ϕ).

3.5 SLD-resolution
One purpose of resolution is to provide a method of proof that can be done by
a computer. Toward this aim, we refine resolution in this section. Our goal is to
find a version of resolution that can be completely automated. The advantage
of resolution over other formal proof systems is that it rests on a single rule.
Resolution proofs may not be the most succinct. They will not lend insight as to
why, say, a sentence ϕ is unsatisfiable. The benefit of resolution is precisely that
it does not require any insight. To show that ϕ is unsatisfiable, we can blindly
compute Res∗(ϕ) until we find ∅. However, this method is not practical. If ∅ is
in Res∗(ϕ), then calculating the clauses in Res∗(ϕ) one-by-one in no particular
order is not an efficient way of finding it. The first two theorems of this section
show that it is not necesssary to compute all of Res∗(ϕ). We show that we only
need to compute resolvents R of clauses C1 and C2 that have certain forms. We
refer to C1 and C2 as the parents of R.

Definition 3.40 N -resolution requires that one parent contain only negative
literals.

We look at an example from propositional logic. Let

ϕ = {{A,B}, {¬A,C}, {¬B,D}, {¬C}, {¬D}}.

We show that ϕ is unsatisfiable using N -resolution.

{¬A,C} {¬C}
�

{A,B} {¬A} {¬B,D} {¬D}
� �

{B} {¬B}
� �

∅

Note that each resolvent has a parent that contains only negative literals.

Proof theory 129

Definition 3.41 Linear resolution requires that one parent be the resolvent from
the previous step.

The word “linear” refers to the diagram. The previous diagram is not
linear because it has two “branches.” The following diagram illustrates a linear
resolution for this same example.

{¬A,C} {¬C}
�

{A,B} {¬A}
�

{¬B,D} {B}
�

{¬D} {D}
�

∅

So we can derive the emptyset from ϕ either by N -resolution or linear
resolution. The next two theorems show that this is true for any unsatisfiable
ϕ. That is, to show that ϕ is unsatisfiable, we can restrict our computations to
N -resolution or linear resolution.

Theorem 3.42 Let ϕ be a sentence in SNF. Then ϕ is unsatisfiable if and only
if ∅ can be derived from ϕ by N -resolution.

Proof If ∅ can be derived by N -resolution, then ∅ ∈ Res∗(ϕ) and so ϕ is
unsatisfiable. Conversely, suppose ϕ is unsatisfiable.

By the Lifting lemma, it suffices to prove this theorem for propositional
logic. This requires some explanation. If ∅ can be derived from E(ϕ) by
N -resolution, then we can “lift” this to a derivation of ∅ from ϕ. By “lift”
we mean that the former can be obtained from the latter via substitutions. Note
that a clause C contains only negative literals if and only if Csub does (for any
substitution sub). So an N -resolution derivation in propositional logic lifts to an
N -resolution derivation in first-order logic.

Having said this, we assume ϕ is an unsatisfiable set of sentences of proposi-
tional logic in CNF. By compactness, we may assume ϕ is finite. We showed that
∅ ∈ Res∗(ϕ) in Proposition 1.74. Following that same proof, we show that ∅ can
be derived by N -resolution.

Let ϕ = {C1, . . . ,Ck}. We assume that none of the Cis is a tautology
(otherwise we just throw away these clauses and show that ∅ can be derived

130 Proof theory

from what remains). We will prove this proposition by induction on the number
n of atomic subformulas of ϕ.

First suppose n = 1. Let A be the only atomic formula that occurs in ϕ.
Then there are only three possible clauses in ϕ. Each Ci is either {A}, {¬A},
or {A,¬A}. The last clause is a tautology, and so, by our previous assumption,
it is not a clause of ϕ. So the only clauses in ϕ are {A} and {¬A}. There are
three possibilities, ϕ = {{A}}, ϕ = {{¬A}}, or ϕ = {{A}, {¬A}}. The first two
of these are satisfiable. So ϕ must be {{A}, {¬A}}. Clearly, ∅ can be derived by
N -resolution.

Now suppose ϕ has atomic subformulas A1, . . . ,An+1. Suppose further that
∅ can be derived by N -resolution from any unsatisfiable formula ψ that uses only
the atomic formulas A1, . . . ,An.

Let ϕ̃0 be the conjunction of all Ci in ϕ that do NOT contain ¬An+1.
Let ϕ̃1 be the conjunction of all Ci in ϕ that do NOT contain An+1.

If An+1 and ¬An+1 are both in a clause, then that clause is a tautology. By
our assumption, there is no such clause and ϕ̃0 ∪ ϕ̃1 = ϕ.

Let ϕ0 = {Ci − {An+1}|Ci ∈ ϕ̃0}.
Let ϕ1 = {Ci − {¬An+1}|Ci ∈ ϕ̃1}.

That is, ϕ0 is formed by throwing An+1 out of each clause of ϕ̃0 in which it
occurs. Likewise, ϕ1 is obtained by throwing ¬An+1 out of each clause of ϕ̃1.

Note that ϕ0 is the formula obtained by replacing An+1 in ϕ with a con-
tradiction, and ϕ1 is obtained by replacing An+1 in ϕ with a tautology. Since
An+1 must either have truth value 0 or 1, it follows that ϕ ≡ ϕ0 ∨ ϕ1. Since ϕ
is unsatisfiable, ϕ0 and ϕ1 are each unsatisfiable. The formulas ϕ0 and ϕ1 only
use the atomic formulas A1, . . . ,An. By our induction hypothesis, we can derive
∅ from both ϕ0 and ϕ1 using N -resolution.

Now ϕ0 was formed from ϕ̃0 by throwing An+1 out of each clause. Since we
can derive ∅ from ϕ0 by N -resolution, we can derive either ∅ or {An+1} from ϕ̃0

by N -resolution (by reinstating {An+1} in each clause of ϕ0). Likewise, we can
derive either ∅ or {¬An+1} from ϕ̃1 by N -resolution. In any case, we can use
N -resolution to derive ∅ from ϕ = ϕ̃0 ∪ ϕ̃1.

Theorem 3.43 Let ϕ be a sentence in SNF. Then ϕ is unsatisfiable if and only
if ∅ can be derived from ϕ by linear resolution.

Proof As with Theorem 3.42, only one direction of this theorem requires proof.
Suppose that ϕ is unsatisfiable. We want to show that ∅ can be derived from ϕ by
linear resolution. By the Lifting lemma, it suffices to prove this for propositional

Proof theory 131

logic. So suppose ϕ is a set of sentences in propositional logic that are in CNF.
We say that a set of sentences is minimal unsatisfiable if it is unsatisfiable and
every proper subset is satisfiable. By Exercise 1.33(b), ϕ contains a minimal
unsatisfiable subset ϕ′. The following lemma states that for any C ∈ ϕ′, we can
derive ∅ by linear resolution begining with C as one parent. The proof of this
lemma completes the proof of Theorem 3.43.

Lemma 3.44 Let F be a minimal unsatisfiable set of sentences of propositional
logic that are in CNF. For any C ∈ F , we can derive ∅ from F by linear resolution
begining with C as one parent.

Proof By the Compactness of propositional logic, it suffices to prove this for
finite F . So we may view F as a formula in CNF. We proceed by induction on
the number n of atomic subformulas of F . If n = 1, then F = {{A}, {¬A}} for
some atomic formula A. In this case, the conclusion of the lemma is obvious.
Now suppose that, for some n ∈ N, F contains n + 1 atomic subformulas. Our
induction hypothesis is that the lemma holds for any formula in CNF containing
at most n atomic subformulas.

Let L be a literal in C. This literal partitions F into three subsets as
follows.

Let C = {C1, . . . ,Ci} be the set of clauses in F that contain L.

Let D = {D1, . . . ,Dj} be the set of clauses in F that contain L.

Let E = {E1, . . . ,Ek} be the set of clauses in F that contain neither
L nor L.

Any clause that contains both L and L is a tautology. Since F is minimal
unsatisfiable, F contains no such clauses. So every clause in F is in exactly one
of the above three sets. Note that C is in C. We may assume that C1 = C.

Case 1: C = {L}.
For any clause D ∈ F , we can find a resolvent of C and D if and only if D is

in D. If D is in D, then let D′ denote the resolvent of C and D. That is, D′ is the
formula obtained by removing L from the formula D. Since F is unsatisfiable,
we can derive ∅ from F by resolution. Since it is minimal unsatisfiable the clause
C, as well as each clause of F , is needed in this derivation. It follows that the
clause D1 ∈ D must exist.

Let FL be the set {D′
1, . . . ,D

′
j ,E1, . . . ,Ek}.

Note that FL is equivalent to the formula obtained from F by replacing L
with a tautology and L with a contradiction. Either L or L is an atomic formula
that occurs in F but not FL. If F contains n+ 1 atomic subformulas, then FL

132 Proof theory

contains n atomic subformulas. Our induction hypothesis applies to any minimal
unsatisfiable subset of FL.

Claim There is a minimal unsatisfiable subset of FL containing D′
1.

First we show that FL is unsatisfiable. Suppose to the contrary that FL is
satisfiable. Then there exists an assignment A defined on the n atomic formulas
of FL and not defined on L. Let A′ be an extension of A such that A′(L) = 1.
Then A′ models each clause of F . This is a contradiction. Since F is unsatisfiable,
so is FL. By Exercise 1.33(b), FL contains a minimal unsatisfiable subset.

Suppose we remove D′
1 from FL. We show that the resulting set FL −{D′

1}
is satisfiable. To see this, consider the set {C,D2, . . . ,Dj ,E1, . . . ,Ek}. Since this
is a proper subset of F (not containing D1 ∈ F), this set must be satisfiable.
Let A be an assignment that models this set. Since A models both C and D2, it
also models their resolvent D′

2. Likewise, A models each formula of FL − {D′
1}

and this set is satisfiable. It follows that any minimal unsatisfiable subset of FL

must contain D′
1 as claimed.

By the induction hypothesis, ∅ can be derived from FL by linear res-
olution begining with D′

1 as one parent. The lemma states that ∅ can be
derived from F by linear resolution begining with C. We begin this deriva-
tion by taking C and D1 as parents of the resolvent D′

1. Consider now the set
{D′

1,D2, . . . ,Dj ,E1, . . . ,Ek}. Note that this set is obtained from FL by rein-
stating L to the clauses D′

2, . . . ,D
′
j . Since ∅ can be derived from FL by linear

resolution begining with D′
1, either ∅ or L can be derived after reinstating L to

these clauses. If ∅ is derived, then we are done. Otherwise, if L is derived, then ∅
is obtained from L and C to successfully conclude the linear resolution.

Case 2: C contains literals other than L.

For this case, consider the set FL defined as follows:

FL = {C ′
1, . . . ,C

′
i,E1, . . . ,Ek},

where each C ′
s is obtained by removing L from Cs ∈ C. Note that FL is equivalent

to the formula obtained from F by replacing L with a tautology and L with a
contradiction. As with FL, the set FL contains n atomic subformulas and we
can apply our induction hypothesis to any minimal unsatisfiable subset of FL.

Claim There is a minimal unsatisfiable subset of FL containing C ′
1.

The set FL is unsatisfiable for the same reason that FL is unsatisfiable. Any
assignment that models FL can be extended to an assignment that models F .
Since F is unsatisfiable, no such assignment exists.

Proof theory 133

Now suppose that we remove C ′
1 from FL. We show that the resulting set

FL −{C ′
1} is satisfiable. Since F is minimal unsatisfiable, there exists an assign-

ment A that models every formula of F other than C. Since F is unsatisfiable,
A |= ¬C. Since A |= ¬C and L ∈ C, it must be the case that A |= L. Since
A models C2 and not L, A must model the formula C ′

2 obtained by removing
L from C2. Likewise, A models each formula in FL − {C ′

1}. It follows that any
minimal unsatisfiable subset of FL must contain C ′

1 as claimed.

By the induction hypothesis, ∅ can be derived from FL by linear resolution
begining with C ′

1 as one parent. The set

{C1, . . . ,Ci,E1, . . . ,Ek}

is obtained from FL by reinstating L to some of the clauses. Either ∅ or L can
be derived from this subset of F by linear resolution begining with C = C1. If ∅
is derived, we are done. Suppose L is derived. Consider the set

{L,D1, . . . ,Dj ,E1, . . . ,Ek}.

If we remove L from this set, then we have a proper subset of F which must be
satisfiable. Having L in this set, however, makes it unsatisfiable. Any assignment
A that models L also models each clause of C. Since F is unsatisfiable, so is the
above set. So there exists a minimal unsatisfiable subset of this set containing L.
By case 1, ∅ can be derived from this set by linear resolution begining with L as
one parent. This completes the linear resolution and the proof.

So if ϕ is unsatisfiable, then we can prove that it is unsatisfiable using either
linear resolution or N -resolution. Anything that can be proved using resolution
can also be proved using either of these restricted versions of resolution. Suppose
we restrict further to resolution that is both linear resolution and N -resolution.
Call this LN -resolution.

Question 1 Can we derive ∅ from any unsatisfiable ϕ using LN -resolution?

The answer is “no.” Consider again the example

ϕ = {{A,B}, {¬A,C}, {¬B,D}, {¬C}, {¬D}}.

We showed that ϕ is unsatisfiable using both N -resolution and linear resolu-
tion. Note that neither of these derivations was by LN -resolution. In fact, ∅
cannot be derived from ϕ using LN -resolution (try it). So LN -resolution is too
weak to prove everything. However, suppose we restrict our attention to Horn
sentences.

134 Proof theory

Definition 3.45 Let ϕ be a sentence in SNF. If each clause in ϕ contains at most
one positive literal, then ϕ is a Horn sentence.

This is the same definition we gave for sentences of propositional logic in
CNF. Note that ϕ in our example is not Horn since it contains the clause {A,B}.
The following theorem shows that if we require ϕ in Question 1 to be a Horn
sentence, then the answer becomes “yes.”

Theorem 3.46 Let ϕ be a sentence in SNF. If ϕ is a Horn sentence, then ϕ is
unsatisfiable if and only if ∅ can be derived from ϕ by LN -resolution.

Proof Suppose ϕ is an unsatisfiable Horn sentence. Again by the Lifting Lemma,
we may assume that ϕ is a sentence of propositional logic. Let ϕ′ be a min-
imal unsatisfiable subset of ϕ. By Theorem 3.42, there is an N -resolution
derivation of ∅ from ϕ′. In particular, ϕ′ must contain a negative clause N .
By Lemma 3.44, there exists a linear resolution derivation of ∅ begining with N .
So we have

D N

�

D1 N1

�

D2 N2

. .

. .

. .
�

Dn Nn

�

∅

for some clauses D,D1, . . . ,Dn and N1, . . . ,Nn. Since ϕ is Horn, D contains at
most one positive literal. It follows that N1 is contains only negative literals.
Likewise, each Ni is negative and this is an LN -resolution.

Clauses that contain exactly one positive literal are called definite. Note
that each Di in the previous proof is necessarily definite. The positive literal
in Di “cancels” with one of the negative literals in Ni yeilding the negative
resolvent Ni+1. For each Ni there may be many possibilities for Di depending on
which literal in Ni we want to cancel. A selector function chooses which literal
in Ni to cancel at each stage. For example, we may say cancel the leftmost
literal of Ni at each stage. Or we may require that we cancel a literal that has

Proof theory 135

appeared in the most Nj for j < i. We demand only that the selector function
is invariant under substitutions of variables. That is, suppose that, for a given
set of negative literals N , the selector function chooses L ∈ N . Then for any
substitution of variables sub, we require that the selector function chooses Lsub
from Nsub.

Definition 3.47 SLD-resolution is LN -resolution with a selector function.

The “S” stands for selector, the “L” for linear, and the “D” for definite.

Example 3.48 Let ϕ = {{¬A,C}, {A,¬B}, {B}, {¬D,¬C}, {D,¬E}, {E}}. We
will perform SLD-resolution on ϕ twice. First, we use the “leftmost” selector
function. At each stage, we underline the literal that we seek to eliminate.

{D,¬E} {¬D,¬C}
�

{E} {¬E,¬C}
�

{¬A,C} {¬C}
�

{A,¬B} {¬A}
�

{B} {¬B}
�

∅

Now we use the “rightmost” selector function.

{¬A,C} {¬D,¬C}
�

{D,¬E} {¬A,¬D}
�

{A,¬B} {¬E,¬A}
�

{E} {¬B,¬E}
�

{B} {¬B}
�

∅

136 Proof theory

Theorem 3.49 Let ϕ be a sentence in SNF. If ϕ is a Horn sentence, then ϕ is
unsatisfiable if and only if ∅ can be derived from ϕ by SLD-resolution for any
choice of selector function that is invariant under substitutions.

Proof Since the selector function is invariant under substitutions, we may
apply the Lifting Lemma and assume that ϕ is a sentence of propositional
logic. By Theorem 3.46, we can derive ∅ from ϕ by LN -resolution as
follows:

D N

�

D1 N1

�

D2 N2

. .

. .

. .
�

Dn Nn

�

∅

In this derivation, N is a negative clause of ϕ and D, D1, . . . ,Dn are definite
clauses of ϕ. We proceed by induction on n. If n = 0, then N contains only
one literal L. Any concievable selector function must choose the literal L from
N (there is no other choice). So in this case, the above LN -resolution is also
SLD-resolution regardless of the choice of selector function.

Now suppose that n in the above derivation equals m + 1 for some integer
m ≥ 0. Then there are m+ 2 steps in this derivation. Suppose further that if ∅
can be derived by LN -resolution in m+ 1 steps, then it can also be derived by
SLD-resolution. This is our induction hypothesis.

Let L be the literal of N chosen by the selector function. Then L

must occur in D or some Di. If it happens to occur in D, then SLD-
resolution begins with the same resolvent N1 as the above LN -resolution.
From this point, ∅ is derived in m + 1 steps from N1 in the the above
LN -resolution. By our induction hyposthesis, it can be derived by SLD-
resolution.

Now suppose that L is in Di for some i = 1, . . . ,n. Then SLD-resolution
begins by finding the resolvent N ′ of Di and N . Consider the following two

Proof theory 137

derivation by LN -resolution:

D N Di N

� �

D1 N1 D N ′

� �

D2 N2 D1 N ′
1

� �

D3 N3 D2 N ′
2

. . . .

. . . .

. . . .
� �

Di Ni Di−1 N ′
i−1

� �

Ni+1 N ′
i

The derivation on the left is the same as before. Since the derivation on
the right also begins with N and involves precisely the same definite clauses (in
a different order) the result N ′

i is the same as the result Ni+1 of the deriv-
ation on the left. The derivation on the left can be continued as above to
obtain ∅. Since, N ′

i = Ni+1, we can conclude the derivation on the right in
exactly the same manner. So, in this new derivation, we derive ∅ in the same
number of steps (m+2) as before. Beginning this derivation from the second step,
we see that, using LN -resolution, ∅ can be derived from {N ′,D,D1, . . . ,Dn} in
m + 1 steps. By our induction hyothesis, we can derive ∅ from this set using
SLD-resolution.

3.6 Prolog
There are many conceivable ways to implement resolution into a programming
language. Prolog and Otter are two examples. The language of Prolog is based
on first-order Horn logic. Otter allows far more expressions. Otter can take a
set of first-order sentences, put them into CNF, and derive consequences using
resolution and other methods. Whereas Otter is used as a theorem prover for
elementary mathematics and has successfully obtained new results, Prolog is
primarily a search engine for databases (Prolog is closely related to Datalog).
Several versions of Prolog and Otter are freely available on the internet. (Otter
may be downloaded from the pages of the Mathematics and Computer Science
Division of Argonne National Laboratory where it was developed.)

138 Proof theory

In this section, we give some examples of Prolog programs and discuss how
Prolog uses SLD-resolution. We refer the reader to Ref. [20] for details on Otter.

We begin by defining the basic syntax of Prolog. We consider only a fragment
of Prolog called “pure Prolog.” In pure Prolog, there are symbols for conjunction
and implication, but not disjunction, negation, or equality. Lower case letters are
used for relations and functions. Commas are used for conjunction and “q :- p”
is used for p→ q. The Horn sentence

∀x∀y((P ((x, y)) ∧ E(f(x), y) → Q(x)))

is written in Prolog as

q(X) :- p(X,Y), e(f(X),Y).

Note that if this were written as a disjuntion of literals, then the literal q(x) on
the left would occur as a positive literal and the literals on the right would occur
as negative literals.

Recall that a Horn clause is a clause that contains at most one positive
literal. So in Prolog, there is at most one literal to the left of :-. If it contains no
positive literal, it is called a goal clause. Otherwise, it is called a program clause.
There are two varieties of program clauses. If there are no negative literals, then
it is called a fact. Otherwise it is called a rule. A program in Prolog is a set of
program clauses. For example, the following is a program.

p(ray,ken)

p(ray,sue)

p(sue,tim)

p(dot,jim)

p(bob,jim)

p(bob,liz)

p(jim,tim)

p(sue,sam)

p(jim,sam)

p(zelda,max)

p(sam,max)

gp(X,Y) :- p(X,Z),p(Z,Y).

This program consists of 11 facts and one rule. The facts, since they contain
no variables, are sentences of propositional logic. These form a database. If we
interpret the predicate p(X,Y) as “X is a parent of Y,” then the facts just list
pairs of parents and children. The rule defines the relation gp(X,Y) as “X is
a grandparent of Y.” Using first-order logic, we can define gp(X,Y) in a single
sentence without having to list all pairs of grandparents and grandchildren.

Proof theory 139

We can ask certain questions in Prolog. Questions are presented as a list of
positive literals. We use “?-” for the Prolog prompt. The following is an example
of a question we may ask:

?- gp(ray,X),p(X,max)

This can be interpreted as “does there exist an X such that both gp(ray,X) and
p(X,max) hold?” That is, is Ray a great-grandparent of Max? Prolog will not
only answer this question, it will output all values for X for which the statement
is true. We describe how Prolog does this.

Let P denote the set of all sentences in the program. Let Q denote the
sentence ∃X(gp(ray,X)∧ p(X,max)). Our question asked if Q is a consequence
of P . That is, we want to know if P ∧ ¬Q is unsatisfiable. Note that ¬Q is
equivalent to the Horn sentence ∀X(gp(ray,X) ∧ p(X,max) → 0). In Prolog
this sentence is written as

:- gp(ray,X),p(X,max)

which is a goal clause.
Prolog proceeds with SLD-resolution on P ∪ {¬Q} using the “leftmost”

selection rule. Since, ¬Q is the only negative clause of P ∪{¬Q}, SLD-resolution
must begin with this clause. Prolog searches the program for something to unify
with gp(ray,X), the leftmost literal of ¬Q. Prolog searches until it finds the
rule gp(X,Y) :- p(X,Z),p(Z,Y) which has a positive occurrence of gp(X,Y).
Prolog computes the following resolvent:

gp(X,Y) :- p(X,Z),p(Z,Y) :- gp(ray,X),p(X,max)

gp(ray,Y) :- p(ray,Z),p(Z,Y) :- gp(ray,Y),p(Y,max)

� �

:- p(ray,Z),p(Z,Y),p(Y,max).

Prolog then searches and finds p(ray,ken) which can be unified with the
leftmost literal of the above resolvent. Prolog then calculates the resolvent
p(ken,Y),p(Y,max). Searching again, Prolog finds nothing that can be unified
with p(ken,Y). So this is a dead end and Prolog must backtrack. Prolog goes
back to the previous step and, instead of taking p(ray,ken), proceeds down
the list to p(ray,sue). After computing the resolvent, Prolog will next find
p(sue,tim). This is another dead end, and so Prolog will backtrack and take

140 Proof theory

p(sue,sam) instead. This choice yields the following SLD-resolution:

gp(X,Y) :- p(X,Z),p(Z,Y) :- gp(ray,X),p(X,max)

�

p(ray,sue) :- p(ray,Z),p(Z,Y),p(Y,max)

�

p(sue,sam) :- p(sue,Y),p(Y,max)

�

p(sam,max) :- p(sam,max)

�

∅

It follows that P ∧ ¬Q is unsatisfiable, and so Q is a consequence of P . So
Prolog can give an affirmative answer to our question ?- gp(ray,X),p(X,max).
Moreover, by keeping track of the substitutions that were made, Prolog can
output the appropriate values for X. In the first step of the above resolution,
the substitution (X/Y) was made (as indicated by the vertical lines in the first
diagram). Later, the substitution (Y/sam) was made. So X=sam works. Prolog
will backtrack again and continue to find all values for X that work. In this
example, X = sam is the only solution.

Some other questions we might ask are as follows:

Input Output

?- p(bob,liz) yes

?- gp(X,sam) X=ray,X=bob,X=dot

?- gp(tim,max) no

?- p(tim,X) no

?- p(X,Y),p(Y,max) X=jim,X=sue,Y=sam

The output “no” means Prolog has computed all possible SLD-resolutions and
did not come across ∅.

Suppose now we want to know who is the grandmother of whom. We will
have to add some relations to be able to ask such a question. Let gm(X,Y) mean
X is the grandmother of Y . We need to add sentences to the program that define
this relation. One way is to list as facts all pairs for which gm holds. This is how
the relation p was defined in the original program. But this defeats the point. If
we could produce such a list, then we would not need to ask Prolog the question.
Another way is to introduce a unary relation f(X) for “female.” The following
rule defines gm.

gm(X,Y) :- gp(X,Y),f(X)

Proof theory 141

But now we need to define f(X). We do this by adding the following facts
to the program:

f(dot)

f(sue)

f(liz)

f(zelda).

We can now ask the question

?- gm(X,Y)

to which Prolog responds

X=dot,Y=tim

X=dot,Y=sam

X=sue,Y=max.

There is one caveat that must be mentioned. Prolog does not use the Uni-
fication algorithm as we stated it. This algorithm is not polynomial time. Recall
that, to unify a set of literals, we look at the symbols one-by-one until we find
a discrepancy. If this discrepancy involves a variable and a term that does not
include the variable, then we substitute the term for that variable and proceed.
We must check that the variable does not occur in the term. This checking pro-
cedure can take exponentially long. Prolog avoids this problem simply by not
checking. Because it excludes a step of the Unification algorithm, Prolog may
generate incorect answers to certain queries. This is a relatively minor problem
that can be avoided in practice.

Example 3.50 Consider the program consisting of the fact p(X,X) and the rule
q(a) :- p(f(X),X). If we ask ?- q(a), then Prolog will output the incorrect
answer of “yes.” Since it fails to check whether X occurs in f(X), Prolog behaves
as though p(X,X) and p(f(X),X) are unifiable.

In “pure Prolog,” we have been ignoring many features of Prolog. Prolog has
many built in relation and function symbols. “Impure Prolog” includes is(X,Y)
which behaves like X = Y . It also has binary function symbols for addition
and multiplication. A complete list of all such function and relations available
in Prolog would take several pages. We merely point out that we can express
equations and do arithmetic with Prolog.

So we can answer questions regarding the natural numbers using Prolog.
There are three limitations to this. One is the before mentioned caveat regard-
ing the Unification algorithm. Another limitation is that Prolog uses Horn
clauses. This is a restrictive language (try phrasing Goldbach’s conjecture from

142 Proof theory

Exercise 2.8 as a goal clause for some Prolog program). Third, suppose that
Prolog was capable of carrying out full resolution for first-order logic (as Otter
does). Since resolution is complete, it may seem that we should be able to prove
every first-order sentence that is true of the natural numbers. This is not the case.
Even if we had a computer language capable of implementing all of the meth-
ods discussed in this chapter, including formal proofs, Herbrand theory, and
resolution, there would still exist theorems of number theory that it would be
incapable of proving. This is a consequence of Gödel’s incompleteness theorems
that are the topic of Chapter 8.

Exercises
3.1. Let ϕ be a V-sentence and let Γ be a set of V-sentences such that

Γ � ϕ. Show that there exists a derivation ϕ from Γ that uses only
V-formulas.

3.2. Let Γ be a set of V-sentences. Show that the following are equivalent:
(i) For every universal V-formula ϕ, there exists an existential V-

formula ψ such that Γ � ϕ↔ ψ.

(ii) For every V-formula ϕ, there exists an existential V-formula ψ such
that Γ � ϕ↔ ψ.

(iii) For every existential V-formula ϕ, there exists an universal V-
formula ψ such that Γ � ϕ↔ ψ.

(iv) For every V-formula ϕ, there exists a universal V-formula θ such
that Γ � ϕ↔ θ.

3.3. Let Γ be a set of V-sentences. Show that the following are equivalent:
(i) For every quantifier-free V-formula ϕ(x1, . . . ,xn, y) (for n ∈ N),

there exists a quantifier-free V-formula ψ(x1, . . . ,xn) such that Γ �
∃yϕ(x1, . . . ,xn, y) ↔ ψ(x1, . . . ,xn).

(ii) For every formula ϕ(x1, . . . ,xn) (for n ∈ N), there exists a
quantifier-free formula θ(x1, . . . ,xn) such that Γ � ϕ(x1, . . . ,xn) ↔
θ(x1, . . . ,xn).

3.4. Complete the proof of Theorem 3.4 by verifying the soundness of
∀-Distribution.

3.5. Verify each of the following by providing a formal proof:
(a) {∃x∀yϕ(x, y)} � ∀y∃xϕ(x, y)

(b) {∀x∃y∀zψ(x, y, z)} � ∃x∀z∃yψ(x, y, z)

(c) {∃x∀y∃z∀wθ(x, y, z,w)} � ∀y∃x∀w∃zθ(x, y, z,w).

Proof theory 143

3.6. Verify that the following pairs of formulas are provably equivalent by
sketching formal proofs:
(a) ∃x∃yϕ(x, y) and ∃y∃xϕ(x, y).

(b) ∀x∃y∃zψ(x, y, z) and ∀x∃z∃yψ(x, y, z).

(c) ∃x1∀x2∀x3∃x4∃x5∃x6θ(x1,x2,x3,x4,x5,x6) and
∃x1∀x3∀x2∃x6∃x5∃x4 θ(x1,x2,x3,x4,x5,x6).

3.7. Let x and y be variables that do not occur in the formula ϕ(z). Show that
∃xϕ(x) and ∃yϕ(y) are provably equivalent by giving formal proofs.

3.8. Show that ∀x(ϕ(x) ∧ ψ(x)) and ∀xϕ(x) ∧ ∀xψ(x) are provably equivalent
by providing formal proofs.

3.9. (a) Show that {∃x(ϕ(x) ∧ ψ(x))} � ∃xϕ(x) ∧ ∃xψ(x).

(b) Show that the sentences ∃x(ϕ(x) ∧ ψ(x)) and ∃xϕ(x) ∧ ∃xψ(x) are
not provably equivalent.

3.10. Show that ∃x(ϕ(x) ∨ ψ(x)) and ∃xϕ(x) ∨ ∀xψ(x) are provably equivalent
by providing formal proofs.

3.11. (a) Show that {∀xϕ(x) ∨ ∀xψ(x)} � ∀x(ϕ(x) ∨ ψ(x)).

(b) Show that the sentences ∀x(ϕ(x) ∨ ψ(x)) and ∀xϕ(x) ∨ ∀xψ(x) are
not provably equivalent.

3.12. Let Vgp be the vocabulary {+, 0} where + is a binary function and 0 is a
constant. We use the notation x+ y to denote the term +(x, y). Let Γ be
the set consisting of the following three Vgp-sentences from Exercise 2.5:

∀x∀y∀z(x+ (y + z) = (x+ y) + z)

∀x((x+ 0 = x) ∧ (0 + x = x))

∀x∃y(x+ y = 0) ∧ ∃z(z + x = 0)

(a) Show that Γ � ∀x∀y∀z(x+ y = x+ z → (y = z)).

(b) Show that Γ � ∀x(∀y(x+ y = y) → (x = 0)).

(c) Show that Γ � ∀x∃y∀z((x+ y = 0) ∧ (z + x = 0)) → (y = z).

3.13. Complete the proof of Proposition 3.13 by deriving ∃xϕ(x) ∧ ∃xψ from
∃x(ϕ(x) ∧ ψ).

3.14. Verify that ∀x∃y(f(x) = y) is a tautology by giving a formal proof.

3.15. Complete the proof of Proposition 3.15.

3.16. For each n ∈ N, let Φn be the sentence

∃x1 · · · ∃xn


∧

i �=j

xi �= xj




asserting that there exist at least n elements.

144 Proof theory

Let ϕ1 be the sentence

∀x∀y((f(x) = f(y)) → (x = y))

saying that f is one-to-one and let ϕ2 be the sentence

∀y∃x(f(x) = y)

saying that f is onto.
Show that {ϕ1,ϕ2, Φn} � Φn+1 by giving a sketch of a formal proof.

3.17. For each n ∈ N, let Φn be as defined in the previous exercise.
Consider the following three sentences:

∀x∀y((x < y) → ¬(x = y)))

∀x∀y∀z(((x < y) ∧ (y < z)) → (x < z))

∀x∀y((x < y) → ∃z((x < z) ∧ (z < y))).

Each of these sentences hold in any structure that interprets < as a dense
linear order (such as Q< = (Q| <) or R< = (R| <)). Let ψ1, ψ2 and ψ3

denote these three sentences in the order they are given.
(a) Show that {ψ1,ψ2,ψ3, Φn} � Φn+1.

(b) Show that it is not the case that {ψ1,ψ3, Φn} � Φn+1.

3.18. For each of the following formulas, find an equivalent formula in Conjunct-
ive Prenex Normal Form. Note that each of these formulas have x and y
as free variables.
(a) ¬∃zQ(x, y, z) ∨ ∀z∃wP (w,x, y, z)

(b) ∀z(R(x, z) ∧R(x, y) → ∃w(R(x,w) ∧R(y,w) ∧R(z,w)))

(c) ∃z(S(y, z) ∧ ∃y(S(z, y) ∧ ∃z(S(x, z) ∧ (S(z, y))))).

3.19. Find the Skolemization of each of the formulas in the previous exercise.

3.20. Under what conditions on ϕ will the Skolemization ϕS be equivalent
to ϕ?

3.21. Let V be the vocabulary {f ,P} consisting of a unary function f and a
unary relation P . Let ϕ be the formula

∀x(P (x) → P (f(x)) ∧ ∃xP (x) ∧ ∃x¬P (x)).

(a) Show that ϕ does not have a Herbrand model.

(b) Find a Herbrand model for the Skolemization ϕs.

3.22. Let ϕ1 and ϕ2 be the sentences in the vocabulary {f} defined in
Exercise 3.16. Show that ϕ1 has a Herbrand model, but neither ϕ2 nor
the Skolemization of ϕ2 has a Herbrand model.

Proof theory 145

3.23. Let ϕ(x) be a formula that is both quantifier-free and equality-free. Show
that ∃xϕ(x) is a tautology if and only if ϕ(t1) ∨ ϕ(t2) ∨ · · · ∨ ϕ(tn) is a
tautology for some n ∈ (N) and terms ti in the Herbrand universe for ϕ.

3.24. Use the Herbrand method to show that the following sentence is not
satisfiable: ∀x¬R(x,x) ∧ ∀xR(x, f(x))∧ ∃x∀y(R(x, y) → R(f(x), y)).

3.25. A first-order sentence is a Horn sentence if it is in SNF and each clause
contains at most one positive literal. Describe a polynomial-time algorithm
that determines whether or not a given Horn sentence is satisfiable.
(Use the Herbrand method and the Horn algorithm from Section 1.7.)

3.26. Is the following set of literals unifiable?

{Q(f(g(w),h(x)), y, f(z, a)),Q(f(y,h(x)), g(w), f(g(w),x)),

Q(f(g(z),h(a)), z, f(y,x))}.

If so, give the most general unifier and another unifier that is not most
general.

3.27. Is the following set of literals unifiable?

{R(f(x), g(z)),R(y, g(x)),R(v,w),R(w, g(x))}.

If so, give the most general unifier and another unifier that is not most
general.

3.28. (a) Using the Unification algorithm, find a most general unifier for the
set {R(x, y, z),R(f(w,w), f(x,x), f(y, y)}.

(b) Now consider the set {R(x1, . . . ,xn+1),R(f(x0,x0)), . . . , f(xn,xn)}.
Given this set as input, how many steps will it take the Unification
algorithm to halt and output a most general unifier? Is this algorithm
polynomial time?

3.29. Use resolution to prove that the following are tautologies:
(a) (∃x∀yQ(x, y) ∧ ∀x(Q(x,x) → ∃yR(y,x))) → ∃y∃xR(x, y)

(b) (∃x∀yR(x, y)) ↔ (¬∀x∃y¬R(x, y))

(c) (∀x((P (x) → Q(x)) → ∀yR(x, y)) ∧ ∀y(¬R(a, y) → ¬P (a))) →
R(a, b).

3.30. Let VE be the vocabulary {E} consisting of one binary relation.
Let Γ be the set consisting of the following three VE -sentences from
Example 2.27.

∀xE(x,x)

∀x∀y(E(x, y) → E(y,x))

∀x∀y∀z((E(x, y) ∧ E(y, z) → E(x, z))).

146 Proof theory

Using resolution, derive ∀x(E(x, y) ↔ E(x, z)) from Γ ∪ {∃x(E(x, y) ∧
E(x, z))}. (First put these sentences in SNF.)

3.31. Refer to the proof of Lemma 3.44.
(a) Show that if C = {L}, then C = {C}.
(b) Show that if C = {L}, then FL is minimal unsatisfiable.

3.32. P-resolution is the refinement of resolution that requires that one parent
contains only positive literals. Let ϕ be a sentence in SNF. Show that ϕ
is unsatisfiable if and only if ∅ can be derived from ϕ by P -resolution.

3.33. T-resolution is the refinement of resolution that requires that neither par-
ent is a tautology. Let ϕ be a sentence in SNF. Show that ϕ is unsatisfiable
if and only if ∅ can be derived from ϕ by T -resolution.

3.34. Let F be a formula of propositional logic in CNF. Let A be an assignment
defined on the atomic subformulas of F . Let A-resolution be the refinement
of resolution that requires that A(C) = 0 for one parent C. Show that F
is unsatisfiable if and only if ∅ can be derived from F by A-resolution.

3.35. Let F be a formula of propositional logic in CNF. Suppose that the atomic
subformulas of F are among {A,B,C, . . . ,X,Y ,Z}. Let alphabetical-
resolution be the refinement of resolution having the following requirement.
We only allow the resolvent R of C1 and C2 if there exists an atomic sub-
formula of both C1 and C2 that precedes every atomic subformula of R
alphabetically. Show that F is unsatisfiable if and only if ∅ can be derived
from F by alphabetical-resolution.

4 Properties of first-order logic

We show that first-order logic, like propositional logic, has both completeness
and compactness. We prove a countable version of these theorems in Section 4.1.
We further show that these two properties have many useful consequences for
first-order logic. For example, compactness implies that if a set of first-order sen-
tences has an infinite model, then it has arbitrarily large infinite models. To fully
understand completeness, compactness, and their consequences we must under-
stand the nature of infinite numbers. In Section 4.2, we return to our discussion
of infinite numbers that we left in Section 2.5. This digression allows us to prop-
erly state and prove completeness and compactness along with the Upward and
Downward Löwenheim–Skolem theorems. These are the four central theorems of
first-order logic referred to in the title of Section 4.3. We discuss consequences
of these theorems in Sections 4.4–4.6. These consequences include amalgamation
theorems, preservation theorems, and the Beth Definability theorem.

Each of the properties studied in this chapter restrict the language of first-
order logic. First-order logic is, in some sense, weak. There are many concepts
that cannot be expressed in this language. For example, whereas first-order logic
can express “there exist n elements” for any finite n, it cannot express “there
exist countably many elements.” Any sentence having a countable model neces-
sarily has uncountable models. As we previously mentioned, this follows from
compactness. In the final section of this chapter, using graphs as an illustration,
we discuss the limitations of first-order logic. Ironically, the weakness of first-
order logic makes it the fruitful logic that it is. The properties discussed in this
chapter, and the limitations that follow from them, make possible the subject of
model theory.

All formulas in this chapter are first-order unless stated otherwise.

4.1 The countable case
Many of the properties of first-order logic, including completeness and compact-
ness, are consequences of the following fact:

Every model has a theory and every theory has a model.

Recall that a set of sentences is a “theory” if it is consistent (i.e. if we can-
not derive a contradiction). “Every theory has a model” means that if a set

148 Properties of first-order logic

of sentences is consistent, then it is satisfiable. Recall too that, for any
V-structure M , the “theory of M ,” denoted Th(M), is the set of all V-sentences
that hold in M . “Every model has a theory” asserts that Th(M) is consistent.
Put another way, the above fact states that any set of sentences Γ is consistent
if and only if it is satisfiable. In this section, we prove this fact for countable Γ
and derive countable versions of completeness and compactness.

Proposition 4.1 Let Γ be a set of sentences. If Γ is satisfiable then Γ is consistent.

Proof If Γ is satisfiable then M |= Γ for some structure M . By Theorem 2.86,
Th(M) is a complete theory. In particular, Th(M) is consistent. Since Γ is a
subset of Th(M), Γ is consistent.

Now consider the converse. If Γ is consistent, then it is satisfiable. One
way to prove this is to demonstrate a model for Γ. Since Γ is an arbitrary
set of sentences, this may seem to be a daunting task. However, there exists
a remarkably elementary way to construct such a model. We use a technique
known as a Henkin construction. This versatile technique will be utilized again
in Sections 4.3 and 6.2.

Theorem 4.2 Let Γ be a countable set of sentences. If Γ is consistent then Γ is
satisfiable.

Proof Suppose Γ is consistent. We will demonstrate a structure that models Γ.
Let V be the vocabulary of Γ. Let V+ = V ∪ {c1, c2, c3, . . .}, where each ci

is a constant that does not occur in V. We let C denote the set {c1, c2, c3, . . .}.
Since both V and C are countable, so is V+ (by Proposition 2.43).

We shall define a complete V+-theory T+ with the following properties.

Property 1 Every sentence of Γ is in T+.

Property 2 For every V+-sentence in T+ of the form ∃xθ(x), the sentence θ(ci)
is also in T+ for some ci ∈ C.

The second property allows us to find a model M+ of T+. By the first property,
M+ is also a model of Γ. If we can define such T+ and M+, then this will prove
the theorem.

We define T+ in stages. Let T0 be Γ. Enumerate the set of all V+-sentences
as {ϕ1,ϕ2, . . .}. This is possible since the set of V+-sentences is countable (by
Proposition 2.47). Suppose that, for some m ≥ 0, Tm has been defined in such
a way that Tm is consistent and only finitely many of the constants in C occur
in Tm. To define Tm+1, consider the sentence ϕm+1. There are two cases:

(a) If Tm ∪ {¬ϕm+1} is consistent, then define Tm+1 to be Tm ∪ {¬ϕm+1}.

Properties of first-order logic 149

(b) If Tm∪{¬ϕm+1} is not consistent, then Tm∪{ϕm+1} is consistent. We divide
this case into two subcases:
(i) If ϕm+1 does not have the form ∃xθ(x) for some formula θ(x), then just

let Tm+1 be Tm ∪ {ϕm+1}.
(ii) Otherwise ϕm+1 has the form ∃xθ(x). In this case let Tm+1 be Tm ∪

{ϕm+1}∪{θ(ci)}, where i is such that ci does not occur in Tm∪{ϕm+1}.

So given Tm which is consistent and uses only finitely many constants from
C, we have defined Tm+1. In any case, Tm+1 is obtained by adding at most two
sentences to Tm. Since Tm uses only finitely many constants from C, so does
Tm+1. Moreover, we claim that Tm+1 is consistent.

Claim Tm+1 is consistent.

Proof of Claim If Tm+1 is as in (a) or (b)(i), then Tm+1 is consistent by
its definition. So assume that Tm+1 is as in part (ii) of (b). We know that
Tm ∪ {ϕm+1} is consistent.

Suppose for a contradiction that Tm+1 = Tm ∪ {ϕm+1} ∪ {θ(ci)} is incon-
sistent. Then we have

Tm ∪ {ϕm+1} � ¬θ(ci).

Since ci does not occur in Tm ∪ {ϕm+1} we have

Tm ∪ {ϕm+1} � ∀x¬θ(x) by ∀-Introduction.

Since ϕm+1 is the formula ∃xθ(x), we have

Tm ∪ {ϕm+1} � ∃xθ(x) by Assumption.

By the definition of ∀ we have

Tm ∪ {ϕm+1} � ¬∀x¬θ(x).

We see that we can derive both ∀x¬θ(x) and its negation from Tm∪{ϕm+1}.
This contradicts our assumption that Tm∪{ϕm+1} is consistent. Our supposition
that Tm+1 is inconsistent must be incorrect. We conclude that Tm+1, like Tm, is
consistent.

Recall that T0 is Γ which is consistent and uses no variables from C. We
can apply the above definition of Tm+1 with m = 0 to get T1. By the claim, T1

is also consistent and it uses at most finitely many constants from C. And so
we can again apply the definition of Tm+1, this time with m = 1. This process
generates the sequence T0 ⊂ T1 ⊂ T2,

We now define the V+-theory T+. Let T+ be the set of all V+-sentences ϕ
that occur in Ti for some i. Put another way, T+ is the union of all of the Tis.

150 Properties of first-order logic

Put yet another way T+ is the limit of the sequence T0,T1,T2, . . . If we continue
this process forever, then T+ is the end result.

We must verify that T+ has all of the desired properties. First of all,
T+ is consistent. To see this, let ∆ be any finite subset of T+. Then ∆ is
a subset of Tm for some m. Since Tm is consistent, so is ∆. So every finite
subset of T+ is consistent. If T+ were inconsistent, then we could derive
a contradiction from T+. Since formal proofs are finite, we could derive a contra-
diction from a finite subset of T+. Since every finite subset of T+ is consistent,
so is T+.

So T+ is a theory. We next show that T+ is a complete theory. Let ϕ be
an arbitrary V+-sentence. Then ϕ is ϕi for some i. Since either ϕi or ¬ϕi is in
Ti ⊂ T+, T+ is complete.

Finally, we must show that T+ has Properties 1 and 2. Since T0 = Γ, every
sentence of Γ is in T+. So T+ has Property 1. To show that T+ has Property 2,
let ∃xθ(x) be a V+-sentence in T+. This sentence is ϕm+1 for some m. Since this
sentence is in T+, Tm ∪ {¬ϕm+1} is inconsistent. In this case, Tm+1 is defined
as Tm ∪ {ϕm+1} ∪ {θ(ci)} for some constant ci. So θ(ci) is in T+ and T+ has
Property 2.

Having successfully defined T+, we next define a V+-structure M+ that
models T+. The underlying set U+ of M+ is a set of variable-free V+-terms.
Let t1 and t2 be two V+-terms that do not contain variables. We say t1 and
t2 are the “same” if T+ says they are. That is, t1 and t2 are the same if and
only if T+ � t1 = t2. (Note that, since T+ is complete, either T+ � t1 = t2 or
T+ � ¬(t1 = t2).) Let U+ be such that every variable-free V+-term is the same
as some term in U+ and no two terms of U+ are the same. So if t1 and t2 are
the same, then U+ does not contain both of them,it contains exactly one term
that is the same as these terms.

To complete our description of M+, we must say how M+ interprets V+.
Since the elements of U+ are V+-terms, there is a natural interpretation. For
any constant c ∈ V+, there exists a unique term t ∈ U+ such that T+ � t = c.
The structure M+ interprets the constant c as the element t in its underlying
set. Moreover, M+ interprets the relations and functions of V+ in the manner
described by T+. More precisely,

• for any n-ary relation R ∈ V+ and any n-tuple t̄ of elements from U+,
M+ |= R(t̄) if and only if T+ � R(t̄), and

• for any n-ary function f ∈ V+, any element s ∈ U+, and any n-tuple t̄ of
elements in U+, M+ |= f(t̄) = s if and only if T+ � f(t̄) = s.

This completes our description of M+.

Properties of first-order logic 151

Claim For any V+-sentence ϕ, M+ |= ϕ if and only if T+ � ϕ.

Proof Since every first-order sentence is equivalent to a sentence that uses only
the fixed symbols ¬, ∧, ∃, and = (and neither ∨, ←, ↔, nor ∀), we may assume
with no loss of generality that these are the only fixed symbols occurring in ϕ.
We proceed by induction on the total number of occurrences of ¬, ∧, and ∃ in ϕ.

If ϕ has no occurrences of these three fixed symbols, then ϕ must be atomic.
In this case, M+ |= ϕ if and only if T+ � ϕ by the definition of M+.

Suppose now that ϕ has a total of m + 1 occurrences of ¬, ∧, and ∃. Our
induction hypothesis is that the claim holds for any sentence having m or fewer
occurrences of these symbols.

If ϕ has the form ψ∧ θ, then T+ � ϕ if and only if both T+ � ψ and T+ � θ
(since T+ is a complete theory). By our induction hypothesis, this happens if
and only if M+ models both ψ and θ and, therefore, ϕ as well.

If ϕ has the form ¬ψ, then T+ � ϕ if and only if ψ is not in T+ (since T+

is a complete theory). By our induction hypothesis, this happens if and only if
M+ does not model ψ. By the semantics of ¬, M+ does not model ψ if and only
if M+ |= ϕ.

Lastly, suppose that ϕ has the form ∃xθ(x). By Property 2 and our definition
of U+, T+ � ϕ if and only if T+ � θ(s) for some term s in U+ (since T+

is a complete theory). By our induction hypothesis, T+ � θ(s) if and only if
M+ |= θ(s). Finally, by the semantics of ∃, M+ |= θ(s) for some term s ∈ U+ if
and only if M+ |= ϕ.

This completes the proof of the claim.
It follows from this claim that M+ |= T+. Hence, we have demonstrated a

model for Γ as was required.

Corollary 4.3 Let Γ be a countable set of formulas. If Γ is consistent, then Γ has
a countable model.

Proof The structure M+ from the proof of Theorem 4.2 is countable.

The following corollary is a countable version of the Compactness theorem
for first-order logic.

Corollary 4.4 A countable set of formulas is satisfiable if and only if every finite
subset is satisfiable.

Proof Let Γ be a countable set of formulas. We prove that Γ is unsatisfiable if
and only if there exists a finite subset of Γ that is unsatisfiable. Clearly, if there
exists a finite subset of Γ that is not satisfiable, then Γ is not satisfiable either.
So suppose Γ is not satisfiable. By Theorem 4.2, Γ is inconsistent. That is, Γ �⊥

152 Properties of first-order logic

for some contradiction ⊥. Since formal proofs are finite, ∆ �⊥ for some finite
subset ∆ of Γ. By Theorem 3.4, ∆ |=⊥ and ∆ is unsatisfiable.

The following corollary is a countable version of the Completeness theorem
for first-order logic.

Corollary 4.5 For any countable set of formulas Γ, Γ � ϕ if and only if Γ |= ϕ.

Proof If Γ � ϕ, then Γ |= ϕ by Theorem 3.4. Conversely, suppose that Γ |= ϕ.
Then Γ ∪ {¬ϕ} is unsatisfiable. By Theorem 4.2, Γ ∪ {¬ϕ} is inconsistent.
That is,

Γ ∪ {¬ϕ} �⊥

for some contradiction ⊥. By Contrapositive,

Γ ∪ {T} � ¬¬ϕ,

where T is the tautology ¬ ⊥. Finally,

Γ � ϕ

by the Tautology rules and Double negation.

All of the results of this section can be extended to include uncountable
sets of sentences. We state and prove both the Compactness theorem and
the Completeness theorem in their full generality in Section 4.3. This requires
familiarity with cardinal numbers.

4.2 Cardinal knowledge
We return to our discussion of infinite sets. In Section 2.5, we defined what
it means for two sets to have the “same size.” We now introduce numbers to
represent the size of a set. These numbers are called cardinals and the size of
a set is called the cardinality of the set. If a set is finite, then its size is some
natural number (or zero if the set is empty). So each natural number is a cardinal.
The Hebrew letter ℵ (aleph) is used with subscripts to denote infinite cardinals.
The smallest infinite cardinal is ℵ0. This is the cardinality of the set N and,
therefore, of every countably infinite set.

The cardinality of set A is denoted |A|. In Section 2.5 we made the assump-
tion that for any sets A and B, either |A| ≤ |B| or |B| ≤ |A|. This assumption
allows us to list the cardinals in ascending order as follows:

0, 1, 2, 3, . . . ,ℵ0,ℵ1,ℵ2, . . .

Properties of first-order logic 153

The cardinals ℵ1, ℵ2, and beyond are uncountable cardinals. We showed that
the set of real numbers is uncountable in Section 2.5. This raises a new question:
where in the above list does |R| fall? Is it equal to ℵ1 or some other uncountable
cardinal? We address this question and state some surprising results at the end
of the present section. As we shall see, it is possible that the cardinality of the
reals is bigger than ℵn for each natural number n. The above list of cardinals is
only a partial list. To extend this list we must discuss ordinal numbers.

4.2.1 Ordinal numbers. There are two types of numbers: cardinals and ordin-
als. Whereas cardinals regard quantity, ordinals regard the length of an ordered
list. The difference between cardinals and ordinals is the difference between 7 and
7th. This distinction is mere pedantry for finite numbers. For infinite numbers,
however, the distinction between cardinals and ordinals is essential.

Example 4.6 Consider the following ordered lists of natural numbers:

A = {1, 2, 3, . . .}
B = {2, 3, 4, . . .} ∪ {1}
C = {3, 4, 5, . . .} ∪ {1, 2}
D = {1, 3, 5, 7, . . .} ∪ {2, 4, 6, 8, . . .}.

As sets, each of these is identical to N. The cardinality of each of these
sets is ℵ0. However, the order in which these sets are listed differs. In B, the
number 1 follows infinitely many numbers. In this sense, B is longer than A.
Likewise C is longer than B and D is the longest of the four lists. Ordinal
numbers recognize this distinction. The ordinal number ω describes the length
of the natural numbers with the usual order. So ω describes the ordered set A.
The length of B is denoted ω+1. Likewise, the ordinal ω+2 describes C. Finally,
the ordinal representing the length of D is ω + ω.

Whereas every set has a cardinality, not every set has an ordinality. Ordin-
ality is defined only for sets that are well ordered. A linearly ordered set is a
set X with a binary relation < so that

1. for all a and b in X, exactly one of the following hold: either a < b, b < a, or
a = b, and

2. for all a, b and c in X, if a < b and b < c then a < c.

That is, a linearly ordered set is a set equipped with a notion of “less than”
by which any two nonequal elements can be compared. A well-ordered set is a
linearly ordered set that is ordered in such a way that every nonempty subset
has a least element.

154 Properties of first-order logic

Example 4.7 The natural numbers N with the usual ordering is a well ordered
set. Any given set of natural numbers must contain a smallest number. The
rational numbers Q with the usual ordering is a linearly ordered set that is not
well ordered. To see this, consider the set {1/n |n ∈ N}. This subset of the
rational numbers does not contain a smallest element.

Any finite linearly ordered set is well ordered. The ordinality of a finite
set does not depend on the particular order of the set. If ten people are stand-
ing in a queue, then, regardless of their arrangement, one thing is certain: the
tenth person is last. As Example 4.6 demonstrates, the same cannot be said for
infinite sets.

Definition 4.8 Let A be a finite well ordered set. The ordinality of A is the same
as the cardinality of the set.

So the ordinals, listed in ascending order, begin with the finite ordinals
0, 1, 2, 3, To continue the list we apply the following rule.

Given any nonempty set of ordinals, there exists a least ordinal greater than
each ordinal in that set.

All ordinals are generated by repeated application of this single rule. The
least ordinal greater than each finite ordinal is denoted by the Greek letter
ω (omega). So ω is the smallest infinite ordinal. This is the ordinality of N

with the usual ordering. The least ordinal greater than ω is denoted ω + 1.
The least ordinal greater than ω + 1 is ω + 2. These ordinals were illustrated in
Example 4.6.

For any ordinal α, the least ordinal greater than α is called the successor of
α and is denoted α + 1. Let A be a well ordered set having ordinality α. Then
α + 1 is the ordinality of the well ordered set A ∪ {b} where b is a new element
(not in A) that is greater than each element of A. Every ordinal has a successor,
but not every ordinal has an immediate predecessor. An ordinal that has an
immediate predecessor is called a successor ordinal. A nonzero ordinal that is
not the successor of any ordinal is called a limit ordinal. For example, ω is the
smallest limit ordinal.

The ordinals have a natural order. For any ordinal α, the successor of α and
all subsequent ordinals are greater than α. We let < denote this order and refer
to this as the usual order for the ordinals.

Proposition 4.9 Any set of ordinals with the usual order is a well ordered set.

Proof Let A be a set of ordinals. It is clear that A is a linearly ordered set. To
show that it is a well ordered set, we must show that any nonempty subset X
of A contains a least element. If X happens to contain 0, then X certainly has
a least element. So suppose that 0 �∈ X. Let L be the set of all ordinals that are

Properties of first-order logic 155

less than every ordinal in X. Since 0 �∈ X, L is nonempty. So there exists a least
ordinal greater than each ordinal in L. This is the least ordinal in X.

Since the set of all ordinals less than α is well ordered, it has an ordin-
ality. We naturally define the ordinality of this set to be α. For example, the
set {0, 1, 2, 3} of ordinals less than 4 has ordinality (and cardinality) 4. More
generally, we now define the ordinality of an arbitrary well ordered set.

Definition 4.10 The well ordered set A has ordinality α if there exists a one-to-
one correspondence f from A onto the set {β |β < α} that preserves the order.
By “preserves the order” we mean that, for any x and y in A, x < y if and only
if f(x) < f(y).

This is an unambiguous definition of ordinality that agrees with all of the
facts we have previously stated about ordinality. (In particular, the reader can
verify the ordinalities stated in Example 4.6.)

The ordinal α is identified with the set {β |β < α}. Clearly, any ordinal α
uniquely determines the set {β |β < α}. Conversely, given {β |β < α}, we can
define α as the least ordinal greater than each ordinal in this set. In light of this
association, we consider α and {β |β < α} to be interchangeable entities. So the
ordinal 4 is the set {0, 1, 2, 3}. The purpose of this is to facilitate our notation. In
particular, we write |α| to denote the cardinality of the set {β |β < α}. We refer
to α as being countable or uncountable depending on whether |α| is countable or
uncountable.

Whereas there is only one countably infinite cardinal, there are many count-
ably infinite ordinals (see Exercise 4.21). We proceed now to list some countable
ordinals. The first ordinal is 0. After 0, we have the successors 1,2,3. . . followed
by the limit ordinal ω. This is then followed by ω+1, ω+2, ω+3, and so forth.
The least ordinal greater than each ordinal in the set {ω+n |n ∈ N} is the limit
ordinal ω+ω also known as ω ·2. This has successor ω ·2+1 which has successor
ω ·2+2. Continuing in this manner we arrive at the limit ordinals ω ·3, ω ·4, and
so forth. The least ordinal greater than each ordinal in the set {ω · n |n ∈ N} is
the ordinal ω · ω also known as ω2. Likewise, ω3, ω4, and the limit ωω are each
ordinals as are ωωω

and

ωωωωωω

.

Each of these ordinals is countable. The least ordinal greater than each countable
ordinal is denoted ω1. The cardinal ℵ1 is defined as |ω1|. Likewise, ω2 denotes
the least ordinal greater than each ordinal of cardinality ℵ1. We define ℵ2 as |ω2|.
Whereas ℵ2 is the cardinal immediately following ℵ1, ω2 does not immediately
follow ω1. Rather, ω1 is followed by ω1 + 1, ω1 + 2, and so forth.

The list of ordinals cannot be exhausted. Given any set of ordinals, there
exist ordinals greater than all of those in that set. So it is nonsense to speak

156 Properties of first-order logic

of the totality of all ordinals. When we refer to the list of ordinals, it should
be understood that this is not a complete list. There necessarily exist ordinals
beyond those in any list, no matter how extensive. In particular, we forbid
ourselves from referring to the set (or list) of all ordinals. Although it is alluring
terminology, “the set of all ordinals” does not make sense.

We conclude our discussion of ordinal numbers by introducing the Well
Ordering Principle. Consider the set Q. With its usual order, this set does not
have an ordinality. As demonstrated in Example 4.7, this is not a well ordered
set. With another order, however, Q is a well ordered set. Since Q has the same
size as N, we can enumerate Q as {q1, q2, q3, . . .}. The rational numbers with this
order has ordinality ω. As Example 4.6 shows, Q may have different ordinalities
when arranged in a different order. Likewise, we can impose a well ordering on
any set. This is the Well Ordering Principle

Proposition 4.11 (Well Ordering Principle) Any set X can be enumerated as
{xβ |β < α} for some ordinal α. Moreover, we may require that α be the least
ordinal such that |α| = |X|.
Proof First we show that there exists an order < that makes X a well ordered
set. Since there exist arbitrarily large ordinals, there exists an ordinal γ with
|X| ≤ |γ|. By the definition of |X| ≤ |γ|, there exists a one-to-one function
f from X into {β |β < γ}. For any x and y in X, we define x < y to mean
f(x) < f(y). Since {β|β < γ} is well ordered, so is X with this order. Let α′ be
the ordinality of this well ordered set.

Now consider the set of all ordinals δ with |δ| = |X|. Since it contains α′, this
is a nonempty set of ordinals. By Proposition 4.9, there exists a least ordinal
α in this set. Since |α| = |X|, there exists (by Theorem 2.39), a one-to-one
correspondence g from {β|β < α} onto X. For each ordinal β < α, let xβ denote
g(β). This provides the required enumeration {xβ |β < α} of X.

The Well Ordering Principle is in fact equivalent to the statement that every
set has a cardinality. It is also equivalent to our earlier assumption that, for any
sets A and B, either |A| ≤ |B| or |B| ≤ |A|. Each of these statements is equivalent
to an axiom of mathematics known as the Axiom of Choice. This axiom can be
stated as follows: the Cartesian product of nonempty sets is nonempty. We view
this as a reasonable axiom and employ it without further comment.

4.2.2 Cardinal arithmetic. The list of cardinal numbers begins with

0, 1, 2, 3, . . . ,ℵ0,ℵ1,ℵ2, . . .

We extend this list indefinitely by using ordinal numbers as subscripts.
We define the infinite cardinals by induction on the ordinals. Prior to stat-

ing this definition, we discuss what we mean by “induction on the ordinals.”

Properties of first-order logic 157

This version of induction, known as transfinite induction, can be used to show
that some property P holds for each ordinal α. Like other forms of induction,
transfinite induction consists of two steps: the base step and the induction step.
First, we show that P holds for 0. This is the base step. Second, we show that
if P holds for all β < α, then it holds for α as well. This is the induction step.
If we successfully complete these two steps, then we can rightly conclude that P
does, in fact, hold for each ordinal α (since there is no least ordinal for which
property P does not hold).

Definition 4.12 We define the infinite cardinals by transfinite induction. First
we define (again) ℵ0 to be |N|. Let α be a nonzero ordinal. Suppose that ℵι has
been defined for each ι < α. Let γ be the least ordinal such that |γ| > ℵι for all
ι < α. We define ℵα to be |γ|.

Having defined the cardinal numbers, we now define arithmetic operations
for these numbers. Cardinal arithmetic must not be confused with ordinal arith-
metic. Previous reference was made to ω+ω, ω ·2, and ωω. Since ω is an ordinal,
these are expressions of ordinal arithmetic (each represents a countable ordinal).
We turn now to cardinal arithmetic.

Definition 4.13 Let κ and λ be cardinals. Let A and B be disjoint sets with
|A| = κ and |B| = λ.

• Addition: κ+ λ = |A ∪B|.
• Multiplication: κ · λ = |A×B|.
• Exponentiation: κλ = |F (B,A)| where F (B,A) is the set of all functions
f :B → A having B as a domain and a subset of A as a range.

Note that these definitions are independent of our choice of A and B. The
requirement that A and B are disjoint is needed only for adding finite cardinals.

If κ and λ are finite cardinals, then these definitions correspond to the
familiar notions of addition, multiplication, and exponentiation. We demonstrate
(but do not prove) this fact with an example.

Example 4.14 Let A = {a1, a2, a3} and let B = {b1, b2, b3, b4}.
Addition. We have A ∪ B = {a1, a2, a3, b1, b2, b3, b4}. Clearly |A| + |B| =

3 + 4 = 7 = |A ∪B|.
Multiplication. Recall that A × B is the set {(ai, bj)|1 ≤ i ≤ 3, 1 ≤ j ≤ 4}.

We list the elements of this set as follows:

(a1, b1) (a1, b2) (a1, b3) (a1, b4)

(a2, b1) (a2, b2) (a2, b3) (a2, b4)

(a3, b1) (a3, b2) (a3, b3) (a3, b4).

158 Properties of first-order logic

Observing the above arrangement of the elements in A×B, we see that the size
of A×B is 3 · 4 = 12. So |A| · |B| = 3 · 4 = 12 = |A×B|.

Exponentiation. The set F (B,A) consists of all functions f :B→A. Each
function is determined by the values of f(b) for b ∈ B. For each of the four
elements in B, there three possible values for f(b) in A. It follows that there are
3 · 3 · 3 · 3 = 34 functions in F (B,A). We see that |A||B| = 34 = 81 = |F (B,A)|.

So for finite cardinals, addition, multiplication, and exponentiation are noth-
ing new. We now consider these operations for infinite cardinals. It turns out that
adding and multiplying two infinite cardinals are remarkably easy tasks (easier
than adding and multiplying finite cardinals). In contrast, exponentiation for
infinite cardinals is remarkably hard. We deal with the two easier operations first.
All there is to know about the addition and multiplication of infinite cardinals
stems from the following result.

Theorem 4.15 Let κ be an infinite cardinal. Then κ · κ = κ.

Proof We prove that this holds for κ = ℵα by transfinite induction on α. If
α = 0, then this follows from Example 2.35 where it was shown that |N×N| = |N|.

Suppose now that κ = ℵα for α > 0. Our induction hypothesis is that λ ·λ =
λ for all infinite cardinals λ smaller than κ.

Let δ be the least ordinal such that |δ| = κ. We regard δ as the set of ordinals
less than δ. By the definition of cardinal multiplication, κ ·κ is the cardinality of
the set δ × δ of ordered pairs of ordinals less than δ. We show that |δ × δ| = |δ|
by arranging the elements of δ × δ into a well ordered set having ordinality δ.

Now, δ × δ is well ordered by the lexicographical order defined as follows:
(β1,β2) precedes (γ1, γ2) lexicographically if and only if either β1 < γ1 or both
β1 = γ1 and β2 < γ2 where < is the usual order for ordinals. This order is
analogous to the alphabetical order of words in a dictionary. The ordinality of
this well ordered set is δ2 which is bigger than δ.

We now impose a new order on δ × δ. We claim that the new order makes
δ×δ a well ordered set having ordinality δ. We denote this order by � and define
it as follows:

(β1,β2) � (γ1, γ2)

if and only if

either (β1,β2) precedes (γ1, γ2) lexicographically

OR

γ2 is larger than both β1 and β2.

Properties of first-order logic 159

The set δ×δ with the order � is a well ordered set. We leave the verification of
this as Exercise 4.18. This is also true of the lexicographical order. The crucial
feature of � is that, with this order, each element of δ × δ has fewer than κ
predecessors. This is not true of the lexicographical order.

Let (β1,β2) be an arbitrary element of δ × δ. To see that this element
has fewer than κ predecessors, first note that (β1,β2) � (β,β) where β is the
larger of β1 and β2. Further, (γ1, γ2) does not preceed (β,β) if either γ1 or γ2
is larger than β. Because of this, the predecessors of (β1,β2) are contained in
(β + 1) × (β + 1). For example, suppose (β1,β2) = (1, 3). Then (β1,β2) � (3, 3).
The set of all elements of δ× δ that preceed (3, 3) are contained in the following
square:

(0, 0) (0, 1) (0, 2) (0, 3)

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3).

Note that this is the set 4 × 4 (recalling that the ordinal 4 is identified with
{0, 1, 2, 3}). So, with the order �, there are fewer than |4 × 4| = 16 predecessors
of the ordered pair (3, 3). Likewise, for any β < δ, there are fewer than |(β + 1)
×(β + 1)| elements of δ × δ that preceed (β,β) in the order �.

Since δ is least such that |δ| = κ and β < δ, we have |β + 1| = |β| < κ.
By our induction hypothesis, |(β + 1) × (β + 1)| = |β + 1|. It follows that each
element of δ × δ has fewer than κ predecessors in the order � as was claimed.

Let γ denote the ordinality of δ × δ with �. If γ were larger than δ, then
there would necessarily exist elements with κ = |δ| predecessors. Since we have
shown that this is not the case, we conclude that γ ≤ δ. It follows that κ · κ =
|δ × δ| = |γ| ≤ |δ| = κ. Since it is clear that κ ≤ κ · κ, we have κ · κ = κ as was
desired. By induction, this holds for κ = ℵα for each ordinal α.

Corollary 4.16 Let κ and λ be nonzero cardinals. If either κ or λ is infinite, then
λ · κ is the larger of κ and λ.

Proof Suppose that κ is infinite and λ ≤ κ. We have κ ≤ λ · κ ≤ κ · κ. Since,
κ · κ = κ by Theorem 4.15, we conclude that λ · κ = κ. Likewise, if λ is infinite
and κ ≤ λ, then λ · κ = λ.

Corollary 4.17 Let κ and λ be cardinals. If either κ or λ is infinite, then λ + κ
is the larger of κ and λ.

Proof If one of κ and λ is infinite and the other is finite, then this corollary
follows from Exercise 2.36. So suppose that κ and λ are both infinite. If λ ≤ κ,

160 Properties of first-order logic

then λ+ κ ≤ λ · κ (this is true for any κ and λ with 2 ≤ λ). We have

κ ≤ λ+ κ ≤ λ · κ ≤ κ · κ = κ.

We conclude that each of these inequalities must in fact be equalities. In
particular, λ+ κ = λ · κ = κ. The proof is identical for κ ≤ λ.

We already know how to add and multiply finite cardinals. The previous
corollaries tell us how to add and multiply infinite cardinals: simply take the
larger of the two numbers. So cardinal addition is easy:

5 + 2 = 7, 2 + ℵ0 = ℵ0, ℵ1 + 7 = ℵ1, and ℵ7 + ℵ23 = ℵ23.

Cardinal multiplication is equally easy:

5 · 2 = 10, 2 · ℵ0 = ℵ0, ℵ1 · 7 = ℵ1, and ℵ7 · ℵ23 = ℵ23.

Note that the same result is obtained either by adding or by multiplying two
infinite cardinals. This is also true for any finite number of infinite cardinals. If we
have n cardinals (for n ∈ N) at least one of which is infinite, then whether we add
them together or multiply them, we obtain the largest of the n cardinals. This
is no longer true if we have infinitely many cardinals. We extend the definitions
of addition and multiplication to infinite sums and products in an obvious way.

Definition 4.18 Let α be an infinite ordinal and let {κι | ι < α} be a set of
cardinals. For each ι < α, let Aι be a set of cardinality κι. We assume that the
Aιs are disjoint from each other.

• Infinite sums:
∑

ι<α κι = |⋃ι<αAι|.
• Infinite products: Πι<ακι = |Πι<αAι| where Πι<αAι denotes the Cartesian

product A0 ×A1 ×A2 × · · ·

Just as multiplication can be viewed as repeated applications of addition,
exponentiation can be viewed as repeated applications of multiplication. That
is, κ+ κ+ κ+ . . .︸ ︷︷ ︸

λ times

= κ · λ and κ · κ · κ · . . .︸ ︷︷ ︸
λ times

= κλ.

We leave the verification of this as Exercise 4.20. Whereas an infinite sum
is as easy as multiplication, an infinite product is as difficult as exponentiation.

We turn now to cardinal exponentiation.

Proposition 4.19 For any set A, |P(A)| = 2|A|.

Proof Recall that P(A) is the set of all subsets of A. Let F (A, 2) denote the set
of all functions from A to the set {0, 1}. We define a one-to-one correspondence
between P(A) and F (A, 2). Each B in P(A) corresponds to its characteristic

Properties of first-order logic 161

function χB(x) in F (A, 2) defined as follows:

χB(x) =
{

0 if x �∈ B
1 if x ∈ B.

Each set in P(A) uniquely determines its characteristic function and, in the
other direction, each function f in F (A, 2) is the characteristic function of the set
{a ∈ A|f(a) = 1}. It follows that this is a one-to-one correspondence and P(A)
and F (A, 2) have the same size. Since |F (A, 2)| = 2|A|, so does |P(A)| = 2|A|.

Proposition 4.20 For any infinite cardinal κ and any cardinal λ with 2 ≤ λ < κ,
λκ = κκ.

Proof Let A be a set of cardinality κ. Then κκ is the cardinality of the set
of functions from A to A. The graph of any such a function is a subset of
A × A. It follows that κκ ≤ P(A × A). Also, since |A| = |A × A|, we have
|P(A)| = |P(A×A)|. Putting this together we have

2κ ≤ λκ ≤ κκ ≤ |P(A×A)| ≤ |P(A)| = 2κ.

It follows that 2κ = λκ = κκ.

These two propositions reveal some basic facts regarding cardinal exponen-
tiation. Suppose we want to compute λκ for 2 ≤ λ ≤ κ. By the latter proposition,
λκ = 2κ. By the former proposition, this is |P(A)| where |A| = κ. This tells us
that κ < 2κ (by Proposition 2.44), but it does not tell us precisely what 2κ is.

This brings us back to a fundamental question posed at the outset of this
section: how many real numbers are there? By Proposition 2.46, we know that
|R| > ℵ0. Moreover, the proof of Proposition 2.46 shows that R has the same
size as P(ℵ0). So |R| = 2ℵ0 . But the question remains, which cardinal is this?
Does 2ℵ0 equal ℵ1 or ℵ2 or ℵ23 or what?

4.2.3 Continuum hypotheses. How many points lie on a continuous line seg-
ment? We have shown in Proposition 2.42 that the rational number line contains
only countably many points. But this line is not continuous. It has gaps. For
example,

√
2 is not a rational number. So the rational numbers can be split into

the two intervals (−∞,
√

2) and (
√

2,∞). A continuous line cannot be split in
this manner. If a continuous line is split into two sets A and B so that each ele-
ment of A is to the left of each element of B, then this split must occur at some
point of the line. We follow Richard Dedekind and take this as the definition of
continuous.

The continuum problem. Let L be a continuous line segment. We regard
L as a set of points. Does there exist an uncountable subset P of L such that
|P | < |L|?

162 Properties of first-order logic

The real number line is continuous. This is another way of saying that the
reals are order-complete (mentioned in Section 2.4.3). So we may assume that
the line segment L is an interval of real numbers. We showed in Example 2.38
that the interval (0, 1) of real numbers has the same size as R. It follows that
any interval of real numbers has the same size as R. So the continuum Problem
can be rephrased as follows.

The continuum problem. Is there a subset of R that is bigger than Q and
smaller than R?

We know that |R| = 2ℵ0 > ℵ0. The previous question asks if there exist any
cardinals between ℵ0 and 2ℵ0 . That is, is the following true?

The continuum hypothesis. 2ℵ0 = ℵ1.

More generally, is this how cardinal exponentiation behaves for all cardinals?

The general continuum hypothesis. For each ordinal α, 2ℵα = ℵα+1.

As the word “hypothesis” suggests, this statement has neither been proved
nor disproved. Remarkably, it cannot be proved or disproved from the standard
axioms of mathematics. It is independent from these axioms. This has been
proved!

The standard axioms of mathematics are Zermeleo–Frankel set theory with
the previously mentioned Axiom of Choice. These axioms are denoted ZFC. The
study of ZFC is the subject of set theory. Set theory is one branch of logic that
we do not treat in depth in this book. We have touched on the basics of set
theory in Section 2.5 and the present section. We conclude our discussion of set
theory by stating without proof some of the subject’s striking results. References
are provided at the end of the section.

In 1937, Kurt Gödel showed that the general continuum hypothesis is
consistent with ZFC. So this hypothesis cannot be disproved. In 1963, Paul
Cohen showed that there are models of ZFC in which the General Continuum
Hypothesis is false. So this hypothesis cannot be proved from the axioms in
ZFC. Cohen introduced a method known as forcing to obtain his result. Using
this method one can find models of ZFC in which 2ℵ0 = ℵα for any finite ordinal
α (this is true for most infinite ordinals α as well). The question of whether or
not the general continuum hypothesis is true in specific standard models of ZFC
remains unanswered. Indeed, by the results of Gödel and Cohen, such questions
cannot be resolved from the axioms of ZFC alone.

So how many real numbers are there? Or equivalently, how many subsets of
N are there? Although this appears to be a precise and fundamental question,
we cannot provide a definite answer. In the wake of Cohen’s forcing, the pos-
sibilities are endless. Gödel showed that the hypothesis 2ℵ0 = ℵ1 is consistent.

Properties of first-order logic 163

Cohen’s methods show that the hypothesis 2ℵ0 = ℵ23 is also consistent. More
generally, one can use forcing to prove the following result.

Theorem 4.21 (Easton 1970) Let a0 < a1 < a2 < · · · be any increasing
sequence of natural numbers. The assertion that 2ℵα = ℵaα

for each finite ordinal
α is consistent with ZFC.

The possibilities are endless, but not everything is possible. Proved in 1974,
Silver’s theorem restricts the possibilities.

Theorem 4.22 (Silver) If 2ℵα = ℵα+1 for each α < ω1, then 2ℵω1 = ℵω1+1.

Phrased another way, this theorem says it is impossible for the general con-
tinuum hypothesis to hold for all cardinals up to ℵω1 and to fail for ℵω1 . Shelah
later proved that this is also true for ℵω. If 2ℵn = ℵn+1 for all finite n, then
2ℵω = ℵω+1. Whereas Easton showed that we can choose the values of 2ℵn to be
almost anything we want, these choices restrict the possible values of 2ℵω . In fact,
given any sequence a0 < a1 < a2 < · · · as in Easton’s theorem, the possible val-
ues of 2ℵω are bounded. Moreover, the values are uniformly bounded (regardless
of our choice of ais) by the number ℵω4 . This remarkable fact is due to Shelah.

Theorem 4.23 (Shelah) If 2ℵn < ℵω for each finite n, then 2ℵω ≤ ℵω4 .

Not only is this statement consistent with ZFC, it can be proved from the
axioms of ZFC. To say that the proof of this theorem is not within the scope of
this book is an understatement. For proofs of these results, we refer the reader
to books dedicated to set theory. Both [18] and [25] are recommended. Kunen’s
book [25] is an excellent introduction to forcing and contains a proof of Cohen’s
result. Jech’s book [18] contains a proof of Silver’s theorem. Readers who have
a strong background in set theory are referred to Shelah’s book [44] for a proof
of theorem 4.23 (in particular, refer to the section titled “Why in the HELL is
it four?”).

4.3 Four theorems of first-order logic
In this section, we prove four fundamental results for first-order logic. We prove
the Completeness theorem, the Compactness theorem, the Upward Löwenheim–
Skolem theorem, and the Downward Löwenheim–Skolem theorem. The first three
of these four are consequences of the fact that, in first-order logic, every model
has a theory and every theory has a model. In particular, any consistent set of
sentences (any theory) is satisfiable (has a model). This was proved for countable
sets of sentences in Theorem 4.2. The first objective of the present section is to
extend this result to arbitrary sets of sentences.

164 Properties of first-order logic

Suppose that Γ is an uncountable set of sentences. Since there are only
countably many sentences in any countable vocabulary (by Proposition 2.47),
the vocabulary of Γ must be uncountable. Although we have not previously
encountered uncountable vocabularies, such vocabularies naturally arise in model
theory.

Example 4.24 Given any structure M , we may wish to consider the expansion
MC of M to a vocabulary V(M) containing a constant for each element of the
underlying set of M . If M is uncountable, then so is the vocabulary V(M).

In particular, consider the structure R = (R|+, ·,0,1) (the real numbers in
the vocabulary Var of arithmetic). We may want to consider a set of Var-sentences
having parameters from the underlying set R of R. For example, we may want
to study polynomials having real coefficients. Such a set of sentences has vocab-
ulary Var(R) containing a constant for each real number. This is an uncountable
vocabulary.

Example 4.25 We may wish to consider a vector space as a first-order structure.
One basic way of doing this is to use a vocabulary containing the constant 0,
the binary function +, and a unary function mr for each scalar r. Let the set of
vectors serve as the underlying set. Let V be the structure having this underlying
set and interpreting 0 as the zero vector, + as vector addition, and mr as scalar
multiplication by r.

In particular, consider the vector space R
2 of ordered pairs of real numbers.

For this vector space, the scalars are real numbers. Let Vvs be the vocabulary
consisting of the constant 0, the binary function +, and a unary function mr

for each real number r. In this case, V is the Vvs-structure having R
2 as an

underlying set and interpreting 0 as the vector (0, 0), (a, b)+(c, d) as (a+c, b+d),
and mr(a, b) as (ra, rb) for all real numbers a, b, c, d, and r. This is an example
of a basic mathematical structure that requires an uncountable vocabulary.

For any vocabulary V, let ||V|| denote the cardinality of the set of
V-formulas. In Proposition 2.47, it was shown that ||V|| = ℵ0 for any countable
V. The following proposition extends this result to uncountable vocabularies.

Proposition 4.26 For any vocabulary V, ||V|| = |V| + ℵ0.

Proof By Corollary 4.17, |V|+ ℵ0 is the larger of |V| and ℵ0. If V is countable,
then this sum is ℵ0. This agrees with Proposition 2.47. Now suppose |V| = κ for
some uncountable κ. We want to show that ||V|| = κ. For each n ∈ N, let Fn

denote the set of V-formulas having length n. Then |Fn| ≤ κn. By repeatedly
applying Corollary 4.16 we see that κn = κ. So we have

||V|| =

∣∣∣∣∣⋃
n∈N

Fn

∣∣∣∣∣ =
∑
n∈N

|Fn| ≤
∑
n∈N

κn =
∑
n∈N

κ = ℵ0 · κ = κ.

Properties of first-order logic 165

We now prove that every theory has a model. We follow the same Henkin
Construction used to prove Theorem 4.2.

Theorem 4.27 If a set of first-order sentences is consistent, then it is satisfiable.

Proof Let Γ be a consistent set of first-order sentences. If Γ is countable, then Γ
is satisfiable by Theorem 4.2. We generalize the proof of Theorem 4.2 to include
uncountable Γ.

Suppose that the cardinality κ of Γ is uncountable.
Let α be the least ordinal with |α| = κ.
Let V+ = V ∪ {cι|ι < α}, where V is the vocabulary of Γ and each cι is a
constant that does not occur in V.
Let C be the set {cι|ι < α}.
By Corollary 4.17, |V+| = |V| + |C| = κ + κ = κ. Moreover, by

Proposition 4.26, the set of all V+-sentences also has cardinality κ. By the Well
Ordering Principle, the set of all V+-sentences can be enumerated as {ϕι|ι < α}.

As in the proof of Theorem 4.2, our goal is to define a complete V+-theory
Tα with the following two properties.

Property 1 Every sentence of Γ is in Tα.

Property 2 For every V+-sentence in Tα of the form ∃xθ(x), the sentence θ(c)
is also in Tα for some c ∈ C.

Prior to defining Tα, we inductively define V+-theories Tι for ι < α. Let T0

be Γ. Now suppose that, for some nonzero β < α, Tγ has been defined for each
γ < β. We want to define Tβ .

We assume that for each γ < β, Tγ uses at most |γ| + ℵ0 of the constants
in C. Since |γ| + ℵ0 < κ = |C|, most of the constants in C are not used in Tγ

(here we are using the fact that κ is uncountable). Note that T0 is a V-theory
and so contains none of these constants. We must define Tβ so that Tβ uses at
most |β| + ℵ0 of the constants in C.

We now define Tβ . There are two possibilities: either β is a successor ordinal
or it is not.

If β is a successor ordinal, then β = γ+1 for some γ. By assumption, Tγ has
been defined. Consider the V+-sentence ϕγ . We define Tβ = Tγ+1 in the same
manner that Tm+1 was defined in the proof of Theorem 4.2.

(a) If Tγ ∪ {¬ϕγ} is consistent, then define Tγ+1 to be Tγ ∪ {¬ϕγ}.
(b) If Tγ ∪ {¬ϕγ} is not consistent, then Tγ ∪ {ϕγ} is consistent. We divide this

case into two subcases.
(i) If ϕγ does not have the form ∃xθ(x) for some formula θ(x), then just

let Tγ+1 be Tγ ∪ {ϕγ}.

166 Properties of first-order logic

(ii) Otherwise ϕγ has the form ∃xθ(x). In this case let Tγ+1 be Tγ ∪ {ϕγ} ∪
{θ(c)} where c is a constant in C that does not occur in Tγ ∪{ϕγ}. Since
Tγ contains fewer than κ constants of C, such a c exists.

So if β = γ + 1, then Tβ = Tγ+1 is obtained by adding at most a sentence
or two to Tγ . Since Tγ contains at most |γ| + ℵ0 of the constants in C, so does
Tβ . Moreover, Tβ can be shown to be consistent in the same manner that Tm+1

was shown to be consistent in the first claim in the proof of Theorem 4.2.
Now suppose that β is not a successor ordinal. Then it is a limit ordinal.

In this case, define Tβ as the set of all V+-sentences that occur in Tγ for some
γ < β. Again, we claim that Tβ is consistent and contains at most |β| + ℵ0 of
the constants in C.

Claim 1 Tβ is consistent.

Proof Suppose Tβ is not consistent. Then Tβ �⊥ for some contradiction ⊥. Since
formal proofs are finite, ∆ �⊥ for some finite subset ∆ of Tβ . Since it is finite,
∆ ⊂ Tγ for some γ < β. But this contradicts our assumption that any such Tγ

is consistent. We conclude that Tβ must be consistent as was claimed.

Claim 2 Tβ contains at most |β| of the constants in C.

Proof For each γ < β, let Cγ be the set of constants in C that occur in Tγ . Then
the constants occurring in Tβ are

⋃
γ<β Cγ . By assumption, |Cγ | ≤ |γ| + ℵ0 ≤

|β|+ℵ0. Since we are assuming that β is a limit ordinal, β is infinite. In particular,
|β| + ℵ0 = |β|. So each |Cγ | ≤ |β|. It follows that the number of constants from
C occurring in Tβ is∣∣∣∣∣∣

⋃
γ<β

Cγ

∣∣∣∣∣∣ ≤
∑
γ<β

|Cγ | ≤
∑
γ<β

|β| = |β| · |β| = |β|.

This completes the proof of the claim.
So for each β < α we have successfully defined a V+-theory Tβ . These have

been defined in such a way that Tβ1 ⊂ Tβ2 for β1 < β2 < α.
We now define Tα as the set of all V+-sentences that occur in Tβ for some

β < α. Like each Tβ , Tα is a theory. This can be proved in the same manner as
Claim 1 above. Unlike Tβ for β < α, Tα is a complete theory. This is because
each V+-sentence is enumerated as ϕι for some ι < α. Either ϕι or ¬ϕι is in
Tι+1 and, hence, in Tα as well.

Since Γ = T0 ⊂ Tα, Tα has Property 1. Moreover, part (b)ii of the definition
of Tγ+1 ⊂ Tα guarantees that Tα has Property 2. It was shown in the proof of
Theorem 4.2 that any complete theory with Property 2 has a model. Therefore
Tα has a model and Γ is satisfiable.

Properties of first-order logic 167

We have now established that a set of sentences is consistent if and only if
it is satisfiable (Theorems 4.1 and 4.27). Every model has a theory and every
theory has a model. With this fact at hand, we can prove the completeness and
compactness of first-order logic.

Theorem 4.28 (Completeness) For any sentence ϕ and any set of sentences Γ,
Γ |= ϕ if and only if Γ � ϕ.

Proof That Γ � ϕ implies Γ |= ϕ is Theorem 3.4.
Conversely, suppose Γ |= ϕ. Then Γ ∪ {¬ϕ} does not have a model. Since

every theory has a model, Γ∪{¬ϕ} must not be a theory. That is, Γ∪{¬ϕ} �⊥ for
some contradiction ⊥. By the Contradiction rule (Example 1.33), we can derive
ϕ from Γ∪ {¬ϕ}. Since we can also derive ϕ from Γ∪ {ϕ} (by Assumption), we
have Γ � ϕ by Proof by cases (Example 1.35).

Theorem 4.29 (Compactness) Let Γ be a set of sentences. Every finite subset
of Γ is satisfiable if and only if Γ is satisfiable.

Proof Any model of Γ is a model of every finite subset of Γ. We must prove
the opposite. Suppose that Γ has no model. Then Γ must not be a theory. This
means that we can derive a contradiction ⊥ from Γ. Since derivations are finite,
we can derive ⊥ from a finite subset of Γ. So if Γ is unsatisfiable, then some
finite subset of Γ must be unsatisfiable.

Theorem 4.30 (Upward Löwenheim–Skolem) If a theory T has an infinite
model, then T has arbitrarily large models.

Proof Let M be an infinite model of T . Let κ be any cardinal. We show that
there exists a model N of T with |N | ≥ κ. To do this, we expand the vocabulary
V of T by constants. Let C be a set of constants such that |C| = κ and each
constant in C does not occur in V. Let V+ denote V ∪ C.

Let Γ be the set of all V+-sentences having the form ¬(c = d) where c and
d are distinct constants from C. Any V+-structure that models Γ must have at
least κ elements in its underlying set.

We claim that T ∪ Γ is satisfiable.
If κ ≤ |M |, then T ∪ Γ is satisfiable by an expansion of M . If M+ is any

expansion of M that interprets the constants of C as distinct elements of the
underlying set of M , then M+ |= T ∪ Γ. In particular, if κ is finite, then, since
M is infinite, such an M+ exists.

If κ is bigger than |M |, then no expansion of M can model Γ. It is still the
case, however, that T ∪ Γ is satisfiable. Any finite subset of T ∪ Γ will contain
only finitely many constants from C. It follows that any finite subset of T ∪Γ is
satisfiable by an expansion of M . By compactness, T ∪ Γ is satisfiable.

Let N model T ∪ Γ. Since N |= Γ, |N | ≥ κ as was required.

168 Properties of first-order logic

The Downward Löwenheim–Skolem theorem, unlike the Upward
Löwenheim–Skolem Theorem, is not an immediate consequence of the Compact-
ness theorem. Rather, this theorem follows from the Tarski–Vaught criterion for
elementary substructures. This criterion along with the Downward Löwenheim–
Skolem theorem could have been stated and proved immediately following
the definition of elementary substructure in Section 2.6.2. Recall that for
V-structures M and N with M ⊂N , M is an elementary substructure of N
means that M |= ϕ(ā) if and only if N |= ϕ(ā) for any V-formula ϕ(x̄) and
tuple ā of elements from the underlying set of M . We use M ≺ N to denote this
important concept. The Tarski–Vaught criterion states that, to show M ≺ N , it
suffices to only consider formulas ϕ(x̄) that begin with ∃.

Proposition 4.31 (The Tarski–Vaught criterion) Let M and N be V-structures
with N ⊂M . Suppose that for any V-formula ψ(x̄, y) and any tuple ā of elements
from the underlying set of N , the following is true:

M |= ∃yψ(ā, y) implies N |= ∃yψ(ā, y).

Then N ≺M .
Proof To show that N ≺M , we must show that, for every V-formula ϕ(x̄) and
every tuple ā of elements from the underlying set UN of N :

N |= ϕ(ā) if and only if M |= ϕ(ā).

This can be done by induction on the complexity of ϕ. It is true for atomic ϕ
since N ⊂M . Clearly, if it is true for ϕ, then it is true for any formula equivalent
to ϕ. Now suppose it is true for formulas ψ and θ. That is, suppose

N |= ψ(ā) if and only if M |= ψ(ā), and

N |= θ(ā) if and only if M |= θ(ā)

for any tuple ā of elements of UN . This is our induction hypothesis. We must
show that this is also true for ψ ∧ θ, ¬θ, and ∃yθ. The first two of these follow
from the semantics of ∧ and ¬. Now suppose that ϕ(x̄) has the form ∃yθ(x̄, y).

Suppose that N |= ∃yθ(c̄, y) for some tuple c̄ of elements from UN .
By the semantics of ∃, N |= θ(c̄, b) for some b ∈ UN .
By the induction hypothesis, M |= θ(c̄, b).
Again by the semantics of ∃, M |= ∃yθ(c̄, y).
We must also show that the reverse is true: that if M |= ∃yθ(c̄, y), then

N |= ∃yθ(c̄, y). But this is exactly the condition stipulated in the proposition.
If this condition holds, then we can complete the induction step and conclude
that N |= ϕ(ā) if and only if M |= ϕ(ā) for all V-formulas ϕ(x̄) as we wanted to
show.

Properties of first-order logic 169

The Tarski–Vaught criterion, as stated in the previous proposition, can be
strengthened. We do not needN ⊂M in the hypothesis. ThatN is a substructure
of M follows from the other hypotheses of Proposition 4.31.

Corollary 4.32 Let M be a V-structure. Let U be a subset of the underlying set
UM of M . Suppose that for any V-formula ϕ(x̄, y) and any tuple ā of elements
from U , if M |= ∃yϕ(ā, y), then M |= ϕ(ā, b) for some b ∈ U . Then U is the
underlying set of an elementary substructure of M .

Proof Recall that not every subset of UM may serve as the universe for a sub-
structure ofM . We must show that U contains each constant and is closed under
each function of V. Given any constant c in V,M |=∃x(x = c). It follows from our
hypothesis on U thatM |= (b= c) for some b ∈ U . Now let f be an n-ary function
in V and let ā be any n-tuple of elements from U . Since M |= ∃x(f(ā) = x),
M |= (f(ā) = b) for some b ∈ U . So it makes sense to define N as the structure
having underlying set U that interprets the symbols of V in the same manner as
M . Since it interprets the constants and functions as well as the relations of V, N
is a V-structure. Moreover, since N ⊂M , we have N ≺M by the Tarski–Vaught
criterion.

Theorem 4.33 (Downward Löwenheim–Skolem) Let M be a structure hav-
ing vocabulary V and underlying set UM . For any X ⊂UM , there exists an
elementary substructure N of M such that

1. X is a subset of the universe of N , and

2. |N | ≤ |X| + ||V||.

Proof We define a sequence X1 ⊂ X2 ⊂ X3 ⊂ · · · of subsets of UM .
Let X1 = X.
Now suppose Xm has been defined for some m ∈ N. Suppose that |Xm| ≤

|X|+ ||V||. Let V(Xm) be the expansion of V obtained by adding new constants
for each element of Xm. Let Mm be the natural expansion of M to this vocab-
ulary. Let Em be the set of all V(Xm)-sentences of the form ∃xϕ(x) such that
Mm |= ∃xϕ(x).

Let α be the least ordinal such that |α| = |Em|. By the Well Ordering
Principle, Em can be enumerated as {∃xϕι(x)|ι < α}. For each ι < α, there
exists an element aι in UM such that M |= ϕ(aι). Let A = {aι|ι < α}. Note that
|A| ≤ |E| ≤ ||V||.

Let Xm+1 be Xm ∪A. We have

|Xm+1| = |Xm ∪A| ≤ |Xm| + |A| ≤ (|X| + ||V||) + (||V||) = |X| + ||V||.
Now let U =

⋃
m<ωXm.

170 Properties of first-order logic

Claim 1 |U | ≤ |X| + ||V||.
Proof We have

|U | =

∣∣∣∣∣ ⋃
m<ω

Xm

∣∣∣∣∣ ≤ ∑
m<ω

|Xm| ≤
∑
m<ω

(|X| + ||V| |) = (|X|+||V||)·ℵ0 = |X|+||V||.

Claim 2 For any V-formula ϕ(x̄, y) and any tuple ā of elements from U , if
M |= ∃yϕ(ā, y), then M |= ϕ(ā, b) for some b ∈ U .

Proof Let ϕ(x̄, y) be any V-formula. Suppose thatM |= ∃yϕ(ā, y) for some tuple
ā of elements from U . Then ā must be a tuple of elements from Xm for some m.
It follows that ∃yϕ(ā, y) is in Em. By the definition of Xm+1, M |= ϕ(ā, b) for
some b ∈ Xm+1 ⊂ U .

By Corollary 4.32, U is the underlying set of an elementary substructure N
of M . We have both X ⊂ U and |N | ≤ |X| ∪ ||V|| as was required.

Corollary 4.34 Let T be a theory having an infinite model. Then T has a model
of size κ for each infinite cardinal κ with κ ≥ |T |.

Proof We want to show that there exists a model M of T with |M | = κ.
By the Upward Löwenheim–Skolem theorem, there exists a model N of T with
|N | ≥ κ. Let X be a subset of the universe of N with |X| = κ. By the Downward
Löwenheim–Skolem theorem, there exists an elementary substructure M of N
such that X is contained in the universe of M and |M | ≤ |X| + ||V|| where V is
the vocabulary of T . Moreover, ||V|| ≤ |T | by Exercise 4.17. Since |T | ≤ κ, we
have ||V|| ≤ κ = |X|. It follows that |X|+ ||V|| = |X| and |M | ≤ |X|. Since X is
a subset of the universe of M , |M | = |X| = κ.

4.4 Amalgamation of structures
In first-order logic, we can amalgamate many structures into one. By
“amalgamate” we simply mean to combine in some manner. There are vari-
ous ways to make this idea precise. An amalgamation theorem of first-order logic
is a theorem that can be diagramed as follows:

D

↗ ↖
M1 M2

↖ ↗
C

In this diagram, M1 and M2 are given first-order structures, C is a set, and
f1 :C → M1 and f2 :C → M2 are one-to-one functions having C as a domain.

Properties of first-order logic 171

An amalgamation theorem states that given these structures, sets, and functions,
there exists structure D and functions g1 :M1 → D and g2 :M2 → D so that
g1(f1(c)) = g2(f2(c)) for each c ∈ C. That is, given the bottom half of this
diagram, an amalgamation theorem asserts the existence of the top half.

We prove several amalgamation theorems in this section. The above dia-
gram depicts each of these theorems. Different amalgamation theorems arise
from the various restrictions we may place on the structures, sets, and func-
tions in this diagram. For example, in Theorem 4.38 we require that C is a
structure and f1 and f2 are elementary embeddings. We refer to this theorem
as Elementary Amalgamation over Structures. The conclusion of this theorem
states that the functions g1 and g2 in the diagram are in fact elementary embed-
dings. This theorem, as with all of the amalgamation theorems, is a consequence
of compactness. We repeatedly use the following corollary of compactness.

Definition 4.35 A set of sentences Γ is said to be closed under conjunction if for
any sentences ϕ and ψ in Γ, the sentence ϕ ∧ ψ is also in Γ.

Corollary 4.36 Let Γ be a set of sentences that is closed under conjunction. Let
T be any consistent set of sentences. The set T ∪ Γ is inconsistent if and only if
T � ¬ϕ for some ϕ in Γ.

Proof Clearly, if T entails the negation of a sentence that is in Γ, then T ∪ Γ
is not consistent. The converse is a direct consequence of compactness. If T ∪ Γ
inconsistent, then, by compactness, there exists an inconsistent finite subset ∆
of T ∪Γ. Since T is consistent, there must exists sentences from Γ in ∆. Let Φ be
the conjunction of the sentences in both ∆ and Γ. Then T ∪ {Φ} is inconsistent.
By Proof by Contradiction, we have T � ¬Φ. Since Γ is closed under conjunction,
Φ is a sentence in Γ as was required.

This corollary provides an alternative version of compactness. From now on,
when we say that something is true “by compactness” we mean that it follows
either from the Compactness theorem 4.29 or, equivalently, from Corollary 4.36.

Our first amalgamation theorem is known as the Joint Embedding lemma.
This lemma states that any two models of a complete theory can be element-
arily embedded into some other model of the same theory. This is a basic way
to amalgamate many structures into one. In the above diagram, M1 ≡ M2,
g1 and g2 are elementary embeddings, and C is the empty set.

Lemma 4.37 (Joint Embedding) Let M and N be V-structures that model a
complete V-theory T . There exists a model D of T such that both M and N can
be elementarily embedded into D. Moreover, if M or N is infinite, then we can
take D so that |D| is the same as the larger of |M | and |N |.

172 Properties of first-order logic

Proof Consider the elementary diagrams ED(M) and ED(N). We may assume
that the added constants in each of these sets are distinct. That is, we assume
that the only constants occurring in both ED(M) and ED(N) are those constants
occurring in V. We show that ED(M) ∪ ED(N) is consistent.

Suppose not. Suppose that ED(M) ∪ ED(N) is contradictory. By compact-
ness, ED(M) � ¬ϕ for some sentence ϕ ∈ ED(N). As a sentence in ED(N), ϕ
has the form ψ(b̄) where ψ(x̄) is a V-formula and b̄ is an n-tuple of constants
not in V. Since M and N are elementarily equivalent V-structures, n must be at
least 1.

Since the parameters b̄ do not occur in ED(M), we have ED(M) � ∀x̄¬ψ(x̄)
by ∀-Introduction. We have

M |= ∀x̄¬ψ(x̄) which implies
M |= ¬∃x̄ψ(x̄) which implies
N |= ¬∃x̄ψ(x̄) since M ≡ N .

But this contradicts the fact that ψ(b̄) ∈ ED(N). We conclude that our supposi-
tion must be wrong and ED(M)∪ ED(N) is consistent. By Theorem 4.27, there
exists a model D of ED(M) ∪ ED(N). By Proposition 2.80(b), both M and N
can be elementarily embedded into D as required.

The “moreover” clause in this lemma is a direct consequence of the
Downward Löwenheim–Skolem theorem.

In fact, any number of models of a theory can be elementarily embedded
into a single model of that theory. We leave this generalization of the Joint
Embedding lemma as Exercise 4.23.

We now prove the previously mentioned Elementary Amalgamation over
Structures theorem.

Theorem 4.38 (Elementary Amalgamation over Structures) Let M1, M2 and
N be V-structures that model a complete V-theory T . Let f1 :N → M1 and
f2 :N →M2 be elementary embeddings. There exists a model D of T such that
both M1 and M2 can be elementarily embedded into D in a manner that agrees
on N . That is, there exists D |= T and elementary embeddings g1 :M1 → D and
g2 :M2 → D such that f2(f1(c)) = g2(g1(c)) for each c in the universe of N .

Proof Let V(N) be the expansion of V that includes a constant ca for each
element a of the underlying set of N .

Let M ′
1 be the expansion of M1 to a V(N)-structure that interprets each ca

as f1(a).
Let M ′

2 be the expansion of M2 to a V(N)-structure that interprets each ca
as f2(a).

Properties of first-order logic 173

Since M1 ≡ M2 and f1 and f2 are both elementary, M ′
1 ≡ M ′

2. Let T ′ be
the complete theory of these structures. By the Joint Embedding lemma, there
exists a model D of T ′ such that bothM ′

1 andM ′
2 can be elementarily embedded

into D.

From the proof of Theorem 4.38, we see that something stronger is true.
Nowhere in this proof did we use the fact that N is a model of T . In fact, N
does not even have to be a structure. We need only that M ′

1 ≡ M ′
2 where the

primes denote expansions by constants representing elements of N . This suffices
to show that D and the two elementary embeddings exist.

Theorem 4.39 (Elementary Amalgamation over Sets) Let M1 and M2 be V-
structures that model a complete V-theory T . Let C be a set of constants not
in the vocabulary V of M1 and M2. Let V(C) be V ∪ C. Let M1(C) be an
expansion of M1 to a V(C)-structure and let M2(C) be an expansion of M2 to
a V(C)-structure. If M1(C) ≡ M2(C), then there exists a V(C)-structure D(C)
into which both M1(C) and M2(C) can be elementarily embedded.

Proof The proof is the same as the proof of Theorem 4.38.

If we do not require the two embeddings into D to be elementary, then we
can relax the condition that the two structures are elementarily equivalent. The
following lemma is a modified version of the Joint Embedding lemma. Instead of
requiring that M1 models every sentence that M2 models, we require only that
M1 models every existential sentence that M2 models. Under this hypothesis,
we still obtain a structure D and embeddings of M1 and M2 into D, but now
only one of these embeddings is elementary.

Lemma 4.40 Let M and N be V-structures. Suppose that for any existential
V-sentence ϕ, if N |= ϕ then M |= ϕ. Then there exists a V-structure D
such that N can be embedded into D and M can be elementarily embedded
into D.

Proof Consider the literal diagram D(N) and the elementary diagram ED(M).
We may assume that the added constants in each of these sets are distinct. That
is, we assume that the only constants occurring in both ED(M) and D(N) are
those constants occurring in V. We show that ED(M) ∪ D(N) is consistent.

Suppose not. Suppose that ED(M)∪D(N) is contradictory. By compactness,
ED(M) � ¬ϕ for some sentence ϕ ∈ D(N). As a sentence in D(N), ϕ has the
form ψ(b̄) where ψ(x̄) is a literal and b̄ is an n-tuple of constants that do not
occur in ED(M).

174 Properties of first-order logic

Since the parameters b̄ do not occur in ED(M), we have ED(M) � ∀x̄¬ψ(x̄)
by ∀-Introduction. We have

M |= ∀x̄¬ψ(x̄) which implies
M |= ¬∃x̄ψ(x̄).

Since ψ(x̄) is a literal, ∃x̄ψ(x̄) is existential. So, by the hypothesis of the theorem,
if N |= ∃x̄ψ(x̄), then M |= ∃x̄ψ(x̄). Since this is not the case, N |= ¬∃x̄ψ(x̄).
But this cannot be the case either. It contradicts the fact that ψ(b̄) ∈ D(N). We
conclude that our supposition must be wrong and ED(M)∪D(N) is consistent.

By Theorem 4.27, there exists a model D of ED(M) ∪ D(N). By Propos-
itions 2.79 and 2.80, N can be embedded into D and M can be elementarily
embedded into D.

The following theorem follows from Lemma 4.40 just as Theorem 4.39 follows
from the Joint Embedding lemma.

Theorem 4.41 (Existential Amalgamation over Sets) Let M1, M2 be
V-structures and let C be a set of constants not in V. Let V(C) be V ∪ C. Let
M1(C) be an expansion of M1 to a V(C)-structure and let M2(C) be an expan-
sion of M2 to a V(C)-structure. If M2(C) models every existential V-sentence
that M1(C) models, then there exists a V(C)-structure D into which M1(C) can
be embedded and M2(C) can be elementarily embedded.

Proof Apply Lemma 4.40 with M1(C) as N and M2(C) as M .

4.5 Preservation of formulas
If a formula is equivalent to an existential formula, then it is preserved under
extensions by Proposition 2.72 of Section 2.6.2. Using Theorem 4.41, we prove
the converse.

Proposition 4.42 If a formula is preserved under extensions, then it is equivalent
to an existential formula.

We in fact prove something stronger.

Definition 4.43 Let T be a theory (not necessarily complete). We say that a
formula ϕ(x̄) is preserved under supermodels of T if for any two models M and
N of T with M ⊂ N and any tuple ā of elements from the universe of M ,

M |= ϕ(ā) implies N |= ϕ(ā).
If instead

N |= ϕ(ā) implies M |= ϕ(ā),
then we say that ϕ(x̄) is preserved under submodels of T .

Properties of first-order logic 175

Definition 4.44 Formulas ϕ(x1, . . . ,xn) and ψ(x1, . . . ,xn) are said to be
T -equivalent if T |= ∀x1 . . .∀xn(ϕ(x1, . . . ,xn) ↔ ψ(x1, . . . ,xn)).

In this section, we prove that a formula ϕ is preserved under supermodels of
T if and only if ϕ is T -equivalent to an existential formula. In particular, taking
T to be the empty set of sentences, Proposition 4.42 holds. As a corollary to
this, a formula is preserved under submodels of T if and only if it is T -equivalent
to a universal formula. In the second part of this section, we define the notion
of a chain of models and prove a preservation theorem regarding formulas of the
form ∀x̄∃ȳϕ for quantifier-free ϕ.

4.5.1 Supermodels and submodels. Let T be a theory. We show that a formula
ϕ is preserved under supermodels of T if and only if ϕ is T -equivalent to an
existential formula. First, we show this is true in the case where ϕ is a sentence.
Note that this is only interesting if neither ϕ nor ¬ϕ is in T . Otherwise, ϕ is
T -equivalent to either the existential tautology ∃x(x = x) or the contradiction
∃x¬(x = x).

Proposition 4.45 Let T be a theory. If a sentence is preserved under supermodels
of T , then it is T -equivalent to an existential sentence.
Proof Suppose that ϕ is a sentence that is preserved under supermodels of T .
Let V be the vocabulary of T ∪ {ϕ}.

Let C be the set of all existential V-sentences ψ such that T ∪ {ϕ} � ψ. We
want to show that T ∪ C ∪ {¬ϕ} is inconsistent.

Let D be the set of all existential V-sentences that are not in C. So C ∪ D
equals the set of all existential V-sentences. Let Γ be the set of all V-sentences
that are equivalent to the negation of some sentence in D.

Our goal is to show that T ∪ C ∪ {¬ϕ} is inconsistent. It suffices to show
that T ∪ Γ ∪ {ϕ} is consistent.

Claim If T ∪ Γ ∪ {ϕ} is consistent, then T ∪ C ∪ {¬ϕ} is inconsistent.

Proof Suppose that T ∪Γ∪{ϕ} is consistent. Let N be a model. Then N models
each existential sentence in C (since these are consequences of ϕ) and N models
none of the existential sentences in D (since these are equivalent to the negation
of sentences in Γ).

Suppose for a contradiction that T ∪ C ∪ {¬ϕ} is also consistent. Let M
be a model. Since the only existential sentences that N models are in C, M
models every existential sentence that N models. By Theorem 4.41, there exists
a structure D into which N can be embedded and M can be elementarily
embedded.

Since M can be elementarily embedded into D and M |= T , D is a model
of T . Since M |= ¬ϕ, D |= ¬ϕ.

176 Properties of first-order logic

SinceN can be embedded intoD, D has a substructureN ′ that is isomorphic
to N . Since N models ϕ, so does N ′.

We have N ′ ⊂D, N ′ |= ϕ, and D |= ¬ϕ. But D and N ′ are both models
of T . This contradicts the assumption that ϕ is preserved under extentions of
models of T . This contradiction proves the claim.

Claim T ∪ Γ ∪ {ϕ} is consistent.

Proof Note that Γ is closed under conjunction. If T∪Γ∪{ϕ} is inconsistent, then
T ∪{ϕ} � ¬γ for some γ ∈ Γ (If ϕ is contradictory, then this is the Contradiction
rule. Otherwise, this is Corollary 4.36.) By the definition of Γ, ¬γ is T -equivalent
to a sentence ψ in D. Since T ∪ {ϕ} � ψ, ψ ∈ C. This contradicts the fact that C
and D are disjoint sets of sentences. We conclude that T ∪ Γ ∪ {ϕ} is consistent
as claimed.

By the two claims, T ∪C ∪{¬ϕ} is inconsistent. So T ∪C � ϕ. By compact-
ness, T ∪ {ψ1 ∧ ψ2 ∧ · · · ∧ ψn} � ϕ for some ψ1, . . . ,ψn in C. Since each ψi is
existential, their conjunction is equivalent to an existential sentence Ψ. Since
T ∪ {ϕ} � ψi for each ψi, T ∪ {ϕ} � Ψ. By →-Introduction, we have both T �
ϕ→ Ψ and T � Ψ → ϕ. So ϕ is T -equivalent to the existential sentence Ψ.

Using Proposition 4.45, we now prove two preservation theorems for formu-
las. Note that the sentence ϕ in Proposition 4.45 is not necessarily in the same
vocabulary as T .

Theorem 4.46 Let T be a V-theory. A V-formula ϕ(x1, . . . ,xn) is preserved
under supermodels of T if and only if ϕ(x1, . . . ,xn) is T -equivalent to an
existential formula.

Proof If ϕ(x1, . . . ,xn) is T -equivalent to an existential formula, then it is pre-
served under extensions by Proposition 2.72. We must prove the other direction
of the theorem.

Suppose that ϕ(x1, . . . ,xn) is preserved under supermodels of T . If n = 0,
then ϕ is a sentence and we may apply Proposition 4.45. Otherwise, for n ∈ N,
let c1, . . . , cn be constants not contained in V. Let V(C) be the expansion
V ∪ {c1, . . . , cn} of V.

Consider the V(C)-sentence ϕ(c1, . . . , cn). Since the formula ϕ(x1, . . . ,xn)
is preserved under supermodels of T , so is the sentence ϕ(c1, . . . , cn).
By Proposition 4.45, ϕ(c1, . . . , cn) is T -equivalent to a universal sentence
ψ(c1, . . . , cn) (This sentence may or may not contain each constant ci). We have

T � ϕ(c1, . . . , cn) ↔ ψ(c1, . . . , cn).

Properties of first-order logic 177

Since the constants ci do not occur in T ,

T � ∀x1 . . .∀xn(ϕ(x1, . . . ,xn) ↔ ψ(x1, . . . ,xn)) by ∀-Introduction.

Theorem 4.47 Let T be a V-theory. A V-formula ϕ(x1, . . . ,xn) is preserved
under submodels of T if and only if ϕ(x1, . . . ,xn) is T -equivalent to a universal
formula.

Proof A formula ϕ is preserved under submodels of T if and only if its neg-
ation ¬ϕ is preserved under supermodels of T . If this is the case, then, by
Theorem 4.46, ¬ϕ is T -equivalent to an existential sentence. Finally, ¬ϕ is
T -equivalent to an existential sentence if and only if ϕ is T -equivalent to a
universal sentence.

We now turn our attention to quantifier-free formulas. These formulas
are preserved under both supermodels and submodels (this follows from
Proposition 2.71). Conversely, suppose that a given formula ϕ is preserved under
both supermodels and submodels of T . Then, by the previous two theorems, ϕ
is T -equivalent to both an existential formula and a universal formula. This does
not necessarily mean that ϕ is T -equivalent to a quantifier-free formula as the
following example shows.

Example 4.48 Let VS be the vocabulary consisting of a single binary relation.
Consider the VS-structure ZS = (Z|S). This structure has the set of integers as
its underlying set and interprets S as the successor relation. That is, for any
integers a and b, ZS |= S(a, b) if and only if b = a+ 1. Let T be Th(ZS).

Consider the formula ∃z(S(x, z) ∧ S(z, y)). This formula says that y is the
successor of the successor of x. We claim that this existential formula is not
only preserved under supermodels of T , but also under submodels of T . To see
this, consider the universal formula ∀z1∀z2(S(x, z1) ∧ S(z2, y) → z1 = z2). This
formula says that there is at most one element between x and y. Since the theory
T says that every element has a unique successor and no element is a successor
of itself, this formula implies that there is exactly one element between x and y.
So ∃z(S(x, z) ∧ S(z, y)) is T -equivalent to this universal formula.

We now argue that ∃z(S(x, z)∧ S(z, y)) is not T -equivalent to a quantifier-
free formula. Consider the ordered pairs (0, 2) and (4, 7) in Z

2. Since the only
atomic VS-formulas are S(x, y) and x = y, each of these pairs satisfy the same
atomic formulas in the structure ZS . It follows that

ZS |= ψ(0, 2) if and only if ZS |= ψ(4, 7)

178 Properties of first-order logic

for any quantifier-free VS-formula ψ (by induction on the complexity of ψ).
However,

ZS |= ∃z(S(0, z) ∧ S(z, 2)) and ZS |= ¬∃z(S(4, z) ∧ S(z, 7)).

This shows that the formula ∃z(S(x, z)∧S(z, y)), although it is preserved under
both submodels and supermodels of T , is not T -equivalent to a quantifier-free
formula.

The following theorem provides a sufficient criterion for a formula to be
T -equivalent to a quantifier-free formula (provided T is complete). As the previ-
ous example shows, the property of being preserved under both submodels and
supermodels of T is not sufficient.

Theorem 4.49 Let T be a complete V-theory and let ϕ(x1, . . . ,xn) be a V-
formula. The following are equivalent:

(i) The formula ϕ(x1, . . . ,xn) is T -equivalent to a quantifier-free formula.

(ii) Let M be a model of T . Let ā and b̄ be n-tuples from the universe of M such
that ā and b̄ satisfy the same atomic V-formulas in M . Then, M |= ϕ(ā) if
and only if M |= ϕ(b̄).

Proof Clearly (i) implies (ii). We must prove the converse. Suppose (ii) holds.
We want to show that ϕ(x̄) is T -equivalent to a quantifier-free formula.

Let c̄ = (c1, . . . , cn) be a tuple of constants that are not in V. Let V(C) be
V ∪ {c1, . . . , cn}. Let Q be the set of all quantifier-free V(C)-sentences ψ such
that T ∪ {ϕ(c̄)} � ψ.

Claim T ∪Q � ϕ(c̄).

Proof Suppose not. Then T ∪Q∪{¬ϕ(c̄)} is consistent. By Theorem 4.27, there
is a modelM ′ of this set of V(C)-sentences. Let P be the set of all quantifier-free
V(C)-sentences that hold in M ′. Note that P is closed under conjunction and
Q ⊂ P.
Subclaim T ∪ P ∪ {ϕ(c̄)} is consistent.

Proof Otherwise, by compactness, T ∪ {ϕ(c̄)} � ¬ψ for some ψ ∈ P. By the
definition of Q we have ¬ψ ∈ Q. Since Q ⊂ P, ¬ψ is in P. But ψ is also in P.
This contradicts the fact that P has a model M ′. This contradiction proves the
subclaim.

By Theorem 4.27, there is a model N ′ of T ∪ P ∪ {ϕ(c̄)}. Both M ′ and N ′

are V(C)-structures. Let ā = (a1, . . . , an) be the n-tuple of elements from the

Properties of first-order logic 179

underlying set of M ′ that M ′ interprets as the constants c̄. Let b̄ = (b1, . . . , bn)
be the n-tuple that N ′ interprets as c̄. Let M and N be the reducts of M ′ and
N ′ to the vocabulary V.

Since both M and N model the complete theory T , we can apply the Joint
Embedding lemma 4.37. There exists a modelD of T and elementary embeddings
f :M → D and g :N → D. Consider the two n-tuples f(ā) = (f(a1), . . . , f(an))
and g(b̄) = (g(b1), . . . , g(bn)) of elements from the universe of D. Each of these
tuples satisfy the same atomic formulas in D, namely those from P. However,
D |= ¬ϕ(f(ā)) and D |= ϕ(g(b̄)). This contradicts (ii). This contradiction proves
the claim.

By compactness T ∪ {ψ} � ϕ(c̄) for some ψ ∈ Q (since Q is closed under
conjunction). Moreover, ψ, like every V(C)-sentence, has the form ψ0(c̄) for some
V-formula ψ0(x̄). We have

T � ψ0(c̄) → ϕ(c̄) by →-Introduction.

Since ψ ∈ Q, we also have

T � ϕ(c̄) → ψ0(c̄).

And so T � ϕ(c̄) ↔ ψ0(c̄)
and T � ∀x̄(ϕ(x̄) ↔ ψ0(x̄)) by ∀-Introduction.

4.5.2 Unions of chains.

Definition 4.50 A sequence M0 ⊂ M1 ⊂ M2 ⊂ · · · of V-structures is called a
chain. The length of the chain is the least ordinal α such that β < α for each
Mβ in the sequence.

Proposition 4.51 Let M0 ⊂ M1 ⊂ M2 ⊂ · · · be a chain of V-structures of
length α (for some ordinal α). Suppose that, for some β < α, ā is an n-tuple of
elements in the universe of Mβ that are not in the universe of Mι for ι < β. For
any quantifier-free V-formula ϕ(x1, . . . ,xn),

Mγ |= ϕ(ā) for some γ such that β ≤ γ < α if and only if
Mγ |= ϕ(ā) for all γ such that β ≤ γ < α.

Proof This follows immediately from the fact that quantifier-free formulas are
preserved under both extensions and substructures (Proposition 2.55).

Definition 4.52 We define the union of a chain of V-structures M0 ⊂ M1 ⊂
M2 ⊂ · · · . Let α be the length of this chain. The union of the chain is the
V-structure M defined as follows. The underlying set of M is

⋃
β<α Uβ where Uβ

is the underlying set of Mβ . Given any atomic V-formula ϕ(x1, . . . ,xn) and any
n-tuple (a1, . . . , an) of elements from the universe of M , M |= ϕ(a1, . . . , an) if

180 Properties of first-order logic

and only if Mβ |= ϕ(a1, . . . , an) for all Mβ containing each ai in its universe (by
the previous proposition, we can replace “all” with “some”). This describes how
M interprets the vocabulary V and completes our definition of this structure.

Example 4.53 Let V< be the vocabulary consisting of a single binary relation <.
We define a chain of V<-structures of length ω. For each finite ordinal i, let Mi

be the V<-structure that has underlying set {−i,−i+1,−i+2,−i+3, . . . , } and
interprets < as the usual order.

So the underlying set of M0 is {0, 1, 2, . . .},
the underlying set of M1 is {−1, 0, 1, 2, . . .},
the underlying set of M2 is {−2,−1, 0, 1, 2, . . .}, and so forth.

This forms a chain of V<-structures. The length of this chain is ω. The union
of this chain is the V<-structure M that interprets < as the usual order on the
integers (that is, M is the structure Z< from Section 2.4.3).

Note that each Mi is necessarily a substructure of the union M . However,
the structure M can be quite different from the Mis. In the previous example,
each Mi is isomorphic to the structure N< = (N,<), but the union M is not
even elementarily equivalent to this structure (this was shown in Section 2.3.4).

Definition 4.54 An elementary chain is a chain of the formM0 ≺M1 ≺M2 ≺ · · ·

Unlike the situation in Example 4.53, if a chain is an elementary chain, then
the union of the chain is elementarily equivalent to each structure in the chain.

Proposition 4.55 The union of an elementary chain is an elementary extension
of each structures in the chain.

Proof Let M0 ≺ M1 ≺ M2 ≺ · · · be an elementary chain of length α. Let M
be the union of this chain. Given β < α, we apply the Tarski–Vaught criterion
(Corollary 4.31) to show that Mβ ≺M .

Let ψ(x1, . . . ,xn, y) be an V-formula and let ā be an n-tuple of elements
from the underlying set of Mβ . Suppose that M |= ∃yψ(ā, y). It suffices to show
that Mβ |= ∃yψ(ā, y). By the semantics of ∃, M |= ψ(ā, b) for some b in the
universe of M . By the definition of M , b must be in the universe of Mγ for some
γ < α. So, Mγ |= ∃yψ(ā, y). Since the chain is elementary, Mβ |= ∃yψ(ā, y) as
was required to show.

Definition 4.56 A formula ϕ(x1, . . . ,xn) is said to be preserved under unions of
chains if for any chain M0 ⊂ M1 ⊂ M2 ⊂ · · · and any n-tuple ā of elements
from the universe of M0, if each Mi models ϕ(ā), then so does the union M of
this chain.

If M0 ≺M1 ≺M2 ≺ · · · is an elementary chain, then each Mi models ϕ(ā)
if and only if the union M models ϕ(ā) for any n-tuple of elements from the

Properties of first-order logic 181

universe of M0. For the formula ϕ(x̄) to be preserved under unions of chains,
this must be true for arbitrary chains. We want to determine which formulas have
this property. Clearly, by the definition of the union of a chain, every atomic for-
mula is preserved under unions of chains. Moreover, every existential formula
is preserved under unions of chains since they are preserved under extensions
(Proposition 2.72). Example 4.53 demonstrates that not all formulas are pre-
served under unions of chains. In that example, each Mi in the chain models the
sentence ∃x∀y¬(y < x), but the union M does not.

Definition 4.57 A formula is said to be ∀2 if it has the form ∀x1 · · · ∀xn∃y1 · · ·
∃ymϕ for some quantifier-free formula ϕ.

More generally, we can define a hierarchy for all formulas in prenex normal
form. A formula is ∀1 if it is universal and ∃1 if it is an existential formula. For
each n ∈ N, we define the ∀n+1 formulas inductively. A formula is ∀n+1 if it has
the form ∀x1 · · · ∀xmϕ for some ∃n formula ϕ. Likewise, a formula is ∃n+1 if it
has the form ∃x1 · · · ∃xmϕ for some ∀n formula ϕ.

Example 4.58 Let ϕ(x̄) be a quantifier-free formula.

∃x1∀x2∃x3∀x4∃x5∀x6∃x7∀x8ϕ(x̄) is a ∃8 formula, and
∀x1∀x2∃x3∃x4∃x5∀x6∀x7∀x8ϕ(x̄) is a ∀3 formula.

Note that for m < n, a ∃m formula is equivalent to both a ∀n formula and a
∃n formula. The ∀2 formulas were singled out in the previous definition because
these are the formulas of immediate interest. The following proposition shows
that these formulas are preserved under unions of chains. As demonstrated by
the sentence ∃x∀y¬(y < x), the same cannot be said of ∃2 sentences nor for ∀n

formulas for n > 2.

Proposition 4.59 ∀2 formulas are preserved under unions of chains.

Proof Let ϕ(x1, . . . ,xn) be a ∀2 formula. Let M0 ⊂M1 ⊂M2 ⊂ · · · be a chain
and let M be the union of this chain. Let ā be an n-tuple of elements from the
universe of M0. Suppose that each Mi |= ϕ(ā). We must show that M |= ϕ(ā).

Since it is a ∀2 formula, ϕ(x̄) has the form ∀z1 · · · ∀zl∃y1 · · · ∃ymϕ0(x̄, ȳ, z̄)
where ϕ0 is quantifier-free. Let c̄ = (c1, . . . , cl) be an arbitrary l-tuple of elements
from the universe UM of M . Each of these elements is contained in the universe
of some structure Mβ in the chain. Since ϕ(ā) holds in Mβ , Mβ |= ϕ0(ā, b̄, c̄) for
some m-tuple b̄ of elements from its universe. Since quantifier-free formulas are
preserved under extensions,

M |= ϕ0(ā, b̄, c̄).

By the semantics of ∃,

M |= ∃y1 · · · ∃ymϕ0(ā, ȳ, c̄).

182 Properties of first-order logic

Since c̄ is arbitrary,

M |= ∀z1 · · · ∀zl∃y1 · · · ∃ymϕ0(ā, ȳ, z̄)

by the semantics of ∀. Thus, we have shown that M |= ϕ(ā).

Let T be a theory. Let M0 ⊂ M1 ⊂ M2 ⊂ · · · be a chain of models of T .
If a formula is T -equivalent to a ∀2 formula, then, by Proposition 4.59, it is
preserved under the union of this chain. We next prove that the converse of this
also holds. If a formula is preserved under unions of chains of models of T , then
that formula must be T -equivalent to a ∀2 formula. The following proposition
shows that this is true for sentences. As with Proposition 4.45, this is only
interesting for sentences that are not in T .

Proposition 4.60 Let T be a theory. If a sentence is preserved under unions of
chains of models of T , then it is T -equivalent to a ∀2 sentence.

Proof Suppose that the sentence ϕ is preserved under unions of chains of models
of T . Let C be the set of all ∀2 sentences ψ such that T ∪ {ϕ} � ψ.

Claim T ∪ C � ϕ.

Proof Suppose not. Then T ∪ C ∪ {¬ϕ} has a model M0.
We aim to construct a chain M0 ⊂ N1 ⊂ M1 ⊂ N2 ⊂ M2 ⊂ · · · such that,

for each i ∈ N

• Mi−1 ≺Mi, and

• each Ni models T ∪ {ϕ}.

The existence of such a chain suffices to prove the claim. To see this, suppose
that we have successfully constructed this chain and let M be the union. Then,
by the definition of the union of a chain, M is also the union of both the chain
M0 ⊂ M1 ⊂ M2 ⊂ · · · and the chain N1 ⊂ N2 ⊂ N3 ⊂ · · · . Since the former
chain is an elementary chain and M0 models ¬ϕ, the union M models ¬ϕ by
Proposition 4.55. Since each Ni models ϕ and ϕ is preserved under unions of
chains of models of T ,M models ϕ. This is a contradiction and this contradiction
proves the claim.

So we must describe how to construct a chain M0 ⊂ N1 ⊂ M1 ⊂ N2 ⊂ · · ·
possessing the above properties. We have already defined M0. Suppose that, for
some i ∈ N we have defined Mi−1 so that M0 ≺Mi−1. Then Mi−1 |= T ∪ {¬ϕ}.

We must show that there exists an extensionNi ofMi−1 that models T∪{ϕ}.
Let ED∀(Mi−1) be the set of all universal sentences in prenex normal form that
are in ED(Mi−1).

Subclaim ED∀(Mi−1) ∪ T ∪ {ϕ} is consistent.

Properties of first-order logic 183

Contrarily, suppose that this set is inconsistent. Note that, for any ϕ1 and
ϕ2 in ED∀(Mi−1), there exists a sentence ϕ′ in ED∀(Mi−1) that is equivalent to
ϕ1 ∧ϕ2. So although ED∀(Mi−1) is not closed under conjunction, the conclusion
of Corollary 4.36 holds. If ED∀(Mi−1) ∪ T ∪ {ϕ} is not consistent, then T ∪
{ϕ} � ¬θ for some sentence θ ∈ D(Mi−1). As a sentence in ED∀(Mi−1), the
sentence θ has the form ∀x1 . . .∀xnψ(x1, . . . ,xn, c1, . . . , cm) for some quantifier-
free V formula ψ(x1, . . . ,xn, y1, . . . , ym) and constants ci not in V.

Since T ∪ {ϕ} � ¬∀x1 . . .∀xnψ(x1, . . . ,xn, c1, . . . , cm), we have

T ∪ {ϕ} � ∃x1 . . .∃xn¬ψ(x1, . . . ,xn, c1, . . . , cm), and
T∪{ϕ} � ∀y1 . . .∀ym∃1 . . .∃xn¬ψ(x1, . . . ,xn, y1, . . . , ym) by ∀-Introduction.

Since ∀ȳ∃x̄¬ψ(x̄, ȳ) is a ∀2 sentence, it is in C. Since M0 |= C and M0 ≺
Mi−1, Mi−1 |= ∀ȳ∃x̄¬ψ(x̄, ȳ). This contracts the assumption that ∀x̄ψ(x̄, c̄) ∈
D(Mi−1). This contradiction verifies the subclaim.

By Theorem 4.27, ED∀(Mi−1)∪ T ∪ {ϕ} has a model Ni. Since D(Mi−1) ⊂
ED∀(Mi−1), we may assume that Ni is an extension ofMi−1 by Proposition 2.79.

Next, we must show there exists an extension Mi of Ni that is an element-
ary extension of Mi−1. We apply Lemma 4.40 to the structures Mi−1 and Ni.
Since Ni |= ED∀(Mi−1), Ni models every universal sentence that Mi−1 mod-
els. It follows that Mi−1 models every existential sentence that Ni models. By
Lemma 4.40, there exists a structure Mi such that N can be embedded into Mi

and Mi−1 can be elementarily embedded into Mi. By Proposition 2.79, we may
assume that Mi is an extension of both Ni and Mi−1.

Thus we construct the chain M0 ⊂ N1 ⊂M1 ⊂ · · · As we have shown, this
construction proves the claim. By compactness, it follows from the claim that
T � ϕ↔ ψ for some sentence ψ in C. This proves the proposition.

Theorem 4.61 Let T be a V-theory. A V-formula is T -equivalent to a ∀2 formula
if and only if it is preserved under unions of chains of models of T .

Proof This theorem follows from Proposition 4.60 in the same manner
that Theorem 4.46 follows from Proposition 4.45. We leave the proof as
Exercise 4.24.

Corollary 4.62 The formulas that are preserved under unions of chains are
precisely those formulas that are equivalent to a ∀2 formula.

Proof Take T to be empty in Theorem 4.61.

4.6 Amalgamation of vocabularies
In Section 4.4, we discussed various ways to amalgamate many structures into
one. In each case, the given structures had the same vocabularies. For example,

184 Properties of first-order logic

the Joint Embedding lemma 4.37 states that any two modelsM and N of a com-
plete V-theory T can be elementarily embedded into a single model of T . Here it
is understood that M and N have the same vocabulary as T . In this section, we
show that this remains true even if M is a V1-structure and N is a V2-structure
where V1 and V2 are different expansions of V. The primary result of this section
is Robinson’s Joint Consistency lemma. From this lemma, we are able to deduce
results that are analogous to the amalgamation theorems of Section 4.4. We are
also able to deduce the Craig Interpolation theorem and the Beth Definability
theorem for first-order logic.

Lemma 4.63 (Robinson’s Joint Consistency) Let T1 be a V1-theory and let T2

be a V2-theory. Let V∩ = V1 ∩ V2 and let V∪ = V1 ∪ V2. If T1 ∩ T2 is a complete
V∩-theory, then T1 ∪ T2 is a V∪-theory.

Proof We show that there exists a V∩-structure D that has expansions D1 |= T1

and D2 |= T2. If such a D exists, then we can define D∪ to be the V∪-structure
having the same underlying set as D that interprets V1 in the same manner as
D1 and V2 in the same manner as D2. Since D∪ is a model of both T1 and T2,
we can conclude that T1 ∪ T2 is a theory as the lemma states.

To prove the existence of D, we construct elementary chains

M0 ≺M1 ≺M2 ≺M3 ≺ · · · of models of T1 and
N0 ≺ N1 ≺ N2 ≺ N3 ≺ · · · of models of T2.

Let M̃i and Ñi denote the reducts of Mi and Ni to the vocabulary V∩. Since T∩
is a complete theory, M̃i ≡ Ñj for any i and j. We want to construct the two
chains in such a way that M̃i elementarily embeds into Ñi and Ñi elementarily
embeds into M̃i+1 for each i. We diagram the desired situation as follows:

M0 ≺ M1 ≺ M2 ≺ M3 ≺ · · ·
↓ ↗ ↓ ↗ ↓ ↗ ↓ ↗
N0 ≺ N1 ≺ N2 ≺ N3 ≺ · · · .

The arrows in this diagram represent embeddings that are elementary with
respect to the vocabulary V∩. Let fi : M̃i → Ñi denote the embeddings rep-
resented by ↓ in the diagram, and let gi : Ñi → M̃i+1 denote the embeddings
represented by ↗. We want to define these embeddings in such a way that
gi(fi(a)) = a for any a in the underlying set of Mi and fi+1(gi(b)) = b for any b
in the underlying set of Ni.

Before constructing these chains, we show how their existence proves the
lemma. Suppose that we have successfully defined two chains as described in
the previous paragraph. Our goal is to find a V∩-structure D that has two
expansions that model each of T1 and T2. Let M be the union of the chain
M0 ≺M1 ≺M2 ≺ · · · and let D be the reduct of M to a V∩-theory (so D is
the union of the chain of M̃is). By Proposition 4.55, the expansion M of D

Properties of first-order logic 185

models T1. To complete the proof of the lemma, we must define an expansion of
D that models T2.

Let N be the union of the chain N0 ≺ N1 ≺ · · · . Then N |= T2 by Pro-
position 4.55. Let Ñ be the reduct of N to a V∩-theory. We claim that D and
Ñ are isomorphic V∩-structures. Let f :D → Ñ be defined by f(a) = b if and
only if fi(a) = b for some i. Note that fi(a) = b implies fj(a) = b for all j > i
(since gi(fi(a)) = a and fi+1(gi(b)) = b). So f is a well defined function. Since
each fi is elementary, so is f . Moreover, f is also one-to-one and onto. So f is an
isomorphism as claimed. Let D2 be the expansion of D to a V2-structure defined
as follows. For any V2-formula ϕ(x1, . . . ,xn),

D2 |= ϕ(a1, . . . , an) if and only if N |= ϕ(f(a1), . . . , f(an))

for any n-tuple (a1, . . . , an) of elements from the underlying set of D. Since N
models T2, so does D2. So given two chains as described above, we can define
the V∩-structure D having expansions M |= T1 and D2 |= T2 as was required to
prove the lemma.

It remains to be shown that the two desired chains can be constructed.
We carry out this construction by repeatedly applying Claim 2 below. As
a stepping-stone toward Claim 2, we prove the following:

Claim 1 For any M |= T1 and N |= T2 there exists an elementary extension
N+ of N such that M̃ can be elementarily embedded into Ñ+ where the tildes
denote the reduct to the vocabulary V∩.

Proof We show that the set ED(M̃)∪ED(N) is consistent. We assume that the
only constants occuring in both ED(M̃) and ED(N) are those constants in V∩.
If ED(M̃) ∪ ED(N) is not consistent, then, by compactness, ED(N) � ¬θ for
some θ ∈ ED(M̃). As a sentence in ED(M̃), θ has the form ϕ(ā) for some V∩-
formula ϕ(x̄) and n-tuple ā of constants not in ED(N). If, ED(N) � ¬ϕ(ā), then
ED(N) � ∀x̄¬ϕ(x̄) by ∀-Introduction. Since the theory T2 contains the complete
V∩-theory T , the V∩-sentence ∀x̄¬ϕ(x̄) must be in T . This contradicts the facts
that M̃ |= T and ϕ(ā) ∈ ED(M̃). This contradiction proves the claim.

Now suppose that we are given M |= T1 and N |= T2 and an elementary
embedding g : Ñ → M̃ . By Claim 1, there exist elementary extension N+ of N
and elementary embedding f : M̃ → Ñ+. Moreover, we claim that we can find
such N+ and f so that f(g(a)) = a for any a in the underlying set of N .

Claim 2 Suppose that M |= T1, N |= T2 and g : Ñ → M̃ is an elementary
embedding (where the tildes again denote the reduct to the vocabulary V∩).
There exist elementary extension N+ of N and elementary embedding f : M̃ →
Ñ+ such that f(g(a)) = a for any a in the underlying set of N .

Proof Let C = {ca|a ∈ UN} be a set consisting of constants for each element a in
the underlying set UN ofN . For any vocabulary V, let V(C) denote the expansion

186 Properties of first-order logic

V∪C. Let N(C) be the expansion of N to a V1(C)-structure that interprets each
ca as the element a. Let M̃(C) be the expansion of M̃ to a V∩(C)-structure that
interprets each ca as the element g(a). Since g : Ñ → M̃ is elementary, N(C) |=
ϕ(c̄) if and only if M̃(C) |= ϕ(c̄) for any V∩-formula ϕ(x1, . . . ,xn) and n-tuple
c̄ of constants from C. It follows that N(C) and M̃(C) are models of the same
complete V∩(C)-theory. By Claim 1, there exist elementary extension N+(C) of
N(C) and elementary embedding f : M̃(C) → Ñ+(C). Since embeddings must
preserve constants, f(g(a)) = a for each a ∈ UN . Let N+ be the reduct of N+(C)
to a V2-structure.

Since T1 and T2 are theories, they have models. To begin the construction
of the chains, we can use any models M0 of T1 and N−1 of T2. By Claim 1, there
exist elementary extension N0 of N−1 and elementary embedding f0 : M̃0 → Ñ0.
Having successfully defined M0, N0, and f0, we proceed to define the rest of the
two chains inductively.

Suppose that, for some i, we have definedMi |= T1, Ni |= T2 and elementary
embedding fi : M̃i → Ñi. By claim 2, there exist elementary extension Mi+1 of
Mi and elementary embedding gi : Ñi → M̃i+1 such that gi(fi(a)) = a for each a
in the underlying set of Mi. (Here we have applied Claim 2 with Mi playing the
role of N and Ni playing the role of M .) Applying Claim 2 yet again, there exist
elementary extension Ni+1 of Ni and elementary embedding fi+1 : M̃i+1 → Ñi+1

such that fi+1(gi(b)) = b for any b in the underlying set of Ni. (Here Ni plays
the role of N and Mi+1 plays the role of M .) Repeating this process produces
the two desired chains.

The following generalization of the Joint Embedding lemma is an immediate
consequence of Robinson’s Joint Consistency lemma.

Corollary 4.64 Let M be a V1-structure and N be a V2-structure such that
M and N are elementarily equivalent as (V1 ∩ V2)-structures. There exists a
(V1∪V2)-structure D such that M can be V1-elementarily embedded into D and
N can be V2-elementarily embedded into D.

Proof Let T1 be ED(M) and T2 be ED(N). By Robinson’s Joint Consistency
lemma, there exists a model D of T1 ∪ T2.

Note that if V1 = V2, then the previous corollary is identical to the Joint
Embedding lemma. Likewise, we can generalize the Elementary Amalgamation
Over Structures theorem 4.38. We leave this as Exercise 4.34. We now turn our
attention to the theorems of Craig and Beth.

Theorem 4.65 (Craig Interpolation) Let ϕ be a V1 sentence and ψ be a
V2-sentence. If |= ϕ→ ψ, then there exists a sentence θ that is both a V1-sentence
and a V2-sentence such that |= ϕ→ θ and |= θ → ψ.

Properties of first-order logic 187

Proof Let V∩ = V1 ∩ V2. Let C be the set of all V∩ consequences of ϕ. That is
C is the set of all V∩-sentences θ such that |= ϕ→ θ. We want to show that ψ is
a consequence of C.

Suppose for a contradiction that M is a V1 ∪V2-structure that models both
C and ¬ψ. Let T be the V∩-theory of M .

Claim T ∪ {ϕ} is consistent.

Proof Otherwise, T � ¬ϕ. Since T is closed under conjunctions, {θ} � ¬ϕ for
some θ ∈ T (by compactness). So the contrapositive {ϕ} � ¬θ also holds (by
Example 1.34). So ¬θ is a consequence of ϕ and so ¬θ ∈ C. Since C ⊂ T , we
have both θ and ¬θ in T . Since M is a model of T , this is a contradiction.

The consistency of T ∪{ϕ} leads to another contradiction. Let T1 = T ∪{ϕ}
and T2 = T ∪ {¬ψ}. If both T1 and T2 are consistent, then so is T1 ∪ T2 by
Robinson’s Joint Consistency lemma. But since |= ϕ → ψ, T1 ∪ T2 cannot be
consistent. The assumption that C ∪ {¬ψ} is satisfiable must be incorrect. It
follows that C � ψ. Since C is closed under conjunctions, {θ} � ψ for some θ ∈ C.
It follows that |= θ → ψ as was required.

In order to state the Beth Definability theorem concisely, we introduce some
terminology. We distinguish between two ostensibly different notions of defin-
ability. Beth’s Definability theorem states that, for first-order logic, these two
notions are the same.

Definition 4.66 Let T be a V-theory and let R be an n-ary relation in V. For
any V ′ ⊂ V, we say that R is explicitly defined by T in terms of V ′ if there exists
a V ′-formula ϕ(x1, . . . ,xn) such that

T � ϕ(x1, . . . ,xn) ↔ R(x1, . . . ,xn).

Example 4.67 Let V = {≤, +, ·, 0, 1} and let V ′ = {+, ·, 0, 1}. Let Ror = (R| ≤,
+, ·, 0, 1) be the structure that interprets V in the usual way on the real numbers.
Let T = Th(Ror). Then the binary relation ≤ is explicitly defined by T in terms
of V ′. To see this, let ϕ(x, y) be the V ′-formula ∃z(x+(z ·z) = y). Since (z ·z) ≥ 0
for any real number z, T � ϕ(x, y) ↔ x ≤ y.

Definition 4.68 Let T be a V-theory and let R be an n-ary relation in V. For
any V ′ ⊂ V, we say that R is implicitly defined by T in terms of V ′ if the
following holds. Given any V ′-structure M and two expansions N1 and N2 of M
to V-structures that model T ,

N1 |= R(ā) if and only if N2 |= R(ā)

for any n-tuple ā of elements from the underlying set of M .

188 Properties of first-order logic

If R is explicitly defined by T in terms of V, then it is implicitly defined as
well. So the binary relation ≤ from Example 4.67 is implicitly defined by T in
terms of V ′. We now give a nonexample.

Example 4.69 Let M be the structure (Z|B) that interprets the binary relation
B as a symmetric successor relation. By this we mean that M |= B(a, b) if and
only if a = b + 1 or b = a + 1. Let N1 = (Z|B,<) be the expansion of M that
interprets < as the usual order on the integers. Let N2 be the expansion of M
that interprets < backwards. That is, N2 |= a < b if and only if the integer a is
greater than b.

Let T = Th(N1). Since N1 and N2 are distinct expansions of M that model
T , the relation < is not implicitly defined by T in terms of {B}.

If we replace the relation B with the successor relation S from Example 4.48,
then the same conclusion holds. The relation < is not implicitly defined by
Th(Z|S,<) in terms of {S}. We leave the verification of this as Exercise 4.37.

Proposition 4.70 A relation R is implicitly defined by T in terms of V if and
only if for any V-structure M , there is at most one expansion N of M to a
V ∪ {R}-structure such that Th(N) ⊂ T .

Proof Exercise 4.29.

Example 4.71 Let TQ be the theory of the rational numbers in the vocabulary
Var = {0, 1, +, ·}. Let V = Var ∪{R} where R is a ternary relation. Let T be the
theory TQ ∪ {ϕ} for some V-sentence ϕ.

If ϕ has the form ∀x∀y∀z(ψ(x, y, z) ↔ R(x, y, z)) for some Var-formula
ψ(x, y, z), then, by definition, R is explicitly defined by T over Var. In this case,
there is exactly one way to expand a given model of TQ to a model of T .

Conversely, suppose there is exactly one way to expand any given model of
TQ to a model of T . Then, by Proposition 4.70, R is implicitly defined by T over
Var. In this case, ϕ may not have the form ∀x∀y∀z(ψ(x, y, z) ↔ R(x, y, z)). For
example, suppose that ϕ is the V-sentence

∀x∀y∀z∃u∃v∃w(u · v = 1 ∧ (R(x, y, z) ∨ (x+ x+ y = z + v + u)

∧(w + y = 0 ∧ (R(x, y, z) → x+ x = z + w).

There is exactly one way to expand a model of TQ to a model of this sentence.
So this sentence implicitly defines the ternary relation R.

Beth’s Definability theorem states that R is defined implicitly if and only
if it is defined explicitly. This means that the above sentence ϕ must be TQ-
equivalent to a sentence of the form ∀x∀y∀z(ψ(x, y, z) ↔ R(x, y, z)). Indeed, we
can take ψ(x, y, z) to be 2x + y = z. We leave the verification of this to the
reader.

Properties of first-order logic 189

Theorem 4.72 (Beth Definability) A relation is implicitly defined by a theory
T in terms of V if and only if it is explicitly defined by T in terms of V.

Proof Only one direction of this theorem requires proof. Suppose R is an n-ary
relation that is implicitly defined by T in terms of V. If T ∪ {∃x̄R(x̄)} is not
consistent, then R is explicitly defined by the formula ¬(x = x). So suppose that
this is not the case.

Let D be the set of all V-formulas ψ having free variables among x1, . . . ,xn

such that T � R(x1, . . . ,xn) → ψ. Let V(C) = V ∪ {c1, . . . , cn}, where c1, . . . , cn
are constants that do not occur in V. Let D(c̄) be the set of V(C)-sentences
obtained by replacing each occurrence of xi in D with the constant ci (for
i = 1, . . . ,n).

Claim T ∪ D(c̄) � R(c̄).

Proof Otherwise, T ∪ D(c̄) ∪ {¬R(c̄)} has a model M .
Let T0 be the V(C)-theory of M . We claim that T0 ∪ R(c̄) is consistent.

Otherwise, {R(c̄)} � ¬ψ(c̄) for some ψ(c̄) ∈ T0. But then ¬ψ(c̄) ∈ D(C). This
contradicts the facts that D(C) ⊂ T0 and T0 is consistent.

Let T1 = T0 ∪ R(c̄) and let T2 = T ∪ D(c̄) ∪ {¬S(c̄)} where S is an n-ary
relation that does not occur in V ∪{R}. Since T0 ∪{¬R(c̄)} is consistent (M is a
model), so is T2. By Robinson’s Joint Consistency lemma, T1 ∪ T2 is consistent.

Let N be a model of T1 ∪ T2. So N is a structure in the vocabulary V ∪
{R,S, c1, . . . , cn}.

Let N0 be the reduct of N to a V-structure.
Let N1 be the expansion of N0 to a V ∪ {R}-structure that interprets R in

the same manner as N .
Let N2 be the expansion of N0 to a V ∪ {R}-structure that interprets R as

N interprets the relation S.
Let ā be the n-tuple from the underlying set of N0 that N interprets as the

constants c̄. Then N1 |= R(ā) and N2 |= ¬R(ā). This contradicts the assumption
that R is implicitly defined by T ⊂ T0 in terms of V. This contradiction proves
the claim.

Since T ∪ D(c̄) � R(c̄), T � ϕ(c̄) → R(c̄) for some V-formula ϕ(x̄) ∈ D.
Since ϕ(x̄) ∈ D, we have

T � (ϕ(x̄) ↔ R(x̄)),

and so R is explicitly defined by T by the V-formula ϕ.

4.7 The expressive power of first-order logic
First-order logic, as any logic, is a language equipped with rules for deducing the
truth of one sentence from that of another. These rules may be formulated as

190 Properties of first-order logic

systems of deduction such as resolution and formal proofs discussed in Chapter 3.
In this chapter, we have shown that the rules of deduction for first-order logic
entail many nice properties. These properties give rise to the model theory of
the next two chapters. Because of these desirable properties, the language of
first-order logic is necessarily weak. In particular, the Compactness theorem
and Downward Löwenheim–Skolem theorem impose limitations on the expressive
power of first-order logic.

We claim that every property of first-order logic discussed in this chapter is a
consequence of the Compactness theorem and the Downward Löwenheim–Skolem
theorem. The completeness of first-order logic can be deduced from compactness
in the same manner that this is done in Theorem 1.80 for propositional logic. The
theorems of Section 4.4 stating that infinite structuresM andN can be amalgam-
ated in some manner into structure D are direct consequences of compactness.
The Downward Löwenheim–Skolem theorem guarantees that there exists such D
having the same size as M or N . Inspecting the proofs, we see that Robinson’s
Joint Consistency lemma, the Beth Definability theorem, and the preservation
theorems are consequences of compactness.

By compactness, there cannot exist a sentence of first-order logic that
holds for infinite structures and only for infinite structures. By the Downward
Löwenheim–Skolem Theorem, there cannot exist a sentence of first-order logic
that holds for uncountable structures and only uncountable structures. Because
of these restrictions, there are basic concepts that first-order logic is incapable
of expressing.

Example 4.73 In first-order logic, we cannot say that two definable subsets have
the same size. To be precise, let V be a vocabulary that includes unary relations
P and Q. For any V-structure M having underlying set U ,

let P (M) = {a ∈ U |M |= P (a)} and let Q(M) = {a ∈ U |M |= Q(a)}.

There is no set of V-sentences that says P (M) and Q(M) have the same size. In
contrast, we can easily write sentences that say P (M) and Q(M) both have size
n for any particular n. We can easily define a set of sentences that say P (M)
and Q(M) are both infinite.

Note that V may contain symbols other than P and Q. For example, V may
contain a unary function f . If this is the case, then we can write a V-sentence
ϕf that says f is a one-to-one correspondence between P (M) and Q(M). The
existence of such a bijection is precisely what it means for P (M) and Q(M) to
have the “same size.” So if M |= ϕf , then |P (M)| = |Q(M)|. But the converse
of this is not true. There exists N |= ¬ϕf such that |P (N)| = |Q(N)|. Likewise,
there is no V-sentence (nor set of V-sentences) that holds if and only if P and Q
define subsets of equal size.

Properties of first-order logic 191

To verify this, let Γ be a set of V-sentences. Suppose that |P (M)| = |Q(M)|
for any model M of Γ. We show that |P (N)| = |Q(N)| for some V-structure
N which does not model Γ. Let N0 be any V-structure such that P (N0) is
uncountable and Q(N0) is denumerable. Then N1 |= ¬γ for some γ ∈ Γ. Let X
be a subset of the universe U of N1 such that both X ∩ P (N1) and X ∩Q(N1)
are denumerable. By the Downward Löwenheim–Skolem Theorem, there exists
a countable elementary substructure N of N1 that contains X in its universe.
Since N ≺ N1, we have N |= ¬γ. So N is a V-structure that does not model Γ
for which |P (N)| = |Q(N)| = ℵ0.

Example 4.74 Let G be a graph. Recall that a path in G from vertex a to vertex
b is a sequence of adjacent vertices beginning with a and ending with b. The
length of the path is one less than the number of vertices in the sequence (that
is, the number of edges in the path). By Exercise 2.13, there exist formulas
dn(x, y) expressing the existence of a path between vertices x and y of length n.
In contrast, we claim that the concept of a path cannot be expressed in first-order
logic. Whereas we can say there is a path of some specified length, we cannot
say there is a path of arbitrary length. Suppose to the contrary that we have a
formula φ(x, y) that holds of any vertices x and y in any graph G if and only if
there exists a path from x to y in G. Consider the following set of sentences in
a vocabulary containing R and constants a and b:

∀x∀yφ(x, y),¬d1(a, b),¬d2(a, b),¬d3(a, b), . . .

The first sentence says that there is a path between any two vertices. This
sentence holds in a graph if and only if the graph is connected. Since the other
sentences assert that there is no path between a and b, this set of sentences is
contradictory. However, any finite subset of these sentences is satisfiable. This
contradicts the Compactness theorem. We conclude that the formula φ(x, y)
cannot exist.

So there is no first-order formula that defines the concept of a path. Likewise,
there is no first-order sentence that holds in a graph if and only if it is connected.
Another basic graph-theoretic property is k-colorability. A graph is said to be
k-colorable if the vertices of the graph can be colored with k colors in such a
way that no two vertices of the same color share an edge. There does not exist
a first-order sentence ϕk such that G |= ϕk if and only if G is a k-colorable graph.
First-order logic cannot even say that there exists an even number of vertices in
a finite graph. This is a consequence of the 0–1 law for first-order logic that is a
subject of Section 5.4 of the next chapter.

This first-order impotence is by no means limited to graph theory. We list
some of the many fundamental concepts from various areas of mathematics that
first-order logic is incapable of expressing.

192 Properties of first-order logic

• Linear orders: there is no first-order sentence that holds for well ordered
sets and only well ordered sets.

• Group theory: there is no first-order sentence that holds for simple groups
and only simple groups.

• Ring theory: there is no first-order sentence that holds for Noetherian rings
and only Noetherian rings.

• Metric spaces: there is no first-order sentence that holds for complete metric
spaces and only complete metric spaces. In particular, the notion of a Cauchy
sequence cannot be defined

To express these and other concepts, we must extend the logic. In
Chapter 9, we consider extensions of first-order logic such as infinitary logics
and second-order logic. Infinitary logics permit as formulas infinite conjunctions
and disjunctions of first-order formulas. For example, consider the disjunction∨

i∈N
di(x, y) of the first-order formulas di(x, y) from Example 4.74. This is a

formula of the infinitary logic Lω1ω as is the sentence ∀x∀y∨i∈N
di(x, y). This

sentence holds in a graph if and only if it is connected. Now suppose that we
want to say that two definable subsets have the same size as in Example 4.73.
Second-order logic can express this. This logic allows quantification over subsets
of the universe. Second-order logic is extremely powerful and can express each
of the properties mentioned above.

Extending first-order logic comes at an expense. Since it can express the
concept of a path, Lω1ω must not have compactness. Likewise, since second-
order logic can say that two definable sets have the same size, the Downward
Löwenheim–Skolem theorem must fail for this logic. Moreover, both compactness
and completeness fail for second-order logic. Unlike first-order logic, we cannot
list a set of rules from which we can deduce all truths of second-order logic. In
this sense, the expressive power of second-order logic is too great.

The Compactness theorem and the Downward Löwenheim–Skolem theorem
make first-order logic the primary language of model theory. Model theory con-
siders the relationship between a set of sentences T and the set of structures
Mod(T) that model T . Just as first-order logic can describe any finite struc-
ture up to isomorphism (by Proposition 2.81), infinitary logics and second-order
logic can describe any countable structure up to isomorphism. This makes for
an uninteresting model theory. If T is the second-order theory of a countable
structure M , then M is the only structure in Mod(T). Moreover, by the failure
of completeness, we have no way to determine which sentences are in T .

Although there are basic concepts that cannot be defined in first-order logic,
there are many concepts that can be defined. Moreover, we claim that those

Properties of first-order logic 193

properties that are first-order definable form a natural class of mathematical
objects. The language of first-order logic, containing ∃, ∀, ∧, and ¬ is a natural
mathematical language to consider. First-order theories, which are the topic of
the next two chapters, are natural objects of study. Since the Compactness and
Downward Löwenheim–Skolem theorems are central to model theory, we should
consider the most powerful logic possessing these properties. By Lindström’s
theorem, which we shall prove in Section 9.4, first-order logic is this logic. This
theorem states that any extension of first-order logic for which both the Com-
pactness and Downward Löwenheim–Skolem theorems hold must be equivalent
to first-order logic itself. So in some precise sense, first-order logic is the most
powerful logic that possesses the properties discussed in this chapter.

Exercises
4.1. Let T be an incomplete countable theory. For each of the following, either

prove the statement or provide a counter example.
(a) If T has an uncountable model, then T has a countable model.

(b) If T has arbitrarily large finite models, then T has a denumerable
model.

(c) If T has finite models and a denumerable model, then T has
arbitrarily large finite models.

4.2. Let T be an incomplete theory in an uncountable vocabulary. Repeat (a)
and (b) from Exercise 4.1.

4.3. Let T1 be a complete V1-theory and let T2 be a complete V2-theory. Show
that T1 ∪ T2 is consistent if and only if ϕ1 ∧ ϕ2 is satisfiable for every
ϕ1 ∈ T1 and ϕ2 ∈ T2.

4.4. Let ϕ be a first-order sentence that is not contained in any complete theory.
Show that {ϕ} � ¬ϕ.

4.5. Let ϕ(x) be a quantifier-free V-formula. Let C = {c1, c2, c3, . . .} be a
denumerable set of constants that do not occur in V. Let V(C) = V ∪ C.
Show that the sentence ∃xϕ(x) is a tautology if and only if the sentence
ϕ(t1) ∨ ϕ(t2) ∨ · · · ∨ ϕ(tn) is a tautology for some n ∈ N and V(C)-terms
t1, . . . , tn.

4.6. Let V be a vocabulary containing denumerably many constants
{c1, c2, c3, . . .}. Let T be a V-theory having the following two properties.
• If T |= ∃xθ(x), then T |= θ(ci) for some i ∈ N.

• T |= ci �= cj for any i, j ∈ N with i �= j.
Show that T is complete.

194 Properties of first-order logic

4.7. Let T be an incomplete V-theory and let θ be a V-formula. Suppose that
for each M |= T there exists a V-formula ϕM such that M |= θ ↔ ϕM .
Show that there exists finitely many V-formulas ϕ1, . . . ,ϕn such that T �∨n

i=1(θ ↔ ϕi).

4.8. Let V be a vocabulary that contains only constants (and neither functions
nor relations). LetM andN be two infinite V-structures. Using the Tarski-
Vaught Criterion, show that if M ⊂ N , then M ≺ N .

4.9. Let R be the structure (R|+, ·, 0, 1,<) having the real numbers as an
underlying set that interprets the vocabulary in the usual manner.
(a) Show that there exists an elementary extension M of R that has

infinitesimals (an element c is an infinitesimal if 0 < c < 1/n for
each n ∈ N).

(b) Let UM be the underlying set of M . Show that the set of infinites-
imals in UM has the same size as the set of infinite elements in UM

(an element c is infinite if n < c for each n ∈ N).

4.10. Let N be the V-structure (N|+, ·, 1) from Exercise 2.7. By part (c) of
Exercise 2.7, there exists a V-formula λ(x, y) such that, for any a and b in
N, N |= λ(a, b) if and only if a < b. By the Upward Löwenheim–Skolem
theorem, N has an elementary extension M of cardinality ℵ1.
(a) Let c be in the universe of M . Show that c is not in N if and only if

M |= λ(n, c) for each n ∈ N. Call such an element c “infinite.”

(b) Show that there is no least infinite number in the universe of M .
(That is, for every infinite c, there exists an infinite d such that
M |= λ(d, c).)

(c) By part (b) of Exercise 2.7, there exists a V-formula π(x) such that,
for any n ∈ N, N |= π(n) if and only if n is prime. Show that
M |= π(c) for some infinite c. Call such a c an “infinite prime.”

(d) Show that there cannot be two consecutive infinite primes in the
universe of M . (a and b are consecutive if a+ 1 = b.)

(e) Let ϕ(x) be a V-formula. Show that the following are equivalent:
(i) N |= ϕ(n) for infinitely many n ∈ N.

(ii) M |= ϕ(c) for some infinite c.

(iii) There exists an elementary extension M1 of M such that

M1 |= ϕ(a) for ℵ23 many elements a in its universe.

4.11. A graph is said to be k-colorable if the vertices can be colored with k
different colors in such a way that no two vertices of the same color share
an edge.

A graph is said to be planar if it can be drawn on the Euclidian plane
in such a way that no two edges cross each other. The Four Color Theorem
states that any planar graph is four-colorable. This famous theorem was

Properties of first-order logic 195

proved by Appel and Haken in 1976. Assuming that this theorem is true
for finite graphs, prove that it is true for infinite graphs.
(Hint: Given an infinite planar graph G, consider the union of D(G) and a
suitable set of V ′-sentences where V ′ an expansion of VR containing unary
relations representing each of the colors.)

4.12. The relation < is a partial order on a set A if
1. for all a and b in X, at most one of the following hold: either a < b,

b < a, or a = b, and

2. for all a, b and c in X, if a < b and b < c then a < c.
If it is also true that either a < b or b < a for distinct a and b in A, then
the partial order is a linear order. Using the compactness of first-order
logic, show that any partial order on a set A can be extended to a linear
order on A.
(Hint: First use induction to show that this is true for finite A.)

4.13. Let T be the set of all sentences in the vocabulary VR that hold in every
connected graph. Show that there exists a model G of T that is not a
connected graph.

4.14. Derive the Compactness theorem from the Completeness theorem.

4.15. Let T be the set of all sentences in the vocabulary V< = {<} that hold in
every well ordered set. Show that there exists a model M of T that does
not interpret < as a well ordering of the underlying set of M .

4.16. Let M be a V-structure having underlying set U . For any n-tuple ā of ele-
ments from U , let 〈ā〉 be the substructure of M generated by ā as defined
in Exercise 2.34. Show that M can be embedded into a model of a theory
T if and only if 〈ā〉 can be embedded into a model of T for every finite
tuple ā of elements from U .

4.17. Let F be a set of formulas having an infinite vocabulary V. Show that
|F| = |V|.

4.18. Show that the order � defined in the proof of Theorem 4.15 makes δ × δ
a well ordered set.

4.19. For any set A of cardinals, let supA denote the least cardinal λ such that
κ ≤ λ for each κ ∈ A. Let α be an infinite ordinal and let {κι | ι < α} be
a set of cardinals. Show that Σι<ακι = sup{|α|,κι|ι < α}.

4.20. Show that the following equalities hold for any ordinal α and any car-
dinal κ,∑

ι<α κ = κ · |α|, and
Πι<ακ = κ|α|.

4.21. Prove that there are uncountably many countable ordinals.

4.22. Let α1 > α2 > α3 > · · · be a descending sequence of ordinals. Show that
there can be only finitely many ordinals in this sequence.

196 Properties of first-order logic

4.23. Let T be a complete theory. Let α be a nonzero ordinal. For each β < α,
let Mβ be a model of T .
(a) Show that there exists a model D of T such that each Mβ can be

elementarily embedded into D.

(b) Show that we can findD in part (a) so that |D| ≤ |α|·|Mβ | for each β.

4.24. Prove Theorem 4.61.

4.25. Let T be a V-theory. Let T∀ be the set of all universal sentences ψ such
that T � ψ. Let M be a V-structure that models T∀. Show that M can be
embedded into a model of T .

4.26. Let T be a V-theory and let ϕ(x) and ψ(x) be two V-formulas. Suppose
that, for any models M and N of T with N ⊂M ,

if M |= ϕ(a) then N |= ψ(a)

for any element a in the universe of N .
Show that there exists a universal V-formula θ(x) such that T � ϕ(x) →
θ(x) and T � θ(x) → ψ(x).

4.27. Let T be an incomplete V-theory and let ϕ(x̄) be a V-formula having n free
variables (for n ∈ N). LetM be a model of T having underlying set UM .
(a) Suppose that M |= ϕ(ā) if and only if M |= ϕ(b̄) for any n-tuples ā

and b̄ of elements of UM that satisfy the same atomic V-formulas
in M . Show that M |= ϕ(x̄) ↔ ψ(x̄) for some quantifier-free
V-formula ψ(x̄).

(b) Show that ϕ(x̄) is not necessarily T -equivalent to a quantifier-free
formula by providing appropriate example.

4.28. Let T be a V-theory and let ϕ(x1, . . . ,xn) be a V-formula. Prove that the
following are equivalent:
(i) ϕ(x1, . . . ,xn) is T -equivalent to a quantifier-free formula.

(ii) For any model M of T and any V-structure C, if f : C → M and
g : C →M are two embeddings of C into M , then

M |= ϕ(f(c1), . . . , f(cn)) if and only if M |= ϕ(g(c1, . . . , cn))

for any n-tuple of elements from the underlying set of C.
(Hint: see Exercise 2.34.)

4.29. Prove Proposition 4.70.

4.30. For any V-theory T , let T∀∃ be the set of ∀2 V-sentences that can be
derived from T . Prove that the following are equivalent:
(i) T∀∃ � T .

(ii) If M is the union of a chain of models of T , then M |= T .

Properties of first-order logic 197

(iii) Let M be a V-structure having underlying set U . If for every a ∈ U ,
there exists N ⊂M such that a is in the universe of N and N |= T ,
then M |= T .

4.31. Let V be a vocabulary and let R be an n-ary relation not in V. Let T be an
incomplete theory in the vocabulary V∪{R}. Suppose that, for eachM |=
T , there exists a V-formula ϕM (x̄) such that M |= R(x̄) ↔ ϕM (x̄). Prove
that R is explicitly defined by T in terms of V. (Hint: see Exercise 4.7.)

4.32. (Lyndon) Refer to Exercise 2.33. A formula is said to be positive if it
does not contain the symbols ¬, →, nor ↔. Let T be a V-theory and let
ϕ be a V-formula. Show that the following are equivalent:
(i) ϕ is T -equivalent to a positive formula.

(ii) ϕ is preserved by every homomorphism f : M → N that is onto
where both M and N are models of T .

4.33. (Lyndon) Let ϕ and ψ be V-sentences in conjunctive prenex normal form.
A relation R is said to occur negatively in ϕ if ¬R occurs as subformula.
Prove that if |= ϕ → ψ then there exists a V-sentence θ in conjunctive
prenex normal form such that |= ϕ → θ, |= θ → ψ, and every relation
that occurs negatively in θ also occurs negatively in both ϕ and ψ. (Hint:
Modify the proof of Theorem 4.65.)

4.34. Let V1 and V2 be two vocabularies. Let V = V1 ∩ V2. Let M be a
V1-structure, N be a V2-structure, C be a V-structure. Let f1 : C → M

and f2 : C → N be V-elementary embeddings. Show that there exist

(V1 ∪ V2)-structure D,
V1-elementary embedding g1 :M → D, and
V2-elementary embedding g2 : N → D

such that g1(f1(c)) = g2(f2(c)) for each c in the underlying set of C.

4.35. Derive Robinson’s Joint Consistency lemma from Compactness and
Craig’s Interpolation theorems.

4.36. Show that the Beth Definability theorem holds for functions as well as
relations.

4.37. Let M be the structure (Z|S) that interprets the binary relation S as
the successor relation on the integers. Let N = (Z|S,<) be the expan-
sion of M that interprets the binary relation < as the usual order. Let
T = Th(N).
(a) Show that N is the only expansion of M to a the vocabulary {S,<}

that models T .

(b) Show that < is not explicitly defined by T in terms of {S}.

5 First-order theories

We continue our study of Model Theory. This is the branch of logic concerned
with the interplay between sentences of a formal language and mathematical
structures. Primarily, Model Theory studies the relationship between a set of
first-order sentences T and the class Mod(T) of structures that model T .

Basic results of Model Theory were proved in the previous chapter. For
example, it was shown that, in first-order logic, every model has a theory and
every theory has a model. Put another way, T is consistent if and only if Mod(T)
is nonempty. As a consequence of this, we proved the Completeness theorem.
This theorem states that T � ϕ if and only if M |= ϕ for each M in Mod(T). So
to study a theory T , we can avoid the concept of � and the methods of deduction
introduced in Chapter 3, and instead work with the concept of |= and analyze
the class Mod(T). More generally, we can go back and forth between the notions
on the left side of the following table and their counterparts on the right.

Formal languages Mathematical structures

Theory Elementary class

T Mod(T)

Th(M) M

� |=
Sentences Models

Formulas Definable subsets

Consistent Satisfiable

Syntax Semantics

Progress in mathematics is often the result of having two or more points
of view that are shown to be equivalent. A prime example is the relationship
between the algebra of equations and the geometry of the graphs defined by the
equations. Combining these two points of view yield concepts and results that
would not be possible in either geometry or algebra alone. The Completeness
theorem equates the two points of view exemplified in the above table. Model
Theory exploits the relationship between these two points of view to investigate
mathematical structures.

First-order theories 199

First-order theories serve as our objects of study in this chapter. A first-
order theory may be viewed as a consistent set of sentences T or as an elementary
class of structures Mod(T). We shall present examples of theories and consider
properties that the theories may or may not possess such as completeness, cat-
egoricity, quantifier-elimination, and model-completeness. The properties that a
theory possesses shed light on the structures that model the theory. We ana-
lyze examples of first-order structures including linear orders, vector spaces, the
random graph, and the complex numbers. In the final section, we use the model-
theoretic properties of the theory of complex numbers to prove a fundamental
result of algebraic geometry.

As in the previous chapter, all formulas are first-order unless stated
otherwise. In particular, all theories are sets of first-order sentences.

5.1 Completeness and decidability
We demonstrate several examples of theories in this section. Variations of these
theories are used throughout this chapter to illustrate the concepts to be intro-
duced. Although any consistent set of sentences forms a theory, we typically
restrict our attention to those theories that are deductively closed.

Definition 5.1 Let Γ be a set of sentences. The deductive closure of Γ is the set
of all sentences that can be formally derived from Γ. If Γ equals its deductive
closure, then Γ is said to be deductively closed.

Given a deductively closed theory, we consider the question of whether or
not the theory is complete. To show that a V-theory T is complete, we must show
that, for every V-sentence ϕ, either ϕ ∈ T or ¬ϕ ∈ T . It is a much easier task
to show that T is incomplete. To accomplish this, it suffices to produce only one
sentence ϕ such that neither ϕ nor ¬ϕ is in T . Instead of considering V-sentences,
we can consider V-structures. To show that T is incomplete, it suffices to find
two models of T that are not elementarily equivalent. This is also a necessary
condition for T to be incomplete.

Proposition 5.2 Let T be a deductively closed theory. Then T is incomplete
if and only if there exist models M and N of T that are not elementarily
equivalent.

Proof First suppose that T is incomplete. Then there exists a sentence ϕ such
that neither ϕ nor ¬ϕ is in T . Since T is deductively closed, neither ϕ nor ¬ϕ
can be derived from T . This happens if and only if both T ∪ {ϕ} and T ∪ {¬ϕ}
are consistent. By Theorem 4.27, if these sets of sentences are consistent, then
they are satisfiable. So if T is incomplete, then, for some V-sentence ϕ, there

200 First-order theories

exist models M |= T ∪ {ϕ} and N |= T ∪ {¬ϕ}. Clearly, such M and N are not
elementarily equivalent.

Conversely, if there exist models M and N of T that are not elementarily
equivalent, then there must be some sentence ϕ such that M |= ϕ and N |= ¬ϕ.
If this is the case, then T must be incomplete.

Theories shall be presented in one of two ways. We may define T to be
Th(M) for some structure M . Such theories are necessarily complete by Propos-
ition 2.86. Similarly, given a class of structures, we may define T to be the set of
all sentences that hold in each structure in the set. In this case, T is complete if
and only if the given structures are elementarily equivalent to one another. So if
there are two or more structures in the class, then the theory T defined in this
manner might be incomplete.

Example 5.3 Let VR = {R} and VE = {E} be vocabularies consisting of a single
binary relation.

• Let TG be the set of all VR-sentences that hold in every graph. This is the
theory of graphs.

• Let TE be the set of all VE-sentences that hold in every structure that
interprets E as an equivalence relation. This is the theory of equivalence
relations.

Since there exist finite models of TG and TE of different sizes, neither of these
theories is complete.

Another way to define a theory T is to explicitly state which sentences are
contained in T . Usually, T contains infinitely many sentences and we cannot
simply list all of them. To present such a theory T , it suffices to provide a set of
sentences Γ so that T is the deductive closure of Γ. That is, we axiomatize the
theory.

Definition 5.4 Let T be a theory. An axiomatization of T is a subset Γ of T that
has the same deductive closure of T (that is, Γ � ϕ for each ϕ ∈ T). We say that
Γ axiomatizes T and that T is axiomatized by Γ.

Example 5.5 The theory of graphs TG is the deductive closure of the two
VG-sentences

∀x¬R(x,x) and ∀x∀y(R(x, y) ↔ R(y,x)).

This agrees with our previous definition of TG. These two definitions are equi-
valent because a “graph,” by definition, is a structure that models these two
sentences. Likewise, by the definition of “equivalence relation” the VE-theory

First-order theories 201

TE is the deductive closure of the VE-sentences

∀xE(x,x),

∀x∀y(E(x, y) → E(y,x)), and

∀x∀y∀z((E(x, y) ∧ E(y, z)) ↔ E(x, z)).

Of course, any theory T is an axiomatization of itself. This fact is neither
interesting nor useful. An axiomatization is useful if it is somehow simpler than
T . For example, whereas the theories TG and TE both contain infinitely many
sentences, the axiomatizations of these theories are finite and easy to understand.

It is common practice in pure mathematics to define concepts by providing
axiomatizations. However, not all axiomatizations are first-order axiomatiza-
tions. Our definition of axiomatization is more restrictive than the colloquial use
of this word in mathematics. If we open a book on, say, real analysis, then we
might see a set of axioms or postulates from which the theory is derived. For
example, on page 17 of Ref. [42] we see the following axiom for the real numbers.

Completeness axiom. Every nonempty subset S of R that is bounded
above has a least upper bound.

We mentioned this property of the real numbers in Section 2.4.3. Although it is
a precise and formal statement, we cannot translate it to a sentence of first-order
logic. To say “for all subsets S” we must quantify over subsets (as opposed to
elements) of the set R. We can do this in second-order logic, but not first-order
logic.

Although not all axiomatizations can be translated to the language of first-
order logic, there are many that can be. Of the plethora of possible examples in
pure mathematics, we presently give three. These three examples are standard
definitions of concepts that can be found in books on algebra, geometry, and
logic, respectively.

Example 5.6 A group is defined as a set G equipped with a binary operation ◦,
such that the following hold:

(Closure) If a and b are in G, then so is a ◦ b.
(Associativity) For every a, b, and c in G, a ◦ (b ◦ c) = (a ◦ b) ◦ c
(Existence of identity) There is an element e in G such that a◦e = e◦a = a
for every a in G.
(Existence of inverses) For any a in G, there exists an element a−1 of G
such that a ◦ a−1 = a−1 ◦ a = e.

These sentences can easily be expressed as first-order sentences in the vocabulary
{◦, e} where ◦ is a binary function and e is a constant. In Exercise 2.5, they are

202 First-order theories

expressed in the vocabulary Vgp = {+, 0}. Let Tgp be the deductive closure of
these Vgp-sentences. This is the theory of groups. Note that we do not need to
state the closure axiom, since, for any function f , the sentence ∀x̄∃y(f(x̄) = y)
is a tautology of first-order logic.

Example 5.7 A projective plane is a set lines each of which is comprised of points
in such a way that any two lines intersect in exactly one point and any two
points are contained in exactly one line. Moreover, to rule out trivial examples,
a projective plane must have at least four points and four lines.

We can translate this definition to a set of first-order sentences in the
vocabulary Vpg = {P ,L, I}. This vocabulary contains two unary relations P
(for “points”) and L (for “lines”) and one binary relation I (the “incidence rela-
tion”). The relation I(x, y) is used to express “x is a point contained on the
line y.” We leave it to the reader to formalize the above definition as a set of
Vpg-sentences. Let Tpg denote the deductive closure of these sentences. This is
the theory of projective planes. Note that the axiomatization of Tpg is symmetric
with respect to P and L. That is, if we replace P with L and vice versa, then
this set of sentences remains the same. It follows that for any sentence in Tpg,
if we swap P and L we obtain another sentence of Tpg. This is the fundamental
principle of duality for projective planes.

Example 5.8 In Section 4.2, we defined the concept of a linearly ordered set
as follows. The relation < is a linear order on structure M if M models the
V<-sentences

∀x∀y((x < y) → ¬(y < x)),

∀x(¬(x < x)),

∀x∀y((x < y) ∨ (y < x) ∨ (x = y)), and

∀x∀y∀z(((x < y) ∧ (y < z)) → (x < z)).

Let TLO be the deductive closure of these sentences. We refer to TLO as the
theory of linear orders.

So there are two ways to define a particular theory. It can be defined in terms
of a class of structures or in terms of a set of sentences. We defined the theory of
groups Tgp in terms of a set of sentences (an axiomatization). Equivalently, we
could define Tgp as the set of all Vgp-sentences that hold in all groups. Of course,
this definition would not be helpful to a reader who is not previously familiar
with groups. Another way that this latter definition is inferior is that it does not
provide a method for determining precisely which sentences are in Tgp. If we are
given an axiomatization Γ of a theory T , then (theoretically if not practically)

First-order theories 203

we can determine whether or not a sentence is in T using the methods described
in Chapter 3.

Definition 5.9 A V-theory T is decidable if there exists an algorithm that will
determine, in a finite number of steps, whether or not any given V-sentence ϕ
is in T .

Proposition 5.10 A complete countable theory is decidable if and only if it has
an axiomatization that is decidable.

Proof Let T be a complete countable V-theory. Since T is an axiomatization of
itself, only one direction of this proposition requires proof. Suppose we are given
a decidable axiomatization Γ of T . We want to show that T is decidable. Let
ϕ be an arbitrary V-sentence. We must describe a way to determine whether or
not ϕ is in T .

Since T is countable, so is the set of all V-sentences. So the set of all V-
sentences can be enumerated as {ψ1,ψ2,ψ3, . . .}. Moreover, we can find such
an enumeration in a systematic way. For example, if V is finite, then we can
list the finitely many sentences that have no more than 10 symbols followed by
those that have no more that 20 symbols, and so forth. Since Γ is decidable,
we can determine whether or not each ψi is in Γ in a finite number of steps. So
there exists an enumeration {γ1, γ2, γ3, . . .} of Γ and an algorithm that, for given
n ∈ N, produces the finite set {γ1, γ2, . . . , γn}.

To determine whether or not ϕ is in T , we use the methods of Chapter 3
(either formal proofs, Herbrand’s method, or resolution) to determine whether
or not ϕ can be derived from Γ. For example, we can list every formal proof that
has fewer than 1000 steps that can be derived from {γ1, . . . , γ10}. There are only
finitely many such proofs.

If Γ � ϕ occurs in one of these proofs, then we conclude “yes, ϕ is in T .”
If Γ � ¬ϕ occurs in one of these finitely many proofs, then we conclude “no,

ϕ is not in T .”
Otherwise, if neither Γ � ϕ nor Γ � ¬ϕ occurs, then we proceed to check

more formal proofs. We can list every formal proof that has fewer than 2000
steps that can be derived from {γ1, . . . , γ20}. If that is not enough, we can
then list every formal proof that has fewer than 3000 steps that can be derived
from {γ1, . . . , γ30}, and so forth. Since T is complete, either Γ � ϕ or Γ � ¬ϕ. By
compactness, the procedure we have described will eventually (in a finite number
of steps) find a formal proof for either Γ � ϕ or Γ � ¬ϕ.

This procedure is not practical, to say the least. We would not want to (nor
be able to) actually list all of these formal proofs. However, the definition of
“decidable” requires only the existence of an algorithm. It does not have to be
a good algorithm. By this definition, T is decidable.

204 First-order theories

Of the two ways to define a theory, it is better to provide an axiomatization.
If an axiomatization is not given, then it is desirable to find one. However, this
is not always an easy task. In some cases, it may be difficult or impossible to
provide an axiomatization for a theory.

Example 5.11 Let Tar = Th(A) where A = (Z|+, ·, 0, 1) is as in Section 2.4.3.
This is the theory of arithmetic. Although this is a perfectly well defined theory,
we cannot provide a decidable axiomatization for it. The theory of arithmetic is
undecidable. This is a consequence of Gödel’s Incompleteness theorems that are
the subject of Chapter 8.

Structures that have undecidable theories clearly do not lend themselves well
to model-theoretic analysis. In the present chapter, we restrict our attention to
first-order theories that are most accessible and do not consider undecidable
theories.

Example 5.12 Let Vs = {s} where s is a unary function. Let Zs = (Z|s) be the
Vs-structure that interprets s as the successor function on the integers. That is,
for integers a and b, Zs |= s(a) = b if and only if b = a+ 1. Let Ts = Th(Zs).

This is an unambiguous definition of Ts. There is only one Vs-theory fitting
this description. Now suppose that we want to provide an axiomatization for
Ts. That is, from among the infinitely many sentences in Ts, we want to find a
subset that succinctly describes this theory. One way to proceed is to ask: what
are the salient features of the structure Zs? If you were to describe this structure
to someone who had no idea what the integers looked like, what would you say?
There is no first element. There is no last element. The successor of any element
is unique as is the predecessor. We can express these things with Vs-sentences.

Let σ1 be the sentence ∀x∃y(s(y) = x), and
let σ2 be the sentence ∀x∀y(s(x) = s(y) → x = y).

The first of these says that every element has a predecessor (there is no “first”
element). The second of these sentences implies the uniqueness of the predecessor.
We do not need to say that every element has a unique successor. Since any model
interprets s as a function, the sentences

∀x∃y(s(x) = y) and ∀x∀y(x = y → s(x) = s(y))

are tautologies.
To axiomatize the Vs-theory Ts we are merely listing some of the sen-

tences that hold in the Vs structure Zs. The problem is knowing when we
are done. So far, we have listed the two sentences σ1 and σ2. Together these
sentences say that s is one-to-one and onto. This is not enough. By Pro-
position 2.86, Ts = Th(Zs) is a complete theory. The set {σ1,σ2} is not

First-order theories 205

complete. There are finite models of these two sentences. An axiomatization
of Ts must forbid finite cycles. That is, we must include sentences to say
that for all x, s(x) �= x, s(s(x)) �= x, s(s(s(x))) �= x, and so forth. For
each n ∈ N, let θn be the Vs-sentence ∀x¬sn(x) =x where sn(x) abbreviates
s(s(s · · · s︸ ︷︷ ︸

n times

(x))).

Let Γs = {σ1,σ2, θn|n ∈ N}. If the deductive closure of Γs is complete, then we
are done. Otherwise, to obtain an axiomatization of Ts, we must proceed to add
more sentences to Γs. We return to this example in Example 5.20 and show that
Γs is indeed an axiomatization of Ts. It follows that Ts is decidable.

We need a way to verify that a given V-theory T is complete. As we remarked
at the outset, this is a more difficult task than showing that T is incomplete. It
is not difficult to show that the theories TG, TE , Tgp, and TLO are incomplete.
Throughout this chapter, we will consider examples of complete theories that
contain these theories as subsets. One of our goals in this chapter is to define
various criteria that imply completeness.

5.2 Categoricity
A theory is complete if and only if all models of the theory are elementarily
equivalent. This is a reformulation of Proposition 5.2. In particular, if all its
models are isomorphic, then the theory must be complete. If this is the case,
then we say that there is only one model up to isomorphism and that the theory
is categorical.

Theories describe structures. We distinguish two types of descriptions that
are desirable. A complete description describes its subject entirely. A categorical
description describes its subject uniquely. Let us lift our restriction to first-order
logic for the moment, and suppose that we want to describe an object using
English sentences. Suppose we are in a crowded bar and I want to describe
Dennis to you. If I tell you that Dennis is in the room, is over 2 m tall, has
fuchsia hair, and is wearing sunglasses and a feather boa, then it is likely that
there will be at most one person in the room fitting this description. If there is
exactly one person fitting the description, then the description is categorical. A
categorical description provides only enough information to single out its object
and is not necessarily complete. We cannot deduce all there is to know about a
person from a categorical description. Indeed, our categorical description leaves
many unanswered questions about Dennis.

In English, a complete description is necessarily categorical, but not the
other way around. In the language of first-order logic, since it is a weak language,
this is reversed. A complete theory may not be categorical (it may have more

206 First-order theories

than one model). But, as we pointed out in the opening paragraph, if a theory
is categorical, then it must be complete.

Definition 5.13 A theory is absolutely categorical if it has only one model up to
isomorphism.

Any complete theory having a finite model is absolutely categorical. This
follows from Proposition 2.81 where it was shown that for any finite V-structure
M , there is a V-sentence ϕM that describes M up to isomorphism. By the
Upward Löwenheim–Skolem theorem, these are the only examples of absolutely
categorical theories. If a theory has an infinite model, then it has arbitrarily
large models. In particular, any such theory has models of different cardinalities.
Two structures of different cardinalities cannot possibly be isomorphic.

So absolutely categorical theories are nothing new. This is merely a new
name for complete theories having a finite model. We extend the notion of
categoricity so that it applies to theories having infinite models.

Definition 5.14 Let κ be a cardinal. A theory T is κ-categorical if T has exactly
one model of size κ up to isomorphism.

This definition circumvents the Upward Löwenheim–Skolem theorem. Let
N |= T . If N is not the same size as M , then, of course, N cannot be isomorphic
to M . If T is κ-categorical, then this is the only reason that N may not be
isomorphic to a model M of size κ.

Among theories having infinite models, κ-categoricity is a very strong prop-
erty. As we shall see, we can attain much information about a theory and the
structure of its models merely by knowing for which cardinals κ the theory is
κ-categorical. One basic result is the following:

Proposition 5.15 Let T be a deductively closed theory having only infinite
models. If T is κ-categorical for some κ ≥ |T |, then T is complete.

Proof We prove the contrapositive. Suppose T is not complete. By Proposi-
tion 5.2, there exist M |= T and N |= T such that N �≡M . By Corollary 4.34 of
the Löwenhiem–Skolem Theorems, there exist M ′ ≡ M and N ′ ≡ N such that
|M ′| = |N ′| = κ. Since M ′ �≡ N ′, M ′ and N ′ cannot be isomorphic and T is not
κ-categorical.

Definition 5.16 For any cardinal κ, we say that V-structure M is κ-categorical
if the V-theory Th(M) is κ-categorical.

Whereas all finite structures have theories that are absolutely categorical,
relatively few infinite structures are κ-categorical for some κ. However, although
it is rare, many important structures have this property. Structures that are

First-order theories 207

κ-categorical for infinite κ play a central role in Model Theory. Examples of these
structures include the complex numbers, vector spaces, and the random graph.
We shall investigate these structures and their theories later in this chapter.
Presently, we provide some elementary examples.

Example 5.17 Recall from Section 2.4.1 that a clique is a graph that models
the sentence ∀x∀y(¬(x = y) → R(x, y)) saying that any two distinct vertices
share an edge. Let T be the VR-theory axiomatized by this sentence together
with the sentences that define a graph. Since any two cliques of the same size
are isomorphic, T is κ-categorical for all cardinals κ. Since T has finite models
of different sizes, it is not complete. Suppose that we add to this theory the
sentences

∃x1∃x2 · · · ∃xn

(∧
i �=j

xi �= xj

)

for each n ∈ N. These sentences express that the underlying set contains at least
n elements for each n ∈ N. That is, the universe is infinite. Let Tclique denote
the set of VR-sentences that can be derived from the union of these sentences
with the theory of cliques. Equivalently, Tclique is the set of all VR-sentences that
are true in all infinite cliques. Since Tclique is κ-categorical for infinite κ and has
only infinite models, it is complete by Proposition 5.15.

Example 5.18 Let TE be the VE-theory of equivalence relations from
Example 5.3. Each model of TE is completely determined by the number and
the sizes of its equivalence classes. We describe two models M2 and N2 of TE .

Let M2 have exactly two different equivalence classes each of which is
denumerable.

Let N2 have a denumerable number of equivalence classes each containing
exactly two elements.

So both M2 and N2 have denumerable universes. Let {a1, a2, a3, . . .} and
{b1, b2, b3, . . .} be the underlying sets of M2 and N2, respectively. We depict M2

as tall and thin and N2 as short and fat in Tables 5.1 and 5.2.
We claim that each of these structures is ℵ0-categorical.
Consider first M2. Let M be a countable VE-structure that is elementarily

equivalent to M2. The VE-sentence

∃x∃y(¬E(x, y) ∧ ∀z(E(x, z) ∨ E(y, z))

expresses that there are exactly two equivalence classes. Since M2 models this
sentence, so does M . Also, M2 models the sentences saying that each element
has at least n elements in its equivalence class for each n ∈ N. SinceM2 ≡M , M
also models these sentences. So M , like M2, has two denumerable equivalence

208 First-order theories

Table 5.1 VE-structure M2

. .

. .

. .

a5 a6

a3 a4

a1 a2

Table 5.2 VE-structure N2

b2 b4 b6 b8 . . .

b1 b3 b5 b7 . . .

classes. It follows that each equivalence class M can be put into one-to-one
correspondence with either of the equivalence classes of M2. Since they have
the same number of equivalence classes, M2 and M are isomorphic and M2 is
ℵ0-categorical.

We now show that N2 is κ-categorical for any infinite κ. Let κ be infinite
and let N and N ′ be two VE-structures of size κ that are both elementarily
equivalent to N2. Then each equivalence class of either N or N ′ must contain
exactly two elements (since this can be expressed with a first-order sentence).
Since κ is infinite, both N and N ′ have κ many equivalence classes. So the
equivalence classes of N can be put into one-to-one correspondence with the
equivalence classes of N ′. Since all equivalence classes have the same number of
elements, N and N ′ are isomorphic and N2 is κ-categorical as was claimed.

We return now to M2 and show that this structure, unlike N2, is not κ-
categorical for uncountable κ. This follows from the fact that first-order logic
cannot distinguish between one infinite cardinal and another. Whereas we can
define a set of VE-sentences to say that each equivalence class is infinite, we
cannot say that each equivalence class has size ℵ0 or size ℵ23 nor specify any
other infinite cardinality. For any cardinals λ and κ, letMλκ be the VE-structure
having one equivalence class of size λ, one of size κ, and no other equivalence
classes. Then Mλκ ≡ M2 for any infinite λ and κ. If λ < κ, then Mλκ is not
isomorphic to Mκκ. Moreover,

|Mκκ| = 2 · κ = κ = κ+ λ = |Mκλ|.

It follows that M2 is not κ-categorical for uncountable κ as we claimed.

First-order theories 209

Definition 5.19 Let T be a theory having only infinite models.

T is countably categorical if it is ℵ0-categorical.
T is uncountably categorical if it is κ-categorical for all uncountable κ.
T is totally categorical if it is κ-categorical for all infinite κ. That is, if it is
both countably and uncountably categorical.

The theory Th(M2) from Example 5.18 is countably categorical but not
uncountably categorical. The theory Th(N2) from that example is totally cat-
egorical as is the theory Tclique from Example 5.17. We now demonstrate an
example of an uncountably categorical theory that is not countably categorical.

Example 5.20 Recall the Vs-theory Ts = Th(Zs) from Example 5.12. Recall too
the set Γs of Vs-sentences expressing that s is a one-to-one and onto function
having no finite cycles. We claim that Γs axiomatizes Ts. To do verify this, we
show that every model of Γs is also a model of Ts. Let us consider some specific
models of Γs.

Let Z2 be a VS-structure having underlying set

{. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} ∪ {. . . , a−3, a−2, a−1, a0, a1, a2, a3, . . .}.

Let Z2 interpret s the same way as Zs on the integers. Further, suppose that
Z2 |= s(ai) = aj if and only if j = i + 1. Then Z2 interprets s as a one-to-one
onto function having no finite cycles. So Z2 |= Γs. We say that such Z2 contains
two copies of Z. Likewise, we can define models of Γs having any number of
copies of Z. For any nonzero cardinal κ, let Zκ be the Vs-structure containing
κ copies of Z. (So Z1 is Zs.)

Let κ be an uncountable cardinal. Let N be a model of Γs of size κ. For
any element a0 in the universe UN of N , there must exist a unique successor
a1 and predecessor a−1 in UN . There must also exist successor a2 of a1 and
predecessor a−2 of a−1, and so forth. Since N has no finite cycles, each element
a0 ∈ UN is contained in a copy of Z. Since |N | = κ, N must contain κ copies
of Z. It follows that N ∼= Zκ. So Zκ is the only model of Γs of size κ up to
isomorphism and Γs is κ-categorical for all uncountable κ. By Proposition 5.15,
the deductive closure of Γs is the complete theory Ts. Since the nonisomorphic
models Z1,Z2,Z3, . . . ,Zℵ0 are each countable, Ts is not ℵ0-categorical.

We have demonstrated the existence of theories that are countably categor-
ical and not uncountably categorical, theories that are uncountably categorical
and not countably categorical, and theories that are totally categorical. We shall
also see examples of theories that are not κ-categorical for any κ. For complete
countable theories having infinite models, these are the only four possibilities.
This is a consequence of Morley’s theorem.

210 First-order theories

Theorem 5.21 (Morley) Let T be a countable theory. If T is κ-categorical for
some uncountable κ, then T is κ-categorical for all uncountable κ.

Morley’s proof of this theorem introduced methods and concepts to model
theory that would bear fruit far beyond Morley’s theorem itself. The proof gave
rise to the subject of stability theory. We touch upon some of the ingredients of
this proof in Chapter 6 (see Exercise 6.33). However, we do not prove Morley’s
theorem. Instead, we refer the reader to books devoted solely to model theory
such as [29] and [39] and also to more advanced books on stability theory such
as [1] and [6]. Also, for the serious student of model theory, Morley’s original
proof in [32] remains essential reading.

We conclude this section by stating without proof two results regarding
categoricity and finite axiomatizability. Naturally, a theory is said to be finitely
axiomatizable if it is axiomatized by a finite set of sentences. We have seen several
examples of finitely axiomatizable theories including the theory of graphs, the
theory of equivalence relations, the theory of groups, and others. All of these
theories are incomplete. In the next section, we shall see examples of finitely
axiomatizable complete theories having infinite models. Such theories necessarily
contain a sentence that has only infinite models (see Exercises 2.37 and 2.38 for
examples of such sentences). As a rule, most complete theories having infinite
models are not finitely axiomatizable. If we restrict our attention to totally
categorical theories, then we can be more precise.

Theorem 5.22 (Zil’ber) Totally categorical theories are not finitely
axiomatizable.

Recall that the theory of cliques from Example 5.17 is finitely axiomatizable
and κ-categorical for all κ. Since this theory has finite models, it is not totally
categorical. In contrast, the theory Tclique of infinite cliques is totally categorical,
but is not finitely axiomatizable. To axiomatize Tclique we must include sentences
saying that there exist more than n elements for each n ∈ N. Using counting
quantifiers as defined in Exercise 2.20, we can express each of these sentences as
∃≥nx(x = x). This is an example of a quasi-finite axiomatization.

Definition 5.23 A theory T is quasi-finitely axiomatizable if there exists a finite
set F of formulas in one free variable such that T is axiomatized by sentences of
the form ∃≥nxϕ(x) with ϕ(x) ∈ F .

Theorem 5.24 (Hrushovski) If T is totally categorical and has a finite vocabu-
lary, then T is quasi-finitely axiomatizable.

Zil’ber’s and Hrushovski’s theorems are actually corollaries to results regard-
ing the general structure of models of totally categorical theories. Their proofs of
are beyond the scope of this book (these theorems are proved in [38]). We focus

First-order theories 211

on more elementary properties of these theories. In the next section, we prove a
fundamental result regarding countably categorical theories.

5.3 Countably categorical theories
We investigate some specific countably categorical structures. We consider struc-
tures in the vocabulary V< consisting of a single binary relation <. Each of the
examples we consider interprets < as a linear order. In the second part of this
section, we prove a fundamental result that holds for all countably categorical
theories.

5.3.1 Dense linear orders. Consider the closed unit interval of real numbers.
Let R[0,1] be the structure {[0, 1]| <} having the closed interval [0, 1] of real
numbers as an underlying set and interpreting < in the usual way. We list
some V-sentences that hold in R[0,1]. For reference, we label these sentences
as δ1–δ7.

δ1: ∀x∀y((x < y) → ¬(y < x))

δ2: ∀x(¬(x < x))

δ3: ∀x∀y((x < y) ∨ (y < x) ∨ (x = y))

δ4: ∀x∀y∀z(((x < y) ∧ (y < z)) → (x < z))

δ5: ∀x∀y((x < y) → ∃z(x < z ∧ z < y))
δ6: ∃x∀y((x = y) ∨ (x < y))

δ7: ∃x∀y((x = y) ∨ (y < x)).

The first four of these sentences say that < is a linear order. Recall from
Example 5.8 that the theory TLO is defined as the set of all consequences of
these four sentences. The sentence δ5 says that between any two elements, there
exists another element. That is, the linear order is dense (see Section 2.4.3).
Finally, δ6 says that there exists a smallest element and δ7 says that there exists
a largest element.

Let TDLOE denote the set of V<-sentences that can be derived from the
above seven sentences. This is the theory of dense linear orders with endpoints.
Clearly, R[0,1] |= TDLOE . We claim that Th(R[0,1]) = TDLOE . To show this, we
must verify that TDLOE , unlike TLO, is a complete theory. We prove something
stronger.

Proposition 5.25 TDLOE is ℵ0-categorical.
Proof Let M and N be two models of TDLOE of size ℵ0. We show that M
and N are isomorphic. Let UM and UN denote the underlying sets of M and N

212 First-order theories

respectively. Enumerate these sets as follows:

UM = {a1, a2, a3, . . .} and UN = {b1, b2, b3, . . .}.

SinceM and N model δ6 and δ7, these sets must contain a smallest and a largest
element (with respect to the order <). We may assume that a1 and b1 are the
smallest elements in each set and a2 and b2 are the largest elements.

We construct an isomorphism f : M → N step-by-step. In each step we
define f for two elements of UM :

Step 1: Let f(a1) = b1 and f(a2) = b2.
For n > 1, step n has two parts.

Step n: Part a. Let An be the set of all ai ∈ UM for which f(ai) has been
defined in some previous step. Let j be least such that aj is not in An. We define
f(aj). Since An is finite, we can find elements c and d of An so that no element
of An is between these two elements and aj is (that is, c < aj < d or d < aj < c).
In this case, let f(aj) be any element of UN that lies between f(c) and f(d).
Since N |= δ5, such f(aj) exists.

Part b. Let Bn be the set of all bi ∈ UN for which f−1(bi) has been defined
in some previous step (including f(aj) from part a). Let j be least such that bj
is not in Bn. Since Bn is finite, we can find elements c and d of Bn so that no
element of Bn is between these two elements and bj is (that is, c < bj < d or
d < bj < c). In this case, let f−1(bj) be any element of UM that lies between
f−1(c) and f−1(d). Since M |= δ5, such a f−1(bj) exists.

After completing step n for all n ∈ N, the function f is completely defined.
Since f(ai) is defined in Step i (part a) if not before, each ai is in the domain of
f . Moreover, f(ai) is defined exactly once. So f has domain UM and is one-to-
one. Also, since f−1(bi) is defined in Step i (part b) if not before, f is onto. By
design, f preserves the order (ai < aj implies f(ai) < f(aj)). So f is a literal
embedding. By Proposition 2.57, f is an isomorphism as was desired.

Corollary 5.26 TDLOE is complete.

Proof By Proposition 5.15, any ℵ0-categorical theory having only infinite mod-
els is complete. So to show that TDLOE is complete, it suffices show that any
dense linear order is necessarily infinite. If a linear order is finite, then it can be
listed as a1 < a2 < · · · < an for some n ∈ N. Such a linear order is not dense
since there is no element between a1 and a2. So TDLOE has only infinite models
and is complete.

It follows from this corollary that any model of TDLOE is elementarily equi-
valent to R[0,1]. For example, suppose that we restrict the underlying set to the
set of rational numbers in the interval [0, 1]. Let Q[0,1] denote the V<-structure
having this set of rationals as its underlying set and interpreting < as the usual

First-order theories 213

order. This is a countable model of TDLOE . Since this theory is ℵ0-categorical,
it is essentially the only countable model of this theory. Any other countable
model must be isomorphic to Q[0,1]. Moreover, since TDLOE is complete, Q[0,1]

and R[0,1], although not isomorphic, are elementarily equivalent.

Proposition 5.27 For any uncountable cardinal κ, TDLOE is not κ-categorical.

Proof We define a model H[0,2] of TDLOE that has the same size as R[0,1], but is
not isomorphic to R[0,1]. The structure H[0,2] is a hybrid of Q[0,1] and R[0,1]. Its
universe is the union of the set of all rational numbers in the interval [0, 1] and
the set of all real numbers in the interval [1, 2]. Again, this structure interprets
< in the usual way. This structure models TDLOE . Since this theory is complete,
H[0,2] ≡ R[0,1]. Moreover,

|H[0,2]| = |Q[0,1]| + |R[0,1]| = ℵ0 + 2ℵ0 = 2ℵ0 .

So H[0,2] has the same size as R[0,1]. To see that it is not isomorphic to R[0,1],
note that, in R[0,1], there exist uncountably many elements between any two ele-
ments. This is not true in H[0,2]. So an isomorphism between these two models is
impossible and TDLOE is not 2ℵ0-categorical. By Morley’s theorem 5.21, TDLOE

is not κ-categorical for any uncountable κ.

Recall the V<-structures Q< and R< from 2.4.3. Since they have no end-
points, these are not models of TDLOE . We define the theory TDLO of dense linear
orders without endpoints as the set of all V<-sentences that can be derived from
the sentences δ1, δ2, δ3δ4, δ5,¬δ6, and ¬δ7. We negate the sentences saying there
exist a smallest and largest element. Both Q< and R< are models of this theory.

Corollary 5.28 TDLO is ℵ0-categorical.

Proof Any model of TDLO can be extended to a model of TDLOE by adding
smallest and largest elements to the underlying set. If there were non-isomorphic
countable models of TDLO, then these could be extended to non-isomorphic
countable models of TDLOE . Since TDLOE is ℵ0-categorical, so is TDLO.

Corollary 5.29 TDLO is complete.

Proof This is the same as the proof of Corollary 5.26. Since dense linear orders
are necessarily infinite, TDLO has no finite models. By Proposition 5.15, TDLO

is complete.

Corollary 5.30 Q< ≡ R<.

Proof This follows immediately from the fact that Q< and R< are both models
of the complete theory TDLO.

In light of these examples, and specifically of the proof of Proposition 5.25,
we now investigate arbitrary countably categorical theories.

214 First-order theories

5.3.2 Ryll-Nardzewski et al. Categoricity is a property of theories that is
defined in terms of the models of the theory. A theory T is countably categor-
ical if and only if there is exactly one countable model (up to isomorphism) in
Mod(T). As we shall prove, there is a purely syntactic characterization of these
theories. We show that a theory T is ℵ0-categorical if and only if there are only
finitely many formulas in n free variables up to T -equivalence. Equivalently, a
V-structure M having universe U is ℵ0-categorical if and only if, for each n ∈ N,
only finitely many subsets of Un are V-definable.

Proposition 5.31 Let T be a complete V-theory. If there are only finitely
many formulas in n free variables up to T -equivalence for each n, then T is
ℵ0-categorical.

We prove this proposition using a back-and-forth argument. This method of
proof constructs an isomorphism between two structures by alternating back and
forth between the elements of each of the two underlying sets. An example of a
back-and-forth argument is provided by the proof of Proposition 5.25, where it
was shown that any two countable models of TDLOE are isomorphic. The proof of
Proposition 5.31 resembles the proof of Proposition 5.25. In fact, Proposition 5.25
is a special case of this proposition.
Proof of Proposition 5.31 Suppose that there are only finitely many for-
mulas in n free variables up to T -equivalence for each n. We show that T is
ℵ0-categorical.

Let M and N be two models of T of size ℵ0. Let UM and UN denote the
underlying sets of M and N respectively. Enumerate these sets as

UM = {a1, a2, a3, . . .} and UN = {b1, b2, b3, . . .}.

We construct an isomorphism f : M → N step-by-step. In each step, we
define f(ai) for two elements ai of UM .

For n ∈ N, let An be the set of all ai ∈ UM for which f(ai) has been defined
in some step prior to step n. Since An is finite, we may regard it as a tuple of
elements of UM . There are many ways to arrange the elements of a large finite
set into a tuple. For any ai and aj in An, one of the two elements f(ai) and f(aj)
of UN must have been defined before the other. Let ān be the tuple obtained by
arranging the elements of An in the order in which f was defined. Likewise, let
Bn be the corresponding set of all f(ai) ∈ UN for ai ∈ An. Let b̄n be the tuple
obtained by arranging the elements of Bn in the order in which f was defined.

Note that A1 = B1 = ∅. Note too that, since T is complete, N |= ϕ if and
only if M |= ϕ for any V-sentence ϕ.

For n ∈ N, assume that An and Bn have been defined in such a way that
M |= ϕ(ān) if and only if N |= ϕ(b̄n) for any V-formula ϕ in |An| free variables.

First-order theories 215

Step n: Part a. Let j be least such that aj is not in An. We define f(aj).
Let k = |An| = 2(n − 1). By hypothesis, there exists a finite set F of V-

formulas in k+1 free variables so that every V-formula having k+1 free variables
is T -equivalent to a formula in F .

Let Φ(x̄, y) be the conjunction of those formulas ϕ(x̄, y) in F such that
M |= ϕ(ān, aj). Then M |= ∃yΦ(ān, y).

This formula has |An| = k free variables. By the definitions of An and Bn,
N |= ∃yΦ(b̄n, y). It follows that N |= ∃yΦ(b̄n, bi) for some bi ∈ UN .

Let f(aj) = bi.
Part b. Let ā′

n be the tuple (ān, aj) and let b̄′n be the tuple (b̄n, bi), where
aj and bi are as defined in part (a). Let l be least such that bl is not in b̄′n. As
in part (a), we can find an element ai of UM so that M |= ϕ(ā′

n, ai) if and only
if N |= ϕ(b̄′n, bl) for any ϕ in 2n free variables.

Define f(ai) to be bl.
After completing step n for each n ∈ N, the function f is completely defined.

Since f(ai) is defined in Step i (part a) if not before, each ai is in the domain of
f . Moreover, f(ai) is defined exactly once. So f has domain UM and is one-to-
one. Also, since f−1(bi) is defined in Step i (part b) if not before, f is onto. By
design, f preserves all V-formulas and is an isomorphism as was desired.

We now have two ways to show that a given theory is countably cat-
egorical. We can give a back-and-forth argument as we did for TDLOE in
Proposition 5.25. Alternatively, we can show that there are only finitely many
formulas in n free variables up to T -equivalence for each n. This may not
seem practical. However, in Section 5.5 we discuss quantifier elimination and
provide a systematic approach to understanding the definable subsets of certain
structures.

The converse of Proposition 5.31 is also true. The countably categorical the-
ories are precisely those theories that are complete and have few formulas (finitely
many in n free variables for each n). Since this was proved by Ryll-Nardzewski
in a 1959 paper, it is commonly referred to as the Ryll-Nardzewski theorem.
Since it also appeared in 1959 in separate papers by Engeler and Svenonius, it is
sometimes referred to as the Engeler–Ryll-Nardzewski–Svenonius theorem. We
opt for brevity and refer to it as Theorem 5.32.

Theorem 5.32 A complete theory T is ℵ0-categorical if and only if, for
each n ∈ N, there are only finitely many formulas in n free variables up to
T -equivalence.

One direction of this theorem was proved as Proposition 5.31. We postpone
the proof of the other direction until Chapter 6 where we shall see several
equivalent characterizations of ℵ0-categorical theories.

216 First-order theories

5.4 The Random graph and 0–1 laws
A random graph is a graph constructed by some random process such as rolling
a die or flipping a coin. The idea of implementing random processes in graph
theory was conceived by Paul Erdös and has served as a powerful tool for this
and other areas of discrete mathematics. In this section, we discuss this idea and
show how it gives rise to a complete first-order theory TRG in the vocabulary of
graphs. We prove that TRG is ℵ0-categorical. Whereas there are many possible
finite random graphs, there is only one denumerable random graph. From this
fact we deduce a 0–1 law for first-order logic.

We assume basic knowledge of probability.
Suppose that we have a set of vertices and want to build a graph. For

example, suppose that we have five vertices v1, v2, v3, v4, and v5. To define the
graph, we must decide which pairs of vertices share an edge. Let us take the
random approach and flip a coin to make our decisions. Given any two vertices
(v1 and v2, say) we flip a coin. If the coin lands heads up, then v1 and v2 share an
edge. If the coin lands tails up, then they do not share an edge. We repeat this for
every pair of vertices. Since there are five vertices, there are (5 · 4)/2 = 10 pairs
of vertices to consider. After flipping the coin 10 times, we will have completed
the graph.

Any graph having vertices v1, v2, v3, v4, and v5 is a possible outcome of
this process. Since each of the ten flips of the coin has two possible outcomes,
there are 210 possible graphs. If the coin is fair (landing heads up as frequently
as tails up), then each of these 210 graphs is equally likely. However, two or more
of the outcomes may be isomorphic graphs. So, up to isomorphism, some graphs
are more likely than others. For example, the 5-clique is an unlikely outcome.
To obtain this result, each of our 10 flips of the coin must land heads up. The
probability of this happening is 1/210. It is more likely that the outcome will
have exactly one edge. The probability of this happening is 10/210 (so this will
happen roughly 1% of the time).

There are two ways to compute the probabilities in the previous paragraph.
Suppose we want to compute the probability that the resulting graph has exactly
m edges for some m ≤ 10. Using the formula for binomial probability distribu-
tions, this probability is

(10
m

)
(1
2)10 (where

(10
m

)
= 10!

(10−m)!m! is the number of
ways that m of the 10 edges can be chosen). Alternatively, since each of the
210 graphs are equally likely, this probability can be computed by counting the
number of graphs having exactly m edges and dividing this number by 210. For
example the 5-clique is the only one of the 210 possible outcomes that has 10
edges. So the probability that this happens is 1/210.

More generally, suppose that we randomly construct a graph having vertices
{v1, v2, . . . , vn} for some n ∈ N. There are n(n−1)/2 pairs of vertices to consider.
To ease notation, denote n(n − 1)/2 by e(n) (this is the number of edges in

First-order theories 217

the n-clique). If we construct this graph by flipping a fair coin as before, then
there are 2e(n) possible outcomes each of which is equally likely. Let ϕ be a
VR-sentence. Let Pn(ϕ) be the probability that our randomly constructed graph
models the sentence ϕ. This probability can be computed by counting the number
of outcomes that model ϕ and dividing by the total number of possibilities 2e(n).

Example 5.33 Let ϕ be the sentence ∀x∀y(x = y ∨ R(x, y)). For each n ∈ N,
this sentence holds in only one of the 2e(n) graphs having vertices {v1, . . . , vn}
(namely, the n-clique).

So Pn(ϕ) = 1/2e(n).

(In particular P5(ϕ) = 1/2e(5) = 1/210 as previously noted.)
If n is big, then this probability is close to zero.

Example 5.34 Let ϕ be the VR-sentence saying that the graph has exactly one
edge. For each n ∈ N, the number of graphs having vertices {v1, . . . , vn} that
model this sentence is the number of possible edges e(n).

So Pn(ϕ) = e(n)/2e(n).

If n is big, then this probability is close to zero.

For any V-sentence ϕ and any n ∈ N, Pn(ϕ) + Pn(¬ϕ) = 1. This is because
every graph either models ϕ or ¬ϕ (and not both). So Pn(¬ϕ) = 1 − Pn(ϕ). In
the previous two examples, since Pn(ϕ) approaches zero, Pn(¬ϕ) approaches 1
as n gets large. We express this by using limit notation:

lim
n→∞Pn(ϕ) = 0 and lim

n→∞Pn(¬ϕ) = 1.

The 0–1 Law for Graphs states that, for every VR-sentence θ, either
limn→∞ Pn(θ) = 0 or limn→∞ Pn(θ) = 1. So either θ or its negation almost
certainly holds in any large finite graph. This fact imposes limitations on what
can be expressed by a VR-sentence. For example, the 0–1 Law for Graphs implies
that there is no VR-sentence that holds only in those finite graphs having an even
number of vertices.

We have verified the 0–1 Law for Graphs for a couple of particular sentences
in the above examples. To prove this law, we must consider some other (more
complicated) VR-sentences. For each m ∈ N, let ρm be the VR-sentence

∀x1 · · · ∀xm∀y1 · · · ∀ym


 m∧

i=1


 m∧

j=1

xi �= yj






→ ∃z


 l∧

i=1

R(xi, z) ∧
m∧

j=1

¬ (R(z, yj) ∨ z = yj)


 .

218 First-order theories

This sentence asserts that given any two sets of vertices X = {x1, . . . ,xm} and
Y = {y1, . . . , ym} such that X ∩ Y = ∅, there exists a vertex z not in X ∪ Y
that shares an edge with each vertex in X and with no vertex in Y . Note that
ρm2 implies ρm1 for m1 ≤ m2. We examine ρm for various values of m.

m = 1: The sentence ρ1 states that, for any vertices x and y there exists a
vertex z that shares an edge with x but not y. Since x and z share an edge, they
cannot be equal. Moreover, ρ1 asserts there exists such a z that is not equal to
y. So any model of ρ1 must have at least three vertices corresponding to x, y,
and z. Moreover, reversing the roles of x and y, there must exist a vertex w that
shares an edge with y but not x. So any graph that models ρ1 must have at least
four vertices. In fact, the smallest example has five vertices (take the sides of a
pentagon as edges).

m = 2: Let G be a graph that models ρ2. Let a and b be two vertices of
G. Then, there must exist a vertex c that shares and edge with a but not b and
a vertex d that shares an edge with b but not a. Moreover, there must exist a
vertex e that shares a vertex with both a and b and a vertex f that shares a
vertex with neither a nor b. So there must be at least six vertices, but we are
not done. There must also exist a vertex g that shares an edge with both e and
d and with neither c nor d, and so forth. In contrast to ρ1, it is not an easy task
to draw a graph that models ρ2 (nor is it easy to determine the minimal number
of vertices for such a graph).

m > 2: It becomes increasingly difficult to demonstrate a finite graph that
models ρm as m gets larger. We will not attempt to compute the precise value
for Pn(ρm) for given m and n. However, there are some things that we can say
with certainty regarding this value. As a first observation, a graph that models
ρm must have many vertices. In particular, Pn(ρm) = 0 for n ≤ m. So if m is
small, then so is Pn(ρm). Less obvious is the fact that, for big m, Pn(ρm) is close
to 1. That is,

lim
n→∞Pn(ρm) = 1.

So although it is hard to give a concrete demonstration of a finite graph that
models, say, ρ8, we have a process that will produce such a graph with high
probability. If we construct a graph on the vertices {v1, . . . , vn} by flipping a
coin, then we will most likely obtain a graph that models ρ8 provided that n is
sufficiently large. We prove this key fact as the following lemma.

Lemma 5.35 For each m ∈ N, limn→∞ Pn(ρm) = 1.

Proof Fix m ∈ N.
Given N ∈ N, we compute Pn(¬ρm) where n = N + 2m.
Let G be a graph having n vertices. Let X = {x1, . . . ,xm} and Y =

{y1, . . . , ym} be two sets containing m vertices of G such that X ∩ Y = ∅. If

First-order theories 219

G |= ρm, then there exists a vertex z not in X or Y such that z shares an
edge with each vertex in X and with no vertex in Y . We want to compute the
probability that this is not the case.

For any vertex z of G that is not in X or Y , say that z “works” for X
and Y if z shares and edge with each vertex of X and no vertex of Y . For this
to happen, each flip of the coin must land heads up for the m pairs of vertices
(z,xi) and tails up for the m pairs of vertices (z, yi). The probability of this
happening is 1/22m. So given a particular z, it is unlikely that z works for X
and Y . However, there are N possible vertices we may choose for z. Whereas the
probability that any one of these does not work is (1 − 1/22m), the probability
that all N of the vertices do not work is (1 − 1/22m)N .

Let k = (1 − 1/22m). Since k is between 0 and 1, limN→∞ kN = 0. So if N
is large, then it is likely that there exists a vertex z that works for X and Y even
though the probability that any particular z works is small.

This indicates that it may be likely that a large graph will model ρm. How-
ever, we have not finished the computation. For the graph G to model ρm, there
must exist a vertex z that works for X and Y for all possible X and Y . Since
there are n = N + 2m vertices in G, there are

(
n

2m

)
ways to choose the vertices

in X ∪ Y . There are then
(2m

m

)
ways to choose m of these vertices for the set X

(and the remaining m for set Y). In total, there are

(
n

2m

) (
2m
m

)
=

n!
N !m!m!

<
n2m

m!m!
≤ n2m

possible choices for X and Y . For each choice, the probability that no z works
for X and Y is only kN . For G to model ¬ρm, this must happen for only one of
these choices. Thus,

Pn(¬ρm) ≤ n2mkN = n2mkn/k2m.

Since many of the possible choices for X and Y overlap, this is defin-
itely an overestimate of this probability. However, this estimate serves our
purpose.

Fact lim
n→∞n

2mkn = 0.

This fact follows solely from the fact that k < 1. Using calculus,
it is easy to see that the function x2mkx reaches a maximum at x =
−2m/ ln k. To see that this function then decreases to zero, repeatedly apply
L’Hopital’s rule (2m times) to the expression x2m/k−x having indeterminate
form ∞

∞ .
Finally, since limn→∞ Pn(¬ρm) = 0, limn→∞ Pn(ρm) = 1.

220 First-order theories

We now define the VR-theory TRG. This is the theory of graphs that model
ρm for all m ∈ N. That is, TRG is the VR-theory axiomatized by:

∀x¬R(x,x),

∀x∀y(R(x, y) ↔ R(y,x)),

∃x∃y¬(x = y), and

ρm for each m ∈ N.

Let ∆ be a finite subset of this infinite set of sentences. By Lemma 5.35, ∆ is
satisfied by a preponderance of the finite graphs of size n for sufficiently large
n. Since every finite subset is satisfiable, TRG is satisfiable by compactness. So
TRG is indeed a theory. We show that it is a complete theory.

Proposition 5.36 TRG is ℵ0-categorical.

Proof LetM andN be two denumerable models of TRG. Let UM and UN denote
the sets of vertices of M and N respectively. Enumerate these sets as follows:

UM = {a1, a2, a3, . . .} and UN = {b1, b2, b3, . . .}.

We construct an isomorphism f :M → N using a back-and-forth argument.

Step 1: Let f(a1) = b1.
Step (n + 1): (Part a) Let An be the set of vertices in UM for which f has
been defined in some previous step. Let j be least such that aj is not in An.
Since N |= ρm for arbitrarily large m, there exists a vertex f(aj) such that
N |= R(f(ai), f(aj)) if and only if M |= R(ai, aj) for any ai ∈ An.

(Part b) Let Bn = {f(ai)|ai ∈ An} ∪ {f(aj)}. Let j be least such that bj is
not in Bn. By the same argument as in part a, we can find f−1(bj) as desired.

The function f defined in this manner is a one-to-one function from M onto
N that preserves the edge relation R. It follows that f is an isomorphism and
TRG is ℵ0-categorical.

Definition 5.37 The random graph, denoted by GR, is the unique countable
model of TRG.

Proposition 5.38 Any finite graph can be embedded into any model of TRG.

Proof Let G be a finite graph. Let M be an arbitrary model of TRG. We show
that G embeds into M by induction on n = |G|. Clearly this is true if n = 1.
Suppose that any graph of size m embeds into M for some m ∈ N. Let G
be a graph having vertices {v1, . . . , vm+1}. By our induction hypothesis, the
substructure G′ of G having vertices {v1, . . . , vm} can be embedded into M . Let

First-order theories 221

f : G′ → M denote this embedding. Since M models ρk for arbitrarily large k,
there exists a vertex f(an+1) of M such that M |= R(f(ai), f(an+1)) if and only
if G |= R(ai, an+1) for i = 1, . . . ,n. Thus G is embedded into M . By induction,
any finite graph can be embedded into M .

Proposition 5.39 TRG is complete.

Proof It follows from the previous proposition that TRG has only infinite mod-
els. By Proposition 5.36, TRG is ℵ0-categorical. By Proposition 5.15, TRG is
complete.

Theorem 5.40 (0–1 Law for Graphs) For every VR-sentence θ, either
limn→∞ Pn(θ) = 0 or limn→∞ Pn(θ) = 1.

Proof Recall the axiomatization that was given for TRG. By Lemma 5.35,
limn→∞ Pn(ϕ) = 1 for each sentence ϕ in this axiomatization. It follows that
limn→∞ Pn(ϕ) = 1 for every sentence ϕ in TRG. Since TRG is complete,
either TRG � θ or TRG � ¬θ for every VR-sentence θ. It follows that either
limn→∞ Pn(θ) = 1 or limn→∞ Pn(¬θ) = 1.

This result can be generalized. A vocabulary is relational if it contains no
functions. So relational vocabularies may contain constants as well as relations.
Let Mn be the set of all V-structures having underlying set {1, 2, 3, . . . ,n}. Let
Pn

V (θ) be the number of structures in Mn that model θ divided by |Mn|.

Theorem 5.41 (0–1 Law for Relations) Let V be a finite relational vocabulary.
For any V-sentence θ, either limn→∞ Pn

V (θ) = 0 or limn→∞ Pn
V (θ) = 1.

5.5 Quantifier elimination
Suppose that we want to analyze a given first-order structureM . We could begin
by trying to find an axiomatization for Th(M). Suppose we have accomplished
this and Th(M) is decidable. Then, for any sentence ϕ in the vocabulary ofM , we
can determine whether M |= ϕ or M |= ¬ϕ. However, understanding the theory
Th(M) is only a first step toward understanding the structure M . To analyze
M further, one must be familiar with the definable subsets of the structure.

For example, suppose that we are presented with a rather complicated
graph G. We are given the set of vertices {v1, v2, v3, . . .} along with the set
of all pairs of vertices that share edges in G. Suppose too that we are given a
decidable axiomatization of Th(G). Then for any VR-sentence ϕ, we can determ-
ine whether or not ϕ holds in G. In some sense, this data represents all there is
to know about the structure G. But suppose we want to determine which pairs
of vertices (x1,x2) satisfy the VR-formula ψ(x1,x2) defined by

∀y∃z∀u∃v(R(x1, y) ∧R(y, z) ∧R(z,u) ∧R(u, v) ∧R(v,x2)).

222 First-order theories

If neither ∀x1∀x2ψ(x1,x2) nor ∀x1∀x2¬ψ(x1,x2) hold in G, then it may be a
difficult task to determine whether or not a given pair of vertices satisfies this
formula. In the terminology of Section 4.5.2, ψ(x1,x2) is a ∀4 formula. If you
find the formula ψ(x1,x2) easy to comprehend, then consider a ∀23 formula or
a ∃45 formula. In Chapter 9, we shall introduce a technique that helps us get a
handle on such complicated formulas (pebble games). In the present section, we
study a property that allows us to utterly avoid them.

Definition 5.42 A V-theory T has quantifier elimination if every V-formula
ϕ(x1, . . . ,xn) (for n ∈ N) there exists a quantifier-free V-formula ψ(x1, . . . ,xn)
such that T � ϕ(x1, . . . ,xn) ↔ ψ(x1, . . . ,xn).

Quantifier elimination is a purely syntactic property that greatly facilitates
the study of certain mathematical structures. If a V-theory has this property,
then every V-definable subset of every model is defined by a quantifier-free
formula.

For example, suppose G is a graph that has quantifier elimination. Since
all vertices of a graph satisfy the same quantifier-free formulas (namely x = x

and ¬R(x,x)), any VR-formula in one free variable either holds for all vertices
or no vertices of G. For a pair of distinct vertices x1 and x2 of G, there are
two possibilities: either R(x1,x2) or ¬R(x1,x2) holds in G. In particular, we
can determine whether or not the above ∀4 formula ψ(x1,x2) holds merely by
checking whether or not x1 and x2 share an edge. One of the following two
sentences must be in the VR-theory of G:

∀x1∀x2(R(x1,x2) → ψ(x1,x2)) or ∀x1∀x2(R(x1,x2) → ¬ψ(x1,x2)).

Likewise, any graph having quantifier elimination must model either

∀x1∀x2(¬R(x1,x2) → ψ(x1,x2)) or ∀x1∀x2(¬R(x1,x2) → ¬ψ(x1,x2)).

The goal of this section is to formulate methods that determine whether or
not a given complete theory has quantifier elimination.

5.5.1 Finite relational vocabularies. Let T be a complete theory, and suppose
that we want to determine whether or not T has quantifier elimination. We make
two initial observations.

• Theorem 4.49 provides a sufficient criterion for a formula to be T -equivalent
to a quantifier-free formula.

• To show that T has quantifier elimination, it suffices to check this criterion
only for existential formulas having only one occurences of “∃.”

We elaborate and verify the latter point.
Let T be a V-theory. To show that T has quantifier elimination, we must

show that ϕ(x̄) is T -equivalent to a quantifier-free formula for every V-formula

First-order theories 223

ϕ(x̄) having at least one free variable. One way to do this is to proceed by induc-
tion on the complexity of ϕ(x̄). If ϕ(x̄) is quantifier-free, then there is nothing
to show. Suppose that both ψ and θ are T -equivalent to quantifier-free formu-
las. If ϕ(x̄) is T -equivalent to either of these formulas, their negations, or their
conjunction, then ϕ(x̄) is T -equivalent to a quantifier-free formula. Now suppose
ϕ(x̄) is equivalent to ∃yψ(x̄, y). To show that T has quantifier elimination, it
suffices to show that this formula is T -equivalent to a quantifier-free formula. In
this way, the problem of showing that T has quantifier elimination reduces to
the problem of showing that formulas of the form ∃yψ(x̄, y) are T -equivalent to
quantifier-free formulas.

Proposition 5.43 A V-theory T has quantifier elimination if and only if for every
quantifier-free V-formula ϕ(x1, . . . ,xn, y) (for n ∈ N), there exists a quantifier-
free V-formula ψ(x1, . . . ,xn) such that T � ∃yϕ(x1, . . . ,xn, y) ↔ ψ(x1, . . . ,xn).

Proof Suppose that ∃yϕ(x̄, y) is T -equivalent to a quantifier-free formula for
every quantifier-free V-formula ϕ having at least two free variables. Then we
can show that every V-formula θ is T -equivalent to a quantifier-free formula by
induction on the complexity of θ as in the preceeding paragraph. Conversely, if T
has quantifier elimination, then ∃yϕ(x̄, y), like every V-formula, is T equivalent
to a quantifier-free formula.

So to eliminate all of the quantifiers from a formula like

∀y∃z∀u∃v(R(x1, y) ∧R(y, z) ∧R(z,u) ∧R(u, v) ∧R(v,x2)),

we need only be able to eliminate one occurrence of the quantifier ∃ at a time.
For complete T , Theorem 4.49 gives us a criterion for determining whether a
given formula is T -equivalent to a quantifier free formula. This yields a method
for showing quantifier elimination. We first consider theories that have finite
relational vocabularies. These vocabularies are particularly simple because of
the following fact.

Proposition 5.44 The vocabulary V is finite and relational if and only if there
are only finitely many atomic V-formulas.

Proof If V contains a function f , then we have the atomic formulas f(x̄) = y,
f(f(x̄)) = y, f(f(f(x̄)) = y, and so forth.

Proposition 5.45 Let T be a complete theory in a finite relational vocabulary.
The following are equivalent.

(i) T has quantifier-elimination.

(ii) For any model M of T and any n ∈ N, if (a1, . . . , an) and (b1, . . . , bn) are
n-tuples of UM that satisfy the same atomic formulas in M ,

224 First-order theories

then for any an+1 ∈ UM there exists bn+1 ∈ UM such that (a1, . . . , an, an+1),
and (b1, . . . , bn, bn+1) satisfy the same atomic formulas in M (where UM denotes
the underlying set of M).

Proof Suppose first that T has quantifier elimination.
If (a1, . . . , an) and (b1, . . . , bn) satisfy the same atomic formulas, then

they satisfy the same quantifier-free formulas. This can be shown by induc-
tion on the complexity of a given quantifier-free formula. Given an+1 ∈ UM ,
let Φ(x1, . . . ,xn+1) be the conjunction of all of the atomic and negated
atomic formulas that hold of (a1, . . . , an, an+1) in M . Such a formula Φ exists
since there are only finitely many atomic formulas. By quantifier elimination,
∃yΦ(x1, . . . ,xn, y) is T -equivalent to a quantifier-free formula θ(x1, . . . ,xn).
Since M models θ(a1, . . . , an), M also models θ(b1, . . . , bn). It follows that
M |= ∃yΦ(b1, . . . , bn, y). Let bn+1 ∈ UM be such that M |= Φ(b1, . . . , bn, bn+1).

Conversely, suppose that (ii) holds. Let ϕ(x1, . . . ,xn,xn+1) be a quantifier-
free formula (for n ≥ N). By (ii), if (a1, . . . , an) and (b1, . . . , bn) sat-
isfy the same atomic formulas, then M |= ∃yϕ(a1, . . . , an, y) if and only
if M |= ∃yϕ(b1, . . . , bn, y). By Theorem 4.49, ∃yϕ(x1, . . . ,xn, y) is T -
equivalent to a quantifier-free formula. By Proposition 5.43, T has quantifier
elimination.

Example 5.46 Recall the VS-structure ZS = (Z|S) from Example 5.51. This
structure interprets the binary relation S as the successor relation on the integers.
As was pointed out in Example 4.48, the ordered pairs (0, 2) and (4, 7) satisfy the
same atomic VS-formulas. Let TS = Th(ZS). If TS had quantifier elimination,
then, by condition (ii) of Proposition 5.45, for every integer x there would exist
an integer y such that (0, 2,x) and (4, 7, y) satisfy the same atomic formulas. To
show that this is not the case, let x = 1. Then both S(0,x) and S(x, 2) hold.
Clearly, there is no y that bears these relations to 4 and 7. We conclude that
TS does not have quantifier elimination. In particular, the formula ∃z(S(x, z) ∧
S(z, y)) is not TS-equivalent to a quantifier-free formula (this was also shown in
Example 4.48).

Example 5.47 We show that TDLOE does not have quantifier elimination. The
only two atomic V<-formulas are x < y and x = y. Any two n-tuples of elements
listed in ascending order will satisfy the same atomic formulas. In particular,
this is true if n = 1. Consider the two elements 0 and 0.01 from the underlying
set of Q[0,1]. These two elements satisfy the same atomic V<-formulas in Q[0,1].
However, since 0 is the smallest element, there is no y so that (0, y) satisfies
the same atomic formulas as (0.01, 0.001). By Proposition 5.45, TDLOE does
not have quantifier elimination. In particular, the formula ∃y(y < x) is not
TDLOE-equivalent to a quantifier-free formula.

First-order theories 225

Using condition (ii) of Proposition 5.45, we can quickly show that some
theories do not have quantifier elimination as in the previous examples. To show
that a theory T does have quantifier elimination, (ii) requires us to consider all
pairs of tuples from all models of T . If T is complete and has a finite relational
vocabulary, then this condition can be simplified as the following corollary states.

Corollary 5.48 Let T be a complete theory. If T has a finite relational vocabu-
lary, then T has quantifier elimination if and only if condition (ii) from
Proposition 5.45 holds in some model M of T .

Proof This follows from the assumption that T is complete. Let Φ and θ be
as in the proof of Proposition 5.45. Let M be some model of T . If M models
∃yΦ(x1, . . . ,xn, y) ↔ θ(x1, . . . ,xn), then, since T is complete, so does every
model of T .

Proposition 5.49 The theory TDLO of dense linear orders without endpoints has
quantifier elimination.

Proof By the previous corollary, it suffices to verify condition (ii) of Proposi-
tion 5.45 for only one model. Let Q< be the V<-structure that interprets < as
the usual order on the rational numbers.

Let ā = (a1, . . . , an) and b̄ = (b1, .., bn) be two n-tuples of rational numbers.
With no loss of generality, we may assume that a1 < a2 < · · · < an. Suppose that
ā and b̄ satisfy the same atomic V<-formulas. Then we have b1 < b2 < · · · < bn.
Let an+1 be any rational number. We must show that there exists a rational
number bn+1 so that (b1, . . . , bn, bn+1) satisfies the same atomic V<-formulas as
(a1, . . . , an, an+1).

There are four cases:

If an+1 = ai for some i = 1, . . . ,n, then we can just let bn+1 = bi.
If an+1 < ai for each i, then, since Q has no smallest element, we can find

bn+1 ∈ Q that is smaller than each bn+1.
Likewise, if an+1 is greater than each ai, then we can find bn+1 ∈ Q that is

greater than each bi.
Otherwise, ai < an+1 < ai+1 for some i. Since Q is dense, we can find

bn+1 ∈ Q between bi and bi+1.

In any case, we can find bn+1 as desired. So TDLO has quantifier elimination
by Corollary 5.48.

Proposition 5.50 The theory TRG of the random graph has quantifier
elimination.

226 First-order theories

Proof Since TRG has a finite relational vocabulary, we can apply Corollary 5.48.
Let U be the set of vertices of the random graph GR. Let (a1, . . . , an) and
(b1, . . . , bn) be two n-tuples of U that satisfy the same atomic formulas in GR.
We must show that for any x ∈ U , there exists y ∈ U such that (a1, . . . , an,x)
and (b1, . . . , bn, y) satisfy the same atomic formulas in GR. This follows from the
fact that GR models the VR-sentence ρm for arbitrarily large m.

Example 5.51 Let V+ = {<,Ps,Pb} be an expansion of T< that includes two
unary relations Ps and Pb. Let T+

DLOE be the expansion of TDLOE to a V+-
theory that interprets Ps(x) as the smallest element and Pb(x) as the biggest
element in the order. Then this theory has quantifier elimination. Recall from
Example 5.47 that TDLOE does not have quantifier elimination. It was shown
in that example that ∃y(x < y) is not TDLOE-equivalent to a quantifier-free
formula. This formula is T+

DLOE-equivalent to the quantifier-free formula ¬Pb(x).
To show that T+

DLOE has quantifier elimination, we can use an argument similar
to the proof of Proposition 5.49.

Example 5.52 Let T be an VE-theory that says E is an equivalence relation
having infinitely many infinite classes. We show that T has quantifier elimination.
Let M be the VE-structure having denumerably many equivalence classes each
of which is denumerable. Let (a1, . . . , an) and (b1, . . . , bn) be two n-tuples of
elements from the universe UM ofM that satisfy the same atomic VE-formulas in
M . Let an+1 be any element of UM . Since there are infinitely many equivalence
classes in UM and each is infinite, we can surely find bn+1 ∈ UM such that
M |= E(bi, bn+1) if and only if M |= E(ai, an+1).

So T has quantifier elimination. Now suppose that we expand the vocabulary
by adding a unary relation P . Let TP be the expansion of T to the vocabulary
{<,P} that says that P (x) holds for exactly one element x. Let N1 |= TP .
Let a be the unique element such that N1 |= P (a). Let b be an element that
is equivalent, but not equal, to a. Let c be an element that is not equivalent
to a. Then b and c satisfy the same atomic formulas in N1 (since ¬P (b) and
¬P (c) both hold). Since there is no element y so that (b, a) and (c, y) satisfy
the same atomic formulas, TP does not have quantifier elimination. In partic-
ular, the formula ∃y(P (y) ∧ E(x, y)) is not TP -equivalent to a quantifier-free
formula.

Now expand the vocabulary again to include the constant u. Let TP (u) be
the expansion of TP to the vocabulary {<,P ,u} that interprets u as the unique
element for which P (u) holds. Since we have merely provided a name for an
element that was already uniquely defined, TP (u) is essentially the same as TP

(the models of TP can easily be viewed as models of TP (u) and vice versa).
However, in contrast to TP , TP (u) does have quantifier elimination. The formula
∃y(P (y) ∧ E(x, y)) is TP (u)-equivalent to the atomic formula E(x,u).

First-order theories 227

The previous examples demonstrate that quantifier elimination is a purely
syntactic property. The theories TDLOE and T+

DLOE (like the theories TP and
TP (u)) have very similar models. Given any model M of one of these theories,
we can find a model N of the other theory so that M and N have the same
underlying set and the same definable subsets.

Definition 5.53 Let M1 be a V1-structure and M2 be a V2-structure having
the same underlying set. If the V1-definable subsets of M1 are the same as the
V2-definable subsets of M2 then M1 and M2 are said to be bi-definable.

Two theories T1 and T2 are bi-definable if every model of T1 is bi-definable
with some model of T2 and vice versa.

The theories TDLOE and T+
DLOE are bi-definable as are TP and TP (u). How-

ever, T+
DLOE and TP (u) have quantifier elimination whereas TDLOE and TP do

not. The following proposition states that any theory has a bi-definable theory
with quantifier elimination.

Proposition 5.54 Let T be a V-theory. There exists a theory Tm that is bi-
definable with T and has quantifier elimination.

Proof For each V-formula ϕ(x1, . . . ,xn) (with n ∈ N), let Rϕ be an n-ary
relation that is not in V. Let Vm = V ∪ {Rϕ|ϕ is a V-formula}. Let Tm be the
expansion of T to a Vm-theory that contains the sentence ϕ(x̄) ↔ Rϕ(x̄) for
each V-formula ϕ. Since each relation Rϕ is explicitly defined by Tm in terms
of V, T , and Tm are bi-definable. Since every Vm-formula is Tm-equivalent to a
quantifier-free formula, Tm has quantifier elimination.

The theory Tm in the previous proof is called the Morleyization of T . Mor-
leyizations demonstrate that the property of quantifier elimination is not always
useful. To analyze a structure M , we should choose an appropriate vocabu-
lary. Ideally, we want to find a vocabulary V ′ so that M is bi-definable with
some V ′-structure M ′ where Th(M ′) has quantifier elimination. We must also
require that the atomic V ′-formulas (and the relations between these formulas)
are readily understood. The Morleyization of Tm is often of no use in this regard.
If the atomic V ′-formulas are too complicated, then the quantifier elimination of
Th(M ′) does not lend insight into the structure M .

We have restricted our attention in this section to examples of theories that
are particularly nice. With the exception of TS from Example 5.46, each theory
we have considered is bi-definable with a theory in a finite relational vocabulary
that has quantifier elimination. This is a severe restriction. The astute reader
may have anticipated the following fact.

Proposition 5.55 Let T be a complete theory in a finite relational vocabulary.
If T has quantifier elimination, then T is ℵ0-categorical.

228 First-order theories

Proof This follows immediately from Proposition 5.44 and Theorem 5.32.

Corollary 5.48 provides a method for determining whether or not certain
theories have quantifier elimination. By the previous proposition, this method
can only be used to show that ℵ0-categorical theories have quantifier elimination.
To show that other theories have quantifier elimination, we must devise other
methods.

5.5.2 The general case. Let T be a complete V-theory, and suppose that
we want to determine whether or not T has quantifier elimination. We have
described a method that is useful for finite relational V. If V is not both finite
and relational, then this method may fail in one of two ways. We demonstrate
these failures with two examples.

Example 5.56 Let TE = Th(M2) where M2 is the countable VE-structure
defined in Example 5.18.

Let Ts = Th(Zs) where Zs is the Vs-structure defined in Example 5.12.
We define a theory T that contains both of these theories. Let V be the

vocabulary {E, s}. Let T be the set of all V-sentences that can be derived from
the set

TE ∪ Ts ∪ {∀x∀y((s(x) = y → E(x, y))}.

The models of T have two infinite equivalence classes. The sentence ∀x∀y((s(x) =
y → E(x, y)) implies that every element is in the same equivalence class as
its successor, its successor’s successor, and so forth. So each equivalence class
contains copies of the structure (Z, s). As in Example 5.20, each equivalence
class may contain any number of copies of Z.

Let M be the model that has two copies of Z in one equivalence class and
one copy in the other. This structure can be depicted as follows:

(. . . a−2, a−1, a0, a1, a2, . . .)

(. . . , b−2, b−1, b0, b1, b2, . . .) (. . . c−2, c−1, c0, c1, c2, . . .)

The underlying set of M is UM = {ai, bi, ci|i ∈ Z}. The two boxes repres-
ent the two E equivalence classes. The successor of ai is ai+1. Likewise for bi
and ci.

First-order theories 229

The elements a0 and b0 satisfy the same atomic formulas in M (as does
each element of UM). However, there is no element y so that (a0, y) and (b0, c0)
satisfy the same atomic formulas.

If the vocabulary of T were finite and relational, then we could con-
clude that it does not have quantifier elimination. However, the vocabulary
of T contains the function s. In fact, T is both complete and has quantifier
elimination.

Example 5.57 Let V = {E,Pi|i ∈ N} be the vocabulary consisting of a binary
relation E and denumerably many unary relations Pi. Let M be a countable
V-structure that interprets E as an equivalence relation that has infinitely many
equivalence classes of size 1, infinitely many equivalence classes of size 2, and no
other equivalence classes. Moreover, each Pi holds for exactly two elements that
are in the same equivalence class. So if a is in a class of size 1, then ¬Pi(a) holds
for each i ∈ N. To complete our description of M , if M |= E(b, c)∧¬(b = c) then
M |= Pi(b) ∧ Pi(c) for exactly one i.

Let UM be the underlying set of M . If two tuples of elements from UM

satisfy the same atomic V-formulas in M , then they satisfy the same V-formulas
in M . However, Th(M) does not have quantifier elimination. The formula
∃y(¬(x = y) ∧ E(x, y)) is not Th(M)-equivalent to a quantifier-free formula.

Proposition 5.45 provides a necessary and sufficient condition for a complete
theory T in a finite relational vocabulary to have quantifier elimination. We
restate this condition.

(ii) For any model M of T and any n ∈ N, if (a1, . . . , an) and (b1, . . . , bn)
are n-tuples of UM that satisfy the same atomic formulas in M , then for
any an+1 ∈ UM there exists bn+1 ∈ UM such that (a1, . . . , an, an+1) and
(b1, . . . , bn, bn+1) satisfy the same atomic formulas in M (where UM denotes
the underlying set of M).

Corollary 5.48 states that, if the vocabulary V of T is finite and relational,
then T has quantifier elimination if and only if condition (ii) holds for some
model M of T . If V is not finite and relational, then, as Example 5.57 demon-
strates, we must verify (ii) for more than one model. So Corollary 5.48 fails for
vocabularies that are not finite and relational. Example 5.56 demonstrates that
one direction of Proposition 5.45 also fails for vocabularies that are not finite
and relational. Condition (ii) does not necessarily hold for all theories that have
quantifier elimination.

It is still true that (ii) implies quantifier elimination. The proof that (ii)
implies (i) in Proposition 5.45 makes no use of the hypothesis that the vocabulary
is finite and relational. So (ii) is a sufficient condition for quantifier elimination,

230 First-order theories

but, if the vocabulary is not finite and relational, it is not a necessary condition.
The following Proposition provides two necessary and sufficient conditions for
an arbitrary theory to have quantifier elimination. Note that (ii)′ is a modified
version of condition (ii).

Proposition 5.58 Let T be a complete V-theory. The following are equivalent:

(i) T has quantifier elimination.

(ii)′ For any model M of T and any n ∈ N, if n-tuples ā and b̄ satisfy the same
atomic formulas in M , then for any an+1 ∈ UM there exist an elementary
extension N of M and an element bn+1 in UN such that (a1, . . . , an, an+1)
and (b1, . . . , bn, bn+1) satisfy the same atomic formulas in N
(where UM and UN denote the underlying sets of M and N).

(iii) For any V-structure C, if f : C → M and g : C → M are two embeddings
of C into a model M of T , then M |= ∃yϕ(f(c1), . . . , f(cn), y) if and only
if M |= ∃yϕ(g(c1), . . . , g(cn), y)
for any quantifier-free V-formula ϕ(x1, . . . ,xn, y) and any n-tuple
(c1, . . . , cn) of elements from the underlying set of C.

Proof By modifying the proof that (i) implies (ii) in Proposition 5.45, it can be
shown that (i) implies (ii)′. We leave this as Exercise 5.18.

That (ii)′ implies (iii) follows from the fact that the tuples (f(c1), . . . , f(cn))
and (g(c1), . . . , g(cn)) satisfy the same quantifier-free formulas in M (by the
definition of “embedding”).

It remains to be shown that (iii) implies (i). We assume that (i) does not
hold and show that (iii) does not hold.

Suppose that T does not have quantifier elimination. By Proposi-
tion 5.43, there exists a quantifier-free V-formula ϕ(x1, . . . ,xn, y) such that
∃yϕ(x1, . . . ,xn, y) is not T -equivalent to a quantifier-free formula. By The-
orem 4.49, there exists a model M of T and n-tuples ā = (a1, . . . , an) and
b̄ = (b1, . . . , bn) from the universe UM of M such that ā and b̄ satisfy the same
atomic V-formulas in M but

M |= ∃yϕ(ā, y) and M |= ¬∃yϕ(b̄, y).

Now if {a1, . . . , an} happens to be the universe of a substructure of M , then we
can take this to be C in (iii). Otherwise, we must consider the substructure 〈ā〉 of
M generated by ā (as defined in Exercise 2.34). This is the smallest substructure
of M that contains {a1, . . . , an}. Likewise, let 〈b̄〉 be the smallest substructure
of M that contains {b1, . . . , bn}.
Claim 〈ā〉 ∼= 〈b̄〉.

First-order theories 231

Proof By Exercise 2.34, this claim follows from the fact that ā and b̄ satisfy the
same atomic formulas (and, therefore, the same quantifier-free formulas) in M .
For readers who have not completed this exercise, we sketch the idea.

Let A0 be the union of {a1, . . . , an} together with the set of all elements in
UM that interpret constants of V. Let A be the closure of A0 under all functions
in V. Then 〈ā〉 is the substructure of M that has A as an underlying set. The
key point is that each element in 〈ā〉 can be represented by a quantifier-free V-
term having parameters among {a1, . . . , an}. Let f be the function defined by
g(ai) = bi for i = 1, . . . ,n. Since ā and b̄ satisfy the same quantifier-free formulas,
and the elements of 〈ā〉 and 〈b̄〉 can be expressed with quantifier-free terms, f
can be extended to an isomorphism g : 〈ā〉 → 〈b̄〉.

To see that (iii) does not hold, let C = 〈ā〉, let f : C → 〈ā〉 be the identity
function, and let g : C → 〈b̄〉 be as defined above.

Let T be a complete theory. To determine whether or not T has quantifier
elimination we can use either condition (ii)′ or (iii) from the previous proposition.
However, depending on how much information we have regarding T , verifying
these conditions may or may not be practical. It may not be easy to consider
arbitrary elementary extensions in (ii)′ or arbitrary substructures in (iii).

In specific cases, when T is known to have certain properties, there are meth-
ods for determining quantifier elimination that are easier than (ii)′ and (iii). For
example, if T has a finite relational vocabulary, then, as we have discussed,
it suffices to consider property (ii). If T is a small theory, then, regardless of
whether the vocabulary is finite or relational, we only need to consider condition
(ii) for the countable saturated model of T . However, this fact will not be imme-
diately useful to those who are not reading this book backwards. Small theories
and saturated model are defined and discussed in Chapter 6 (see Exercise 6.17).
Another property that allows for a practical method for determining quantifier
elimination is the isomorphism property.

Definition 5.59 We say that a structure M has the isomorphism property if any
isomorphism between substructures of M can be extended to an isomorphism
between submodels of M . If every model of T has the isomorphism property,
then T is said to have the isomorphism property.

Example 5.60 Recall the VS-structure ZS and the theory TS = Th(ZS) from
Examples 4.48 and 5.46. Since VS is relational, any subset of Z serves as the
underlying set of a substructure of ZS . Let M1 be the substructure having uni-
verse {0, 2} and let M2 be the substructure having universe {4, 7}. Since both of
these structures model the sentence ∀x∀y¬S(x, y), M1 and M2 are isomorphic.
This isomorphism cannot be extended to submodels of ZS . So the theory TS

does not have the isomorphism property.

232 First-order theories

Example 5.61 Recall the Vs-structure Zs and the theory Ts = Th(Zs) from
Examples 5.12 and 5.20. This theory is bi-definable with the VS-theory TS from
the previous example. We show that Ts, unlike TS , has the isomorphism prop-
erty. Let A and B be substructures of a model M of Ts. Since substructures
must be closed under the function s, the underlying set of each of these sub-
structures is a union of sets of the form {a, s(a), s(s(a)), . . .}. With no loss of
generality, we may assume that {a, s(a), s(s(a)), . . .} is the underlying set of A
and {b, s(b), s(s(b)), . . .} is the underlying set of B. There is exactly one iso-
morphism between these Vs-structures. This isomorphism can be extended to an
isomorphism between submodels of M by mapping the predecessor of a to the
predecessor of b, and so forth.

If T has the isomorphism property, then we can simplify condition (iii) of
Proposition 5.62. Instead of dealing with substructures, we can focus on
submodels of models of T .

Proposition 5.62 Let T be a complete V-theory that has the isomorphism
property. The following are equivalent:

(a) T has quantifier elimination.

(b) For any quantifier-free V-formula ϕ(x1, . . . ,xn, y) and any models M and N
of T with N ⊂M ,

if M |= ∃yϕ(ā, y), then N |= ∃yϕ(ā, y)
for any n-tuple ā from the universe of N .

Proof If (a) holds, then, since quantifier-free formulas are preserved under sub-
models, (b) holds. We must prove the opposite direction. Suppose that (b) holds.
We show that (iii) from Proposition 5.58 holds.

Let C be a V-structure C and let f : C → M and g : C → M be two
embeddings of C into a model M of T . Let C1 be the range of f and let C2

be the range of g. Then C1 and C2 are isomorphic substructures of M . Since T
has the isomorphism property, the isomorphism g(f−1) : C1 → C2 extends to an
isomorphism h : N1 → N2 between submodels N1 and N2 of M . To verify (iii),
we must show that for any quantifier-free V-formula ϕ

M |= ∃yϕ(f(c1), . . . , f(cn), y) if and only if M |= ∃yϕ(g(c1), . . . , g(cn), y)

for any n-tuple (c1, . . . , cn) of elements from the universe of C. Since existential
formulas are preserved under supermodels,

if N1 |= ∃yϕ(f(c1), . . . , f(cn), y), then M |= ∃yϕ(f(c1), . . . , f(cn), y).

Condition (b) provides the converse:

if M |= ∃yϕ(f(c1), . . . , f(cn), y), then N1 |= ∃yϕ(f(c1), . . . , f(cn), y).

First-order theories 233

So we have

M |= ∃yϕ(f(c1), . . . , f(cn), y) if and only if N1 |= ∃yϕ(f(c1), . . . , f(cn), y).

Likewise,

M |= ∃yϕ(g(c1), . . . , g(cn), y) if and only if N2 |= ∃yϕ(g(c1), . . . , g(cn), y).

Since h : N1 → N2 is an isomorphism that extends g(f−1),

N1 |= ∃yϕ(f(c1), . . . , f(cn), y) if and only if N2 |= ∃yϕ(g(c1), . . . , g(cn), y).

We conclude

M |= ∃yϕ(f(c1), . . . , f(cn), y) if and only if M |= ∃yϕ(g(c1), . . . , g(cn), y)

as desired.

Proposition 5.63 Ts has quantifier elimination.

Proof Since Ts has the isomorphism property, it suffices to verify condition
(b) of Proposition 5.62. Let ϕ(x1, . . . ,xn, y) be a quantifier-free Vs-formula. Let
N ⊂ M be models of Ts and suppose N |= ¬∃yϕ(ā, y) for some n-tuple ā of
elements from the underlying set of N . Any elementary extension of N also
models ¬∃yϕ(ā, y). Let N ′ be an elementary extension of N that contains many
copies of Z. Then N ′ |= ¬ϕ(ā, b) for some b that is not in the same copy of Z

as any of the ais. Since any two such bs bear the same atomic relations to each
ai (namely ¬sm(ai) = b and ¬sm(b) = ai for m ∈ N) any extension of N must
model ¬∃yϕ(ā, y). In particular, M |= ¬∃yϕ(ā, y). This verifies condition (b).
We conclude that Ts has quantifier elimination.

5.6 Model-completeness
In this section, we discuss a property closely related to quantifier elimination.
As we shall see, there are many equivalent ways to define this property. The
following is the standard definition.

Definition 5.64 A theory T is model-complete if, for any models M and N of T ,
N ⊂M implies N ≺M .

Example 5.65 Let Ns = {N|s} be the Vs-structure that interprets the binary
relation s as the successor function on the natural numbers. Let N4 be the
substructure of Ns having underlying set {4, 5, 6, . . .}. Then N4 ≡ Ns and N4 ⊂
Ns. Since Ns |= ∃x(s(x) = 4) and N4 |= ¬∃x(s(x) = 4), N4 is not an elementary
substructure of Ns. It follows that Th(Ns) is not model-complete. If we expand
Ns to include a constant for the first element, then we obtain a structure that
does have a model-complete theory.

234 First-order theories

The following proposition perhaps explains why this property it is called
“model-complete.”

Proposition 5.66 A theory T is model-complete if and only if, for any model M
of T , T ∪ D(M) is complete.

Proof Exercise 5.24.
The Tarski–Vaught criterion 4.31 for elementary substructures yields the

following criterion for model-completeness.

Proposition 5.67 Let T be a V-theory. The following are equivalent:

(i) T is model-complete.

(ii) For any models M and N of T with N ⊂M ,

M |= ∃yψ(ā, y) implies N |= ∃yψ(ā, y)

for any V-formula ψ(x̄, y) and any tuple ā of elements from the universe of N .

Proof It follows immediately from the definition of “model-complete” that (i)
implies (ii). The converse follows from the Tarski–Vaught criterion 4.31.

The following proposition shows that, in some sense, model-complete
theories “almost” have quantifier elimination.

Proposition 5.68 Let T be a V-theory. The following are equivalent:

(i) T is model-complete.

(ii) Every V-formula is preserved under submodels and supermodels of T .

(iii) Every V-formula is T -equivalent to an existential formula.

(iv) Every V-formula is T -equivalent to a universal formula.

Proof

(i) implies (ii) by the definition of “model-complete.”

(ii) implies (iii) by Proposition 4.45.

Suppose that (iii) holds. Let ϕ(x̄) be a V-formula. By (iii), ¬ϕ(x̄) is T -
equivalent to an existential formula. It follows that ϕ(x̄) is T -equivalent to a
universal formula. So (iii) implies (iv).

Finally, suppose that (iv) holds. Suppose that M and N are models of T
and N ⊂ M . Let ψ(x̄, y) be a V-formula and let ā be a tuple of elements from
the underlying set of N . Since ∃yψ(x̄, y) is T -equivalent to a universal formula
and universal formulas are preserved under submodels,

if M |= ∃yψ(ā, y), then N |= ∃yψ(ā, y).

By Proposition 5.67, T is model-complete.

First-order theories 235

It follows from Proposition 5.68 that every theory with quantifier elimination
is an example of a model-complete theory. We next demonstrate some examples
that do not have quantifier elimination.

Example 5.69 Let TS be the VS-theory from Examples 4.48 and 5.46. Recall
that every VS-formula is preserved under submodels and supermodels of TS . By
Proposition 5.68, TS is model-complete. As was shown in Example 5.46, TS does
not have quantifier elimination.

Example 5.70 Recall the V<-theory TDLOE of dense linear orders with end-
points. As was shown in Example 5.51, TDLOE does not have quantifier
elimination. To see that TDLOE is not model-complete, let R[a,b] denote the
model having universe [a, b] for any real numbers a and b with a < b. Then
R[c,d] is a submodel of R[a,b] whenever [c, d] is a subinterval of [a, b]. But R[c,d]

is not an elementary submodel unless both a = c and b = d. (If a �= c, then,
R[c,d] models ∀y¬(y < c) and R[a,b] does not). In contrast, the expansion T+

DLOE
of TDLOE to the vocabulary {<,Ps,Pb} is model-complete. This follows from
the fact that it has quantifier elimination as was discussed in Example 5.51.
This illustrates that model-completeness, like quantifier elimination, is a purely
syntactic property.

Example 5.71 We state, but do not verify, some facts regarding the real
numbers. We refer the reader to [16] or [29] for proofs of these facts. Let
R = (R|+, ·, 0, 1). Let Ror be the expansion of R to the vocabulary {<, +, ·, 0, 1}.
Then Th(R) is model-complete. By Proposition 5.68, every formula in the vocab-
ulary {+.·, 0, 1} is Th(R)-equivalent to an existential formula. In particular,
the relation< is explicitly defined by Th(Ror) as ∃z(x + (z · z) = y). It follows
that Th(Ror) too is model-complete. In fact Th(Ror) has quantifier elimination
(but Th(R) does not).

Definition 5.72 Let T be a V-theory and let M |= T . We say that M is
existentially closed with respect to T if, for any model N of T with M ⊂ N

if N |= ϕ(ā) then M |= ϕ(ā)

for any existential V-formula ϕ(x̄) and any tuple ā of elements from the
universe of M .

Proposition 5.73 A theory T is model-complete if and only if every model of T
is existentially closed with respect to T .

Proof It follows from the definitions that any model of a model-complete theory
T is existentially closed with respect to T . We must prove the converse.

Suppose every model of T is existentially closed with respect to T . Let V
be the vocabulary of T . To show that T is model-complete, we show that every

236 First-order theories

V-formula is T -equivalent to a universal formula. It suffices to show that every
existential V-formula is T -equivalent to a universal formula (see Exercise 3.2).

Let ϕ(x̄) be an existential V-formula. If M and N are models of T with
M ⊂ N , then, since M is existentially closed with respect to T , N |= ϕ(ā)
implies M |= ϕ(ā) for any tuple ā of elements from the universe of M . That is,
ϕ(x̄) is preserved under submodels of T . By Theorem 4.47, ϕ(x̄) is T -equivalent
to a universal V-formula. By Exercise 3.2, every V-formula is T -equivalent to a
universal formula. By Proposition 5.68, T is model-complete.

Proposition 5.73 improves Proposition 5.67. Instead of verifying condition
(ii) of Proposition 5.67 for every V-formula ψ, it suffices to verify this condition
only for existential ψ.

Definition 5.74 A theory is said to be ∀2-axiomatizable if it has an axiomatiz-
ation consisting of ∀2 sentences.

Proposition 5.75 If T is model-complete, then T is ∀2-axiomatizable.

Proof Use Exercise 4.30.
Lindström’s theorem states that if T is κ-categorical for some κ, then the

converse of Proposition 5.75 holds. To prove Lindström’s theorem, we shall use
the following result.

Proposition 5.76 If T is ∀2-axiomatizable, then any model of T can be extended
to a model that is existentially closed with respect to T .

Proof Let M be a model of T having underlying set U . We assume that both
T and M are denumerable. For uncountable T or M , the proof is similar.

Let V be the vocabulary of T . Let E be the set of existential formulas
having parameters from U and no free variables. That is, E consists of formulas
of the form ∃x̄ϕ(x̄, ā) where ϕ is a quantifier-free V-formula and ā is a tuple of
elements from U . Since both U and V are countable, so is E . Enumerate E as
{θ1, θ2, θ3, . . .}. (In the case where M is uncountable, invoke the Well Ordering
Principle.)

We inductively define a sequence of V-structures as follows.
Let A0 =M .
Suppose now that An has been defined. To define An+1, consider the formula

θn+1 in the enumeration of E . Let An+1 be any extension of An that models
T ∪ θn+1. If no such extension exists, then just let An+1 = An. (In the case
where M is uncountable, let Aα =

⋃
β<αAβ for limit ordinals α.)

Let B1 be the union of the chain M = A0 ⊂ A1 ⊂ A2 ⊂ · · · . Since each Ai

models T and ∀2 sentences are preserved under unions, B1 is a model of T . We
claim that, for any extention N of B1 that models T , if N |= θi, then B1 |= θi for
each θi ∈ E . If such an N exists, then Ai+1 |= θi. If this is the case, then B1 |= θi
since Ai+1 ⊂ B1 and existential formulas are preserved under supermodels.

First-order theories 237

To obtain an existentially closed extension of M , we must repeat this pro-
cess. Given Bi, for some i ∈ N, construct Bi+1 in the same way that B1 was
constructed (with Bi playing the role ofM). Let ϕ(x̄) be an existential V-formula
and let b̄ be a tuple of elements from the universe of Bi. If Bi has an extension
that models T ∪ ϕ(b̄), then Bi+1 models ϕ(b̄).

Let ME be the union of the chain B1 ⊂ B2 ⊂ · · · . Since T is ∀2-
axiomatizable, ME models T . Let ϕ(x̄) be an existential V-formula and let b̄
be a tuple of elements from the universe of ME . Then b̄ is a tuple from the
universe of Bi for some i. If ME has an extension that models T ∪ ϕ(b̄), then
Bi+1 models ϕ(b̄). Since existential formulas are preserved under supermodels,
ME |= ϕ(b̄). This shows that ME is existentially closed with respect to T .

Theorem 5.77 (Lindström) Let T be a κ-categorical for some κ ≥ |T |. If T is
∀2-axiomatizable, then T is model-complete.

Proof Suppose that T is ∀2-axiomatizable and not model-complete. We show
that T is not κ-categorical.

Let V be the vocabulary of T .
If T is not model-complete, then there exists a model M of T that is

not existentially closed with respect to T (by Proposition 5.73). So there
exists an extension N of M and an existential V-formula ϕ(x̄) such that
N |= T ∪ϕ(a1, . . . , an) and M |= ¬ϕ(a1, . . . , an) for some n-tuple (a1, . . . , an) of
elements from the universe of M .

Let V ′ = V∪{c1, . . . , cn} where each ci is a constant not in V. LetM ′ be the
expansion of M to a V ′-structure that interprets each ci as the element ai. By
Proposition 5.76, there exists an extension M ′

1 of M ′ that is existentially closed
with respect to Th(M ′). By this same proposition, there exists an extension M1

ofM that is existentially closed with respect to T . Since it is existentially closed,
M1 |= ϕ(ā). Since M ′

1 |= Th(M ′), M ′
1 |= ¬ϕ(ā).

By the Downward Löwenheim–Skolem theorem, there exist V-structure M0

and V ′-structure M ′
0 both of size |T | such that M0 ≺ M1 and M ′

0 ≺ M ′
1. By

the Upward Löwenheim–Skolem theorem, there exist V-structure M2 and V ′-
structure M ′

2 both of size κ such that M0 ≺M2 and M ′
0 ≺M ′

2. Since M ′
2 models

¬ϕ(ā), the reduct of M ′
2 to V is not existentially closed. This reduct along with

M2 are two models of T of size κ. Since one is existentially closed and the other
is not, they cannot be isomorphic and T is not κ-categorical as we wanted to
show.

Example 5.78 We demonstrate a countable complete theory TL that is ∀2-
axiomatizable but not model-complete. By Lindström’s theorem, TL cannot be
κ-categorical for any κ. To find such TL, we expand upon Example 5.65. Recall
that Th(Ns) from Example 5.65 is not model-complete. This theory is also not
∀2-axiomatizable. We cannot say that there exists an element with no predecessor

238 First-order theories

using a ∀2 Vs-sentence. To express this with a ∀2 sentence, we can expand to
the vocabulary {s, 1}. Let Ns1 = {N|s, 1} be the expansion of Ns that inter-
prets 1 as 1. Then Th(Ns1) is ∀2-axiomatizable. However, as was pointed out in
Example 5.65, this theory is also model-complete.

We now define a structure NL that contains infinitely many copies of Ns1.
The vocabulary for NL is VL = {r,u, ci|i ∈ Z} containing two unary functions r
and u and a denumerable set of constants. The underlying set of NL is N × Z.
Each constant ci is interpreted as (0, i) in NL. The functions are interpreted as
follows. For each (a, b) ∈ N × Z, NL interprets r(a, b) as (a + 1, b) and u(a, b)
as (a, b + 1). If we visualize NL in a plane with N as a horizontal axis and Z

as a vertical axis, then NL interprets r as the “right-successor” and u as the
“up-successor.”

Let TL be Th(NL).
There exist infinitely many elements of NL that are not the right-successors

of any element. Each is named by a constant. By compactness there exists an ele-
mentary extension N of NL that has elements with no right-predecessor that are
not named by constants. For the same reason that Th(Ns) is not model-complete,
TL is not model-complete. Moreover, TL is complete and ∀2-axiomatizable. We
leave the verification of these facts to the reader.

We conclude this section by providing methods for showing quantifier
elimination that involve model-completeness.

Proposition 5.79 If T has the isomorphism property, then T is model-complete
if and only if T has quantifier elimination.

Proof This follows immediately from Proposition 5.62 and the definition of
“model-complete.”

For any theory T , let T∀ denote the set of universal sentences that can
be derived from T . By Theorem 4.47, a sentence ϕ is T -equivalent to some
sentence in T∀ if and only if ϕ is preserved under substructures of models of T .
It follows that the models of T∀ are precisely the substructures of models of T
(see Exercise 4.25).

Definition 5.80 A theory T has the amalgamation property if the following holds.
For any models A, B, and C of T and embeddings fa : C → A and fb : C → B,
there exists a model D and embeddings ga : A → D and gb : B → D such that
ga(fa(c)) = gb(fb(c)) for each c in the underlying set of C.

Proposition 5.81 If T is model-complete and T∀ has the amalgamation property,
then T has quantifier elimination.

Proof To show that T has quantifier elimination we verify condition (iii) of
Proposition 5.58. Let M |= T and C |= T∀. Let f : C → M and g : C → M

First-order theories 239

be two embeddings of C into M . Since T∀ has amalgamation, there exists a
model D of T∀ and embeddings f ′ : M → D and g′ : M → D such that
f ′(f(c)) = g′(g(c)) for each c in the underlying set of C. Since D models T∀,
there exists an extension N of D that models T (by Exercise 4.25). Since T
is model-complete, the embeddings f ′ : M → N and g′ : M → N are ele-
mentary embeddings. Let ϕ(x1, . . . ,xn) be any formula in the vocabulary of T .
We have

M |= ϕ(f(c1), . . . , f(cn)) if and only if
N |= ϕ(f ′(f(c1)), . . . , f ′(f(cn))) if and only if
N |= ϕ(g′(g(c1)), . . . , g′(g(cn))) if and only if
M |= ∃yϕ(g(c1), . . . , g(cn), y),

and T satisfies condition (iii) of Proposition 5.58 as we wanted to show.

5.7 Minimal theories
We define and discuss strongly minimal theories. In some sense, strongly minimal
theories are the most simple of first-order theories. They are also among the most
important and interesting theories. Strongly minimal theories have an intrinsic
notion of independence that allows us to define, in an abstract setting, such
concepts as basis and dimension. After discussing strongly minimal theories,
we turn briefly to o-minimal theories. Like strong minimality, o-minimality is
defined in terms of the definable subsets of models of a theory. Before giving
these definitions, we must first define definable.

Let M be a V-structure having underlying set U . Recall that “D is a V-
definable subset ofM” means thatD is a subset of Un for some n andD is defined
by some V-formula ϕ(x1, . . . ,xn). That is, d̄ ∈ D if and only if M |= ϕ(d̄). For
A ⊂ U , we say that D is an “A-definable subset of M” if D is defined by
some formula ϕ(x̄, ā) having parameters ā ∈ Am for some m (where ϕ(x̄, ȳ) is a
V-formula). We restate this important definition as follows.

Definition 5.82 Let A be a subset of the universe U of V-structure M . Let V(A)
be the expansion of V that contains a constant ca for each a ∈ A. Let M(A) be
the expansion of M to a V(A)-structure that interprets each ca as the element
a ∈ U . A V(A)-definable subset of M(A) is said to be an A-definable subset of
M . A subset of Un is said to be a definable subset of M if it is A-definable for
some A ⊂ U .

When using this terminology, it is assumed that the vocabulary V is under-
stood. Note that, for V-structure M having universe U , ∅-definable means the
same as V-definable and U -definable means the same as definable.

240 First-order theories

Proposition 5.83 Let M be a V-structure having underlying set U . Every finite
subset of U is definable.

Proof Let D = {d1, . . . , dk} be a finite subset of U . Then D is definable since
it is V(D)-definable by the formula

∨k
i=1(x = di).

A subset C of U is said to be co-infinite in U if there are infinitely many
elements of U that are not in C. Likewise, C is said to be co-finite in U if its
complement U −C is finite. Since finite subsets of are definable, so are co-finite
subsets (take the negation of the formula saying x ∈ (U − C)).

Definition 5.84 LetM be an infinite V-structure having underlying set U . If the
only definable subsets of U are finite or co-finite, then M is said to be a minimal
structure.

Note that the definition of a minimal structure only considers definable
subsets of U and not of Un for n > 1. For any infinite structure M , the formula
(x = y) defines a subset of U2 that is both infinite and co-infinite.

Example 5.85 Let V< = {<}. Let Q< be the V<-structure that interprets <
as the usual order on the rationals. Every V-formula ϕ(x) either holds for all
elements or no elements of the underlying set Q. However, this is not true if
we consider formulas having parameters from Q. The formula (x < 2) is clearly
both infinite and co-infinite. So Q< is not minimal. Likewise, no infinite model
of the theory of linear orders TLO is minimal.

Example 5.86 The random graph GR is not minimal. Every VR-formula ϕ(x)
either holds for no vertices or all vertices of GR. However, the formula R(x, a)
(having some vertex a of GR as a parameter) defines a subset of GR that is both
infinite and co-infinite.

Definition 5.87 An infinite structure M is said to be strongly minimal if
every structure N that is elementarily equivalent to M is minimal. A the-
ory is said to be strongly minimal if all of its models are infinite and strongly
minimal.

Strongly minimal structures (like minimal structures) are minimal in the
sense that the definable subsets (definable by formulas in one free variable) are
as few as possible. See Exercise 5.17 for an example of a minimal structure that
is not strongly minimal.

The usual way to show that a given structureM is strongly minimal is to first
show that the theory has quantifier elimination in an appropriate vocabulary. If
this is the case, then it suffices to consider only atomic formulas.

First-order theories 241

Proposition 5.88 Let T be a V-theory having quantifier elimination. The
following are equivalent:

(i) T is strongly minimal.

(ii) For any model M of T and any atomic V-formula ϕ(x, y1, . . . , yn),
ϕ(x, ā) defines a finite or co-finite subset of the universe U of M for
all ā ∈ Un.

Proof It follows from the definition of “strongly minimal” that (i) implies (ii).
We show that (ii) implies (i) by induction on the complexity of formulas. Con-
dition (ii) provides the base step for the induction. Moreover, if both θ(x)
and ψ(x) define a finite or co-finite subset of U , then ¬θ(x) and θ(x) ∧ ψ(x)
each define either a finite or co-finite subset of U . It follows by induction that
every quantifier-free formula defines a finite or co-finite subset of U . Since T has
quantifier elimination, this suffices to prove (i).

Example 5.89 Recall the Vs-theory Ts from Example 5.12. By Proposition 5.63,
Ts has quantifier elimination. Each atomic Vs-formula has the form sn(x) = y

(where sn(x) denotes the nth-successor of x). Since each element of each model
of Ts has a unique nth-successor and a unique nth-predecessor, Ts is strongly
minimal by Proposition 5.88.

We use the following convenient notation. For any structure M and formula
ϕ(x), let ϕ(M) denote the subset of the universe of M defined by ϕ(x). That is,
ϕ(M) = {a ∈ U |M |= ϕ(a)} where U is the universe of M . This notation makes
sense for any formula ϕ(x) that is interpreted by the structure M . If M is a
V-structure having underlying set U , then ϕ(M) is defined for any V(A)-formula
ϕ(x) with A ⊂ U .

Definition 5.90 Let M be a structure and let ϕ(x) be a formula in one free
variable. If ϕ(M) is finite, then ϕ(x) is said to be algebraic in M .

Definition 5.91 LetM be a V-structure having underlying set U . For any A ⊂ U
and b ∈ U , b is said to be algebraic over A in M if b ∈ ϕ(M) for some algebraic
V(A)-formula ϕ(x).

The set of all elements of U that are algebraic over A is called the algebraic
closure of A in M and is denoted by aclM (A). We say that A is algebraically
closed in M if aclM (A) = A.

It is easy to see that aclM (A) is closed under all functions in V and contains
all elements of U that interpret constants. For this reason, we regard aclM (A) as
a substructure of M (provided aclM (A) is nonempty). If M is strongly minimal,

242 First-order theories

then these substructures obey rules that justify the use of the word “closure.” The
following four rules are easily verified regardless of whetherM is strongly minimal:

(Reflexivity) A ⊂ aclM (A).
(Monotonicity) If A ⊂ B, then aclM (A) ⊂ aclM (B).
(Idempotency) aclM (aclM (A)) = aclM (A)
(Finite character) If a ∈ aclM (A), then a ∈ aclM (A0) for some
finite subset A0 of A.

If M happens to be strongly minimal, then we also have the Exchange rule.

Proposition 5.92 (Exchange) Let M be a strongly minimal structure. Let A be
a subset of the universe ofM and let b and c be elements from the universe ofM .

If c ∈ aclM (A ∪ {b}) and c �∈ aclM (A), then b ∈ aclM (A ∪ {c}).
Proof Since c ∈ aclM (A∪{b}), there exists a formula ϕ(x̄, y, z) and parameters
ā from A such that M |= ϕ(ā, b, c) and M |= ∃=kzϕ(ā, b, z) for some k ∈ N.
(“∃=kxθ(x)” is an abbreviation for the first-order formula saying that θ(x) holds
for exactly k many elements.)

Claim Either ϕ(ā, y, c) is algebraic (in which case b ∈ aclM (A ∪ {c})), or
∃=kzϕ(ā, y, z) is algebraic (in which case b ∈ aclM (A) ⊂ aclM (A ∪ {c})).
Proof If ϕ(ā, y, c) is not algebraic, then it holds for all but finitely many elements
y in U . So there exists l ∈ N such that M |= ∃=ly¬ϕ(ā, y, c). Since c �∈ aclM (A),
the formula ∃=ly¬ϕ(ā, y, z) holds for all but finitely many elements z in U . So
for almost all z in U , the formula ϕ(ā, y, z) holds for all but l elements y of U .
It follows that, for all but at most l elements y in U , the formula ϕ(ā, y, z) holds
for almost all z in U . In particular, the formula ∃=kzϕ(ā, y, z) does not hold for
most choices of y. So this formula must be algebraic as we wanted to show.

The exchange rule allows us to assign a dimension to subsets of the universe
of a strongly minimal structure. Before defining this dimension, we first must
define the notions of independence and basis.

Definition 5.93 Let A and C be subsets of the universe of M . We say that A is
independent over C if, for every a ∈ A, a is not in aclM (A ∪ C − {a}). We say
that A is independent if A is independent over ∅.

Definition 5.94 Let A and C be subsets of the universe of M . A basis for A is
a subset B ⊂ A such that B is independent and aclM (B) = aclM (A). We say
that B is a basis for A over C if B is independent over C and aclM (A ∪ C) =
aclM (B ∪ C).

The exchange rule entails that any two bases of a set have the same size.
This allows us to define dimension.

First-order theories 243

Lemma 5.95 Let A and C be subsets of the universe U of a strongly minimal
structure M . If A has a finite basis over C, then any two bases of A over C have
the same size.

Proof We prove this for C = ∅. The proof is similar for C �= ∅.

Claim Let E and F be finite independent subsets of U . If |E| = |F | and E ⊂
aclM (F), then F ⊂ aclM (E).

Before proving the claim, we show that the claim implies the lemma. Let
B1 and B2 be two bases for A (at least one of which is finite). With no loss of
generality, we may assume that |B1| ≤ |B2|. Let E be any subset of B2 having
the same size as B1. Since E ⊂ aclM (A) = aclM (B1), the claim implies that
B1 ⊂ aclM (E). By monotonicity, aclM (B1) ⊂ aclM (aclM (E)). By idempotency
aclM (B1) ⊂ aclM (E). Since aclM (B1) = aclM (A), E is a basis for A. Since B2

is independent, E must be all of B2. We conclude that B2 has the same size as
B1 as we wanted to show.

Proof of Claim We prove the claim by induction on n = |E|. If n = 1, then
E = {e} and F = {f}. Since E is independent, e �∈ aclM (∅). By exchange,
e ∈ aclM (f) − aclM (∅) implies f ∈ acl(e).

Now suppose that E = {e1, . . . , em+1} and F = {f1, . . . , fm+1} for some
m ∈ N. Our induction hypothesis is that the claim holds for any sets E and F
with |E| = |F | ≤ m. It follows that an independent set of size m+ 1 cannot be
contained in the algebraic closure of a set of size m. In particular, E cannot be
contained in aclM (f2, . . . , fm+1). So, for some i,

ei ∈ aclM (F) − aclM (f2 . . . fm+1).

With no loss of generality, we may assume i = 1. By exchange,

f1 ∈ aclM (e1, f2, . . . , fm+1).

Now suppose that, for some k, we have

{f1, . . . , fk} ⊂ aclM (e1, . . . , ek, fk+1, . . . , fm+1).

By our induction hypothesis, E is not in the algebraic closure of

{e1, . . . , ek, fk+1, . . . , fm+1} − {fk+1}

(since this set has sizem). So some ei ∈ E is not in this algebraic closure. Clearly,
i > k. With no loss of generality, suppose i = k + 1. Since

ek+1 ∈ aclM (f1, . . . , fk+1) ⊂ aclM (e1, . . . , ek, fk+1, . . . , fm+1),

244 First-order theories

we have, by exchange,

fk+1 ∈ aclM (e1, . . . , ek+1, fk+2, . . . , fm+1).

Continuing in this manner (for m+ 1 steps), we arrive at

{f1, . . . , fm+1} ⊂ aclM (e1, . . . , em+1)

as we wanted to show.

Proposition 5.96 Let A and C be subsets of the universe U of a strongly minimal
structure M . If B1 and B2 are bases for A over C, then |B1| = |B2|.
Proof If B1 or B2 is finite, then this proposition is the same as the previous
lemma. So suppose both bases are infinite. Let PF (B2) be the set of all finite
subsets of B2. By Exercise 2.36, |B2| = |PF (B2)|. By the finite character of
algebraic closure, for each b ∈ B1, there exists Fb ∈ PF (B2) such that b ∈
aclM (Fb). If |B1| > |B2| = |PF (B2)|, then some F ∈ PF (B2) must equal Fb for
infinitely many b ∈ B1 (again by Exercise 2.36). Since F is a finite set, this is
impossible by the previous lemma. We conclude that |B1| ≤ |B2|. By the same
argument, we have |B2| ≤ |B1|, and so these two bases have the same size.

Definition 5.97 Let A and C be subsets of the universe of a strongly minimal
structure. The dimension of A over C, denoted dim(A/C), is the cardinality of
any basis for A over C. The dimension of A, denoted dim(A), is the dimension
of A over ∅.

The notion of dimension (as well as basis and independence) should be famil-
iar to anyone who has studied linear algebra. As we shall see in the next section,
infinite vector spaces (viewed in an appropriate vocabulary) provide examples of
strongly minimal structures. The notion of independence that we have defined
for strongly minimal theories corresponds exactly to the notion of linear inde-
pendence in these examples. Likewise, the dimension of a subset of a vector
space corresponds to the usual definition of dimension. The algebraic closure of
a set of vectors corresponds to the span of the vectors. Vector spaces are com-
pletely determined by their dimension. The following lemma shows that this fact
generalizes to arbitrary strongly minimal structures.

Lemma 5.98 Let M be a strongly minimal V-structure. Let A and C be subsets
of the universe U of M . If dimM (A) = dimM (C), then aclM (A) ∼= aclM (C).

We use the following terminology in the proof of Lemma 5.98.

Definition 5.99 Let M be a V-structure and let A be a subset of the universe
U of M . A function f : A→ U is said to be M-elementary if

M |= ϕ(a1, . . . , an) implies M |= ϕ(f(a1), . . . , f(an))

for any V-formula ϕ(x1, . . . ,xn) and tuple (a1, . . . , an) of elements from A.

First-order theories 245

Proof of Lemma 5.98 Let α be an ordinal such that |α| = dimM (A). Let
BA = {ai|i < α} be a basis for A and let BC = {ci|i < α} be a basis for C.

We first show that the function f :BA → BC defined by f(ai) = ci is M -
elementary. Second, we show that f can be extended to an isomorphism from
aclM (A) onto aclM (C).

Claim 1 For any V-formula ϕ(x̄) and tuple ā of BA and corresponding tuple
f(ā) of BC , if M |= ϕ(ā) then M |= ϕ(f(ā)).

Proof We prove this by induction on the number of free variables in ϕ(x̄). If
there are zero free variables, then the claim asserts that M |= ϕ implies M |= ϕ
for the V-sentence ϕ. Suppose now that ϕ(x1, . . . ,xm+1) has m+1 free variables
and the claim holds for any formula having fewer than m+ 1 free variables.

Suppose M |= ϕ(a1, . . . , am+1).
Since BA is independent, the formula ϕ(a1, . . . , am, y) is not algebraic.
Since M is strongly minimal, ¬ϕ(a1, . . . , am, y) is algebraic.
So M |= ∃=ly¬ϕ(a1, . . . , am, y) for some l ∈ N (where the counting
quantifier ∃=l is as defined in the proof of Proposition 5.92) .
By induction, M |= ∃=ly¬ϕ(c1, . . . , cm, y).
Since BC is independent, M |= ϕ(c1, . . . , cm+1).

It follows that the claim holds for all ϕ(x̄) and f is M -elementary.

Claim 2 If BA ⊂ E ⊂ aclM (A) and a ∈ aclM (A) − E, then any M -elementary
function g : E → aclM (C) extends to an M -elementary function g′:(E ∪ {a}) →
aclM (C).

Proof Since a ∈ aclM (E), there exists a formula θ(x, ē) having parameters from
E such that M |= θ(a, ē) and M |= ∃=lyθ(y, ē) for some l ∈ N. Moreover, there
exists such a θ so that l is as small as possible. This means that M |= θ(y, ē) →
ψ(y) for any V(E)-formula ψ(y) that holds for a (otherwise either θ(y, ē)∧ψ(y)
would define a set smaller that l that contains a).

We want to show that g can be extended. Since g is M -elementary, M |=
∃=lyθ(y, f(ē)). So there exists b ∈ aclM (C) such thatM |= θ(b, f(ē)). We extend
g to E∪{a} by defining g′(a) = b. For any V-formula ϕ(x1, . . . ,xn, y) and n-tuple
(d1, . . . , dn) of elements from E,

M |= ϕ(d1, . . . , d2, a) implies
M |= θ(y, ē) → ϕ(d1, . . . , d2, y) which implies
M |= θ(y, g(ē)) → ϕ(g(d1), . . . , g(d2), y) (since g is M -elementary)

which implies M |= ϕ(g(d1), . . . , g(d2), b) (since M |= θ(b, g(ē))).
It follows that g′ is M -elementary as we wanted to show.

Claim 2 shows that the M -elementary function defined in Claim 1 can
be repeatedly extended. By induction (transfinite induction if dimM (A) is

246 First-order theories

infinite), we can extend this to an M -elementary function from aclM (A) to
aclM (B). Such a function must be onto (see Exercise 5.34), and is therefore
an isomorphism.

Theorem 5.100 Countable strongly minimal theories are uncountably
categorical.

Proof Let T be a strongly minimal theory and let κ be an uncountable cardinal.
Let M and N be two models of T of size κ. Let UN and UM be the underlying
sets of N and M , respectively.

Claim dimM (UM) = dimN (UN) = κ.

Proof This follows from the assumption that the vocabulary V of T is countable.
For any A ⊂ UM , |V(A)| = |A|+ ℵ0 implies |aclM (A)| ≤ |A|+ ℵ0. In particular,
if |A| < κ, then A cannot be a basis for UM .

By the Joint Embedding lemma 4.37, there exists a model D of T that is
an elementary extension of both M and N . Since dimD(UM) = dimD(UN) = κ,
we have M = aclD(UM) ∼= aclD(UN) = N by Lemma 5.98.

Corollary 5.101 Strongly minimal theories are complete.

Proof This follows immediately from Proposition 5.15.

We now turn to a variant of strong minimality. Let M be an infinite V-
structure. Suppose that V contains the binary relation < and M interprets <
as a linear order on its underlying set U . An interval of M is a subset of U of
the form

(a, b) = {x ∈ U |a < x < b), (a,∞) = {x ∈ U |a < x}, or

(∞, a) = {x ∈ U |x < a}

for some a and b in U . We also include singletons {a} ⊂ U as (degenerate)
intervals. Clearly, any interval is a definable subset of M . The structure M is
said to be o-minimal if every definable subset of M is a finite union of intervals.
A theory is o-minimal if its models are o-minimal.

As was demonstrated in Example 5.85, o-minimal theories are not strongly
minimal. However, these two notions have much in common. The word “min-
imal” means the same for both. They are minimal in the sense that the definable
subsets (definable by formulas in one free variable) are as few as possible. For
o-minimal theories, “as few as possible” takes into account the presence of a
linear order (o-minimal is short for “order-minimal”). Also, algebraically closed
substructures of an o-minimal structure satisfy the exchange rule. So o-minimal
structures, like strongly minimal structures, have an intrinsic notion of inde-
pendence and dimension (however, o-minimal structures are not uncountably
categorical).

First-order theories 247

Example 5.102 The following structures are o-minimal:

• Q< = {Q| <},
• Ror = {R| <, +·, 0, 1}, and

• Rexp = {R|exp,<, +, ·, 0, 1},

where Rexp interprets the unary function exp(x) as ex and the other symbols
are interpreted in the usual way.

That Q< is o-minimal follows from the fact that TDLO has quantifier elim-
ination (Proposition 5.49). Likewise, the o-minimality of Ror can be deduced
from Tarski’s theorem. Tarski’s theorem states that Tor = Th(Ror) has quanti-
fier elimination. (This fact was stated without proof in Example 5.71.) Not only
did Alfred Tarski prove that Tor has quantifier elimination, he also provided an
algorithm to carry out the quantifier elimination. Given any formula ϕ(x̄) in the
vocabulary Vor of Tor, Tarski’s algorithm produces a quantifier-free Vor-formula
that is Tor-equivalent to ϕ(x̄) (although this algorithm is far from efficient).
Since Tarski’s algorithm allows sentences as input, this also shows that Tor is
decidable.

The question of whether Rexp has similar properties became known as
Tarski’s Problem (one of several problems by this name). This problem motiv-
ated the conception of o-minimality in the 1980s. Nearly half a century after
Tarski’s results regarding Ror, Alex Wilkie proved in the 1990s that Rexp is
o-minimal. This structure does not have a theory with quantifier elimination,
but, as Wilkie proved, it is model-complete. Whether it is decidable remains
unknown.

For more on o-minimal structures, the reader is referred to [10] written by
Lou van den Dries, the mathematician who introduced the concept. We now end
our brief discussion of o-minimality and return to strongly minimal structures. In
this section, we have proved several facts regarding strongly minimal structures,
but have provided a dearth of examples of such structures. We correct this
deficiency in the next section by analyzing specific examples of strongly minimal
theories.

5.8 Fields and vector spaces
We examine some basic algebraic structures that have strongly minimal the-
ories. We consider vector spaces and the field of complex numbers. We show
that these structures, viewed in appropriate vocabularies, have theories with
quantifier elimination. From this we deduce strong minimality.

248 First-order theories

We use these examples to illustrate a fundamental trichotomy of strongly
minimal theories. Strongly minimal theories are divided into those that are trivial
and those that are nontrivial. They can also be divided into those that are loc-
ally modular and those that are nonlocally modular. Since trivial theories are
necessarily locally modular (as we shall show), there are three possibilities: a
strongly minimal theory is either nonlocally modular, trivial, or both nontrivial
and locally modular. We shall define these concepts and provide examples of the-
ories from each of these three categories. We begin with trivial strongly minimal
theories.

Definition 5.103 A strongly minimal theory is trivial if for any M |= T and any
subset A of the universe of M , aclM (A) =

⋃
a∈A aclM ({a}).

Example 5.104 Recall Ts from Example 5.12. This theory was shown to be
strongly minimal in Example 5.89. Let M be a model of Ts having underlying
set U . Recall from Example 5.20 that M ∼= Zκ for some cardinal κ where Zκ is
the structure having κ copies of Z as its underlying set. For any a ∈ U , aclM (a)
is the copy of Z that contains a. Likewise, for any A ⊂ U , aclM (A) consists of
the copies of Z that contain some element of A. From this observation it follows
that Ts is a trivial strongly minimal theory.

For examples of strongly minimal theories that are not trivial, recall the
concept of a group. A group consists of a set together with a binary function
that satisfies the axioms listed in Example 5.6. We can view any group as a first-
order structure in the vocabulary Vgp = {+, 0} where + is a binary function
representing the group operation and 0 is a constant representing the identity of
the group. Now suppose that T is a strongly minimal theory containing the Vgp-
theory Tgp of groups. Let {a, b} be an independent set containing two elements
from the universe of a model M of T . Then a + b is an element that is in
aclM ({a, b}) but is contained in neither aclM ({a}) nor aclM ({b}). It follows that
any such theory T is not trivial.

We shall demonstrate examples of strongly minimal groups in this section.
Each of these examples happens to be an Abelian group. A group is Abelian if,
in addition to the properties listed in Example 5.6, the following holds:

(Commutativity) For every a and b in G, a ◦ b = b ◦ a.

Here, as in Example 5.6, ◦ denotes the group’s binary operation. This property
can easily be expressed as a Vgp-sentence. This sentence is consistent with, but
not a consequence of, the theory of groups Tgp (see Exercise 2.5(c)).

Our choice of {+, 0} as the vocabulary for groups is somewhat arbitrary. We
can just as well use the vocabulary {·, 1} or any other vocabulary consisting of a
binary function and a constant. An additive group is a group in the vocabulary

First-order theories 249

{+, 0}. A multiplicative group has {·, 1} as its vocabulary. A field is a structure
with two binary operations each of which forms an Abelian group.

Definition 5.105 Let Var be the vocabulary {+, ·, 0, 1} (the vocabulary of arith-
metic). For any Var-structure F = (U |+, ·, 0, 1}, we say that F is a field if the
following hold:

• The reduct (U |+, 0) of F is an Abelian group.

• The substructure (U − {0}|·, 1) of the reduct (U |·, 1) of F is an Abelian
group.

• F |= ∀x∀y∀z(z · (x+ y) = z · x+ z · y).
• F |= ∀x∀y∀z((x+ y) · z) = x · z + y · z).

The theory of fields, denoted TF , is the set of all Var-sentences that hold in all
fields.

So a field has both a multiplicative group structure and an additive group
structure. The constant 0 necessarily has no multiplicative inverse and so must
be excluded from the multiplicative group. The last two items in the above
definition, called the distributive rules, dictate how the two operations interact.

Example 5.106 The rational numbers and the real numbers, viewed as structures
in the vocabulary Var, are examples of fields.

Example 5.107 The integers do not form a field. The structure (Z − {0}|·, 1) is
not a group since no element (other than 1) has a multiplicative inverse.

Suppose that we restrict our attention to the integers in the set Z7 =
{0, 1, 2, 3, 4, 5, 6}. If we take the usual definition of addition and multiplication,
then this set does not form a field since it is not closed under addition or mul-
tiplication. Let us instead consider addition and multiplication modulo 7. This
means that we take the remainder of the sum or product when divided by 7. For
example, 3 + 6 = 2 (mod 7), 4 + 4 = 1 (mod 7), 5 · 4 = 6 (mod 7), 5 · 6 = 2
(mod 7) and so forth. Let F7 = (Z7|+, ·, 0, 1) be the Var-structure that interprets
+ as addition modulo 7 and · as multiplication modulo 7 on the set Z7. Then F7

is an example of a finite field. For any positive integer a, Fa is defined analog-
ously. This structure is a field if and only if a is prime. We leave the verification
of these facts to the reader.

The examples of fields that we have given, namely Q, R, and F7, are not
strongly minimal. To obtain a strongly minimal structure, we consider vector
spaces over these fields.

250 First-order theories

Definition 5.108 Let F be a field. For each element a of F , let sa denote a unary
function. Let VF = {+, 0, sa|a ∈ F}. A vector space over F is a structure M in
the vocabulary VF that satisfies the following:

• The reduct of M to {+, 0} is an Abelian group.

• M |= ∀x(s1(x) = x).

• M |= ∀x∀y(sa(x+ y) = sa(x) + sa(y)) for all a ∈ F .

• M |= ∀x(sa+b(x) = sa(x) + sb(x)) for all a and b in F .

• M |= ∀x(sa(sb(x)) = sa·b(x)) for all a and b in F .

The theory of vector spaces over F is the set of VF -sentences that hold in each
vector space over F .

Example 5.109 We consider various vector spaces over R.

• Let R
n be the set of all ordered n-tuples (a1, . . . , an) where each ai ∈ R.

• Let R[x1, . . . ,xn] be the set of all polynomials in n variables having
coefficients in R.

• Let R
≤2[x] be the set of all polynomials in R[x1, . . . ,xn] of degree at most 2.

• LetMn×n(R) be the set of all n×n matrices having real numbers as entries.

There is a natural way to describe a vector space over R having any one of
these sets as an underlying set. Each set carries a natural notion of addition
and a zero element (either the matrix having all zero entries or the constant
polynomial p(x) = 0). Moreover, we can define scalar multiplication for each.
Given any element v from any one of these sets and any r ∈ R, the product r · v
is a well-defined element in the same set as v. Thus the unary function sr has a
natural interpretation.

We recall some facts about vector spaces from linear algebra. Let V be a
vector space over a field F . Let B = {v1, . . . , vn} be a set of vectors in V . The
span of B is the set of all linear combinations a1 · + v1 + · · · an · vn where each
ai is in F . The set B is linearly independent if vi is not in the span of B − {vi}
for each vi ∈ B. From this notion of independence, we can define linear bases
and linear dimension. Two vector spaces having the same linear dimension over
a field are necessarily isomorphic. We repeatedly use the adjective “linear” to
distinguish these terms from their strongly minimal counterparts. However, we
will show that these two notions are the same.

Proposition 5.110 The VF -theory TV of a vector space over an infinite field F
has quantifier elimination.

First-order theories 251

Proof Note that the theory of a vector space over F is ∀2-axiomatizable. Also,
any two uncountable models of the same size have the same linear dimension
and, hence, are isomorphic. By Lindström’s theorem, TV is model-complete.
To show that TV has quantifier elimination, it suffices to show that it has the
isomorphism property (by Proposition 5.79). Let M |= TV .

Claim Every substructure of M is a submodel.

Proof A substructure is, by definition, closed under all functions in the vocabu-
lary. Since TV � ∀x(x+ s−1(x) = 0), every substructure contains the inverse for
each element and also the constant 0. From this information it is easy to verify
that any substructure of M is itself a vector space over F .

It follows from this claim that TV has the isomorphism property and, hence,
quantifier elimination as well.

Proposition 5.111 The VF -theory TV of a vector space over an infinite field F
is a nontrivial strongly minimal theory.

Proof Let M be an arbitrary model of TV . We must show that every VF (M)-
formula θ(x) defines either a finite or co-finite subset of the underlying set of M .
By the previous proposition, it suffices to consider only atomic θ(x) (by Proposi-
tion 5.88). Atomic VF (M)-formulas have the form t1 = t2 for some VF (M)-terms
t1 and t2. If there is exactly one free variable x in the equation t1 = t2, then this
formula is TV -equivalent to a formula of the form x = t for some quantifier-free
VF -term t. That is, we can solve the equation for x (here we are using the fact
that F is a field). Clearly, this formula defines a set of size 1. Since TV has
quantifier elimination and every atomic formula defines a finite subset of every
model, TV is strongly minimal. It is not trivial since (a + b) ∈ aclM ({a, b}) for
independent {a, b}.

Corollary 5.112 For any infinite field F , the VF -theory TV of vector spaces over
F is κ-categorical if and only if κ > |F |.

Proof First note that TV has no models smaller than |F |. If κ > |F |, then TV is
κ-categorical by Proposition 5.98. If κ = |F |, then TV is not κ-categorical since
any finite dimensional vector space over F has the same size as F .

In particular, the theory of vector spaces over F is complete if F is infinite.
This is not true for finite fields. Finite dimensional vector spaces over finite fields
are finite. To obtain a complete theory, we must only consider vector spaces of
infinite dimension over finite fields.

Proposition 5.113 For any finite field F , the theory of infinite dimensional vector
spaces over F is strongly minimal, nontrivial, and totally categorical.

252 First-order theories

Proof This can be proved by repeating the arguments we gave for vector spaces
over infinite fields. We leave the verification of this to the reader.

Let M model the theory of vector spaces over a field F (either finite or
infinite). For any algebraically closed subsets A and B of the universe of M , the
following holds:

dimM (A ∪B) = dimM (A) + dimM (B) − dimM (A ∩B). (5.1)

We state this fact from linear algebra without proof. We show that this is
one property of vector spaces that does not generalize to all strongly minimal
theories.

Example 5.114 Let M be an infinite dimensional vector space over a field F .
Let V ′

F = VF ∪{f} where f is a ternary function. Let M ′ be the expansion of M
to a V ′

F -structure that interprets f as the function f(x, y, z) = x + y − z. This
function is explicitly definable in terms of VF :

M ′ |= f(x, y, z) = u if and only if M ′ |= ∃w(w + z = 0 ∧ x+ y + w = u).

It follows that M and M ′ are bi-definable and M ′ is strongly minimal. Now let
N be the reduct of M ′ to the vocabulary {f , sa|a ∈ F}. That is, the vocabulary
of N contains neither + nor 0. Since M ′ is strongly minimal and every definable
subset of N is also a definable subset of M ′, N is strongly minimal. We claim
that Equation (5.1) does not hold for N . Let a, b, and c be elements from the
underlying set such that dimM (a, b, c) = 3. Then dimN (a, b, c) = 3.

Clearly, dimN (a, b, c, f(a, b, c)) = dimM (a, b, c, a+ b− c) = 3, dimN (a, b) =
dimM (a, b) = 2, and dimN (c, f(a, b, c)) = dimM (c, a + b − c) = 2. If A =
aclN ({a, b}) and B = aclN ({c, f(a, b, c)}), then A ∩ B = ∅. Thus we have 3 =
dimN (A ∪ B) �= dimN (A) + dimN (B) − dimN (A ∩ B) = 2 + 2 − 0 = 4 and
Equation (5.1) fails.

Note that aclM ({a, b}) ∩ aclM ({c, a + b − c}) is nonempty. It contains the
constant 0 that was omitted from the vocabulary of N . This intersection also
contains a + b and all of its scalar multiples. So in M , this intersection has
dimension 1 and Equation (5.1) holds (as it does in every vector space).

Definition 5.115 Let T be a strongly minimal theory.
If Equation (5.1) holds for all M |= T , then T is said to be modular.
If Equation (5.1) holds whenever A ∩ B is nonempty, then T is said to be

locally modular. We say that a strongly minimal structure is modular or locally
modular if its theory is.

Equivalently, T is locally modular if and only if the expansion of T by a
single constant is modular. Whereas the theory of a vector space over a field is

First-order theories 253

modular, the theory Th(N) from Example 5.114 is a locally modular strongly
minimal theory that is not modular. If we expand N to include the constant
0, then the binary function + can be recovered as f(x, y, 0) = x + y. So this
expansion of N is bi-definable with the modular structure M .

Proposition 5.116 Let T be a strongly minimal theory. If T is trivial, then it is
modular.

Proof Let A and C be subsets of the universe of a model M of T . Let B0 be a
basis for A∩C. Let B1 be a basis for A− aclM (A∩C) and let B2 be a basis for
C−aclM (A∩C). Consider B0∪B1∪B2. For any elements a and b of this union,
it is not the case that a ∈ aclM ({b}) (by the definition of these three bases). It
follows, since T is trivial, that B0 ∪ B1 ∪ B2 is an independent set. So B0 ∪ B1

is a basis for A, B0 ∪B2 is a basis for C, and B0 ∪B1 ∪B2 is a basis for A ∪C.
Equation (5.1) clearly holds.

A strongly minimal theory is nonlocally modular if it is not locally modular.
To demonstrate an example of a nonlocally modular strongly minimal theory,
we consider the complex numbers. Recall that the set C of complex numbers
consists of all numbers of the form a+ bi where a and b are real numbers an i is
the square root of −1. Complex numbers are added and multiplied as follows:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i, and

(a+ bi) · (c+ di) = ac+ adi+ bci+ bd(−1) = (ac− bd) + (ad+ bc)i

In this way, we can view the complex numbers as a Var-structure C. This struc-
ture is a field (the multiplicative inverse of a+ bi is a/(a2 + b2) − b/(a2 + b2)i).

We axiomatize the theory Th(C). We use without proof the Fundamental
Theorem of Algebra. This theorem states that, for any nonconstant polynomial
p(x) having coefficients in C, there exists a solution in C to the equation p(x) = 0.
Moreover, there are no more than d such solutions where d is the degree of the
polynomial.

Definition 5.117 The theory of algebraically closed fields, denoted TACF , is the
Var-theory axiomatized by:

• the axioms for the theory of fields TF , and

• ∀y1 · · · ∀yn∃x(xn + y1 · xn−1 + · · · + yn−1 · x+ yn = 0) for each n ∈ N

(where xn is an abbreviation for the Var-term x · x · · · · · x).

Lemma 5.118 Let F be a field. There exists an extension F̃ of F that
models TACF .

254 First-order theories

Proof Note that the axioms for the theory of fields Tf are each ∀2-sentences.
By Proposition 5.76, F has an extension that is existentially closed with respect
to Tf . By definition, any existentially closed field is algebraically closed.

The theory TACF of algebraically closed fields is not complete. By previous
proposition, every field can be extended to a model of TACF . In particular,
the field F7 from Example 5.107 has an extension F̃7 that models TACF . This
structure is not elementarily equivalent to C. To see this, let θ7 be the sentence
(1 + 1 + 1 + 1 + 1 + 1 + 1 = 0). Then F̃7 |= θ7 and C |= ¬θ7.

Definition 5.119 Let p be a prime number. Let θp be the Var-sentence saying
that p ·1 = 0. The theory of algebraically closed fields of characteristic p, denoted
TACFp, is the deductive closure of TACF ∪ {θp}.

To axiomatize C, we must include the negations of the θp.

Definition 5.120 The theory of algebraically closed fields of characteristic 0,
denoted TACF0, is the deductive closure of TACF ∪ {¬θp|p is prime}.

We claim that TACF0 is the complete Var-theory of C.

Proposition 5.121 TACF0 has quantifier elimination.

Proof We use condition (ii)′ of Proposition 5.58. LetM |= T and let (a1, . . . , an)
and (b1, . . . , bn) be n-tuples from the universe U of M that satisfy the same
atomic formulas in M . We must show that for any an+1 ∈ U there exists bn+1

in the universe of an elementary extension N of M such that (a1, . . . , an, an+1)
and (b1, . . . , bn, bn+1) satisfy the same atomic formulas in N . We break the proof
of this into two cases. In case 1, we are able to take N to be equal to M .

Case 1: an+1 is a root of some polynomial having coefficients among A =
{a1, . . . , an}. That is, M |= p(an+1) = 0 for some polynomial p(x) having coef-
ficients in A. We may assume that p(x) = 0 has the least number of solutions
among all such polynomials (so p(x) is the minimal polynomial over A). Let q(x)
be the polynomial obtained by replacing each occurrence of ai in p(x) with bi
(for each i = 1, . . . ,n). Since M is algebraically closed, M |= q(bn+1) = 0 for
some bn+1 ∈ U . Since p(x) is minimal, (a1, . . . , an, an+1) and (b1, . . . , bn, bn+1)
satisfy the same atomic formulas in M . This can be shown in the same way that
Claim 2 was proved in the proof of Lemma 5.98.
Case 2: an+1 is not a root of any polynomial having coefficients among A =
{a1, . . . , an}. Let N be an elementary extension ofM such that |N | > |M |. Since
there are only countably many polynomials having coefficients in A and each has
only finitely many roots, there must exist bn+1 in the universe of N that is not a
root of any of them. Clearly (a1, . . . , an, an+1) and (b1, . . . , bn, bn+1) satisfy the
same atomic formulas in N .

First-order theories 255

Proposition 5.122 TACF0 is a nonlocally modular strongly minimal theory.

Proof Let M be an arbitrary model of TACF0. To show that TACF0 is strongly
minimal, it suffices to show that every atomic Var(M)-formula θ(x) defines
either a finite or co-finite subset of the underlying set of M (by Proposi-
tion 5.88). Atomic Var(M)-formulas are TF -equivalent to formulas of the form
p(x) = 0 where p(x) is a polynomial having coefficients from the universe of
M . Strong minimality follows from the fact that polynomials have finitely many
roots.

It remains to be shown that TACF0 is not locally modular. Let a, b, and c
be elements from a model M of TACF0 such that dimM (a, b, c) = 3. Let A =
aclM ({a, b}) and let B = aclM ({a+ b · c, c}). Then dimM (A) = dimM (B) = 2
and dimM (A ∪B) = 3. We state without proof the following fact: if d ∈ A ∩B,
then d ∈ aclM (∅). From this we see that dimM (A ∩ B) = 0 and TACF0 is not
modular.

Corollary 5.123 TACF0 is complete and uncountably categorical.

It follows that TACF0 is the complete theory of C. What does this fact tell
us about the complex numbers? By quantifier elimination, we know that any
Var-formula ϕ is TACF0-equivalent to some quantifier-free Var-formula ψϕ. Let
us consider some specific formulas ϕ.

For each n ∈ N, let pn(x, y0, y1, . . . , yn) be the polynomial

y0 + y1 · x+ y2 · x2 + · · · + yn · xn = 0.

Let ϕ(y0, . . . , yn) be the formula ∃xp(x, y0, y1, . . . , yn) = 0. Since TACF0 has
quantifier elimination, we know that this formula is TACF0-equivalent to a
quantifier-free Var-formula. However, TACF0 implies every polynomial has a
root. So the formula ϕ(y0, y1, . . . , yn) holds for all y0, . . . , yn in any model of
TACF0. It follows that ϕ(y0, y1, . . . , yn) is TACF0-equivalent to the quantifier-
free formula 1 = 1. Do not try to impress your complex analysis professor with
this fact.

Now, for any n,m ∈ N, let θn,m(y0, . . . , yn, z0, . . . , zm) be the formula

∃x(pn(x, y0, . . . , yn) = 0 ∧ pm(x, z0, . . . , zm) = 0).

This formula asserts that the two polynomials share a root. Whether or not this
is true depends on the coefficients (y0, . . . , yn) and (z0, . . . , zm) of the two polyno-
mials. Since TACF0 has quantifier-elimination, there must exists a quantifier-free
formula ψθ(y0, . . . , yn, z0, . . . , zm) that holds if and only if the two polynomials
have a common root. This is not obvious. In fact, θn,m(y0, . . . , yn, z0, . . . , zm)

256 First-order theories

holds if and only if the determinate of the following matrix is not zero:




y0 y1 . . . yn 0 0 . . . 0
0 y0 y1 . . . yn 0 . . . 0
.
.
0 0 . . . 0 y0 y1 . . . yn

z0 z1 . . . zm 0 . . . 0
0 z0 z1 . . . zm 0 . . . 0
.
0 . . . 0 z0 z1 . . . zm




.

The determinant of this matrix is called the resultant of the two polynomials
pn(x, y0, . . . , yn) and pm(x, z0, . . . , zm). Since the determinant is an algebraic
expression in (y0, . . . , yn, z0, . . . , zm), we can say that this determinate equals
zero with a quantifier-free Var-formula ϕθ(y0, . . . , yn, z0, . . . , zm).

Now suppose that we have k polynomials of the form pn(x, y0, . . . , yn). Let ȳ
be the k ·(n+1)-tuple consisting of the coefficients of these polynomials. Suppose
we want to determine whether there exists a number that is simultaneously the
root of each of these k polynomials. Since TACF0 has quantifier elimination, there
exists some quantifier-free expression having ȳ as variables that determines this.
That is, there exist analogues for the resultant that work for each k > 2.

The perspective of model theory is somewhat askew compared to other
branches of mathematics. The light shed by model theory will not fully illumin-
ate a structure in all of its detail. However, it can bring to light certain features
of a structure that are shaded by other approaches. As a basic example, we have
the fact that there exist resultants for several polynomials in several variables.
That is, there exists a polynomial P (ȳ) in the coefficients ȳ of the given poly-
nomials such that P (ȳ) = 0 if and only if the polynomials have a common zero.
Model theory provides an immediate proof of this fact, but it does not provide
a description of the polynomial P (ȳ).

Resultants provide a superficial example of the deep relationship between
model theory and other branches of mathematics. Not only have model theoretic
methods shed new light on various branches of mathematics, these methods have
yielded results at the forefront of research. Most notable is Ehud Hrushovski’s
1996 proof of the Mordell–Lang conjecture for function fields. Implementing
model-theoretic tools (such as strong minimality), Hrushovski answered in the
affirmative this long standing conjecture of algebraic geometry. The statement of
this conjecture (not to mention the proof) is beyond the scope of this book. We
consider an application of model theory to algebraic geometry that is far more
fundamental.

First-order theories 257

5.9 Some algebraic geometry
The model-theoretic properties of C provide elementary proofs for some funda-
mental theorems of algebraic geometry. In this section, we give one prominent
example known as Hilbert’s Nullstellensatz.

Algebraic geometry arises from the interplay between the algebra of poly-
nomial equations and the geometry of the solutions of these equations. Let
C[x1, . . . ,xn] denote the set of all polynomials having variables x1, . . . ,xn and
coefficients in C. Each f(x1, . . . ,xn) in C[x1, . . . ,xn] defines a subset of C

n,
namely

Vf = {(x1, . . . ,xn) ∈ Cn|f(x1, . . . ,xn) = 0}.

The set of solutions of a polynomial in two variables is called an algebraic
curve. More specifically, if f(x, y) is a polynomial having complex coefficients,
then Vf is a complex algebraic curve.

Example 5.124 Consider the polynomials

f(x, y) = x3 − xy + x2y − y2, and

g(x, y) = x4 + 2x3y + x2y2 − x2y + 2xy2 + y3.

These two polynomials define the same complex algebraic curves. This is because
they factor as f(x, y) = (x2 − y)(x+ y) and g(x, y) = (x2 − y)(x+ y)2.

Since they have the same factors, they have the same curves. Whether we
plot f(x, y) = 0 or g(x, y) = 0 in the real plane, we will see the union of the
parabola defined by y = x2 and the line y = −x. Likewise, the complex curves
defined by these polynomials are identical.

Definition 5.125 A polynomial f ∈ C[x1, . . . ,xn] is irreducible if it cannot be
factored as f(x1, . . . ,xn) = p(x1, . . . ,xn) · q(x1, . . . ,xn) for two nonconstant
polynomials p(x1, . . . ,xn) and q(x1, . . . ,xn) in C[x1, . . . ,xn].

The polynomials f(x, y) and g(x, y) from the previous example are not irre-
ducible. These polynomials have the two irreducible factors corresponding to the
irreducible curves given by the line and the parabola. Hilbert’s Nullstellensatz
states that two polynomials in C[x, y] define the same curves if and only if they
have the same irreducible factors. As the following example shows, this is not
true when restricted to the real numbers.

Example 5.126 Let h(x, y) = (x2 + 1)(x2 − y)(x+ y). Since (x2 + 1) is not zero
for any real numbers, h(x, y) defines the same curve in R

2 as the polynomials
f(x, y) and g(x, y) from the previous example. In C

2, however, h(x, y) has the
root (i, 0) that is not a root of f(x, y). So the complex algebraic curve defined
by h(x, y) is not the same as the curve defined by f(x, y).

258 First-order theories

Theorem 5.127 (Hilbert’s Nullstellensatz) Let g(x, y) and h(x, y) be two poly-
nomials having complex coefficients. The complex algebraic curves defined by
g(x, y) and h(x, y) are the same if and only if g(x, y) and h(x, y) have the same
irreducible factors.

Proof A point (a, b) ∈ C
2 is on the curve defined by g(x, y) if and only if

g(a, b) = 0. This happens if and only if p(x, y) = 0 for some irreducible factor p
of g. It follows that if g(x, y) and h(x, y) have the same irreducible factors, then
g(x, y) and h(x, y) define the same curves.

Conversely, suppose that g(x, y) and f(x, y) do not have the same irreducible
factors. Let p(x, y) be an irreducible factor of g(x, y) that is not a factor of h(x, y).
We show that there exists (a, b) ∈ C

2 such that p(a, b) = 0 and h(a, b) �= 0. If we
show this, then we can conclude that the curves defined by g(x, y) and f(x, y)
are not the same.

Let P be the set of all polynomials in C[x, y] that have p(x, y) as a factor.
Then g(x, y) ∈ P and h(x, y) �∈ P .

For each f(x, y) ∈ C[x, y], let f(x, y) + P denote the set

{f(x, y) + q(x, y)|q(x, y) ∈ P}.

Note that f1(x, y) + P = f2(x, y) + P if and only if the polynomial f1(x, y) −
f2(x, y) is in P . In particular, f(x, y) + P = P if and only if f(x, y) is in P .

Let CP = {f(x, y) + P |f(x, y) ∈ C[x, y]}. So CP is a set of sets.
We define a Var-structure N having CP as its underlying set. The Var-

structure N interprets the constants 0 and 1 as the elements P and 1 + P ,
respectively. We next define addition and multiplication for this structure. For
f1(x, y) and f2(x, y) in C[x, y] let:

(f1 + P) + (f2 + P) = (f1 + f2) + P , and (f1 + P) · (f2 + P) = (f1 · f2) + P .

This completes our description of the Var-structure N = (CP |0, 1, +, ·).
We claim that e : C → N defined by e(a) = a + P is an embedding. We

leave the verification of this to the reader. The range Ce of e is a substructure
of N that is isomorphic to C. For any f(x, y) ∈ C(x, y), let fe(x, y) be the result
of applying e to each coefficient of f(x, y). By the definition of addition and
multiplication in N , fe(x, y) = f(x, y) + P .

For example, if

f(x, y) = 2x+ 5xy2,

then

fe(x, y) = e(2)x+ e(5)xy2 = (2 + P)x+ (5 + P)xy2 = 2x+ 5xy2 + P .

First-order theories 259

Claim N |= ∃w∃z(pe(w, z) = 0 ∧ he(w, z) �= 0).

Proof This is witnessed by the elements x + P and y + P of CP . We have
pe(x+P , y+P) = p(x+P , y+P)+P (by the definition of pe), and p(x+P , y+P) =
p(x, y) + P (by the definition of + and · in N). So we have pe(x+ P , y + P) =
(p(x, y) + P) + P = (p(x, y) + P) + (0 + P) = p(x, y) + P .
Since p(x, y) ∈ P , p(x, y) + P = P . Since N interprets 0 as the element P ,

N |= pe(x+ P , y + P) = 0.

Likewise, he(x+P , y+P) = h(x, y)+P . Since h(x, y) is not in P , h(x, y)+P �= P ,
and N |= he(x+ P , y + P) �= 0. Thus the claim is verified.

We further claim that N is a field. The axioms TF are easily verified. We
leave this verification to the reader. By Proposition 5.118, there exists an exten-
sion M of N that models TACF0. Since M is an extension of the model Ce and
TACF0 is model-complete, M is an elementary extension of Ce. We have

Ce |= ∃w∃z(pe(w, z) = 0 ∧ he(w, z) �= 0) (since Ce ≺M), and
C |= ∃w∃z(p(w, z) = 0∧h(w, z) �= 0) (since e : C → Ce is an isomorphism).

By the semantics of ∃, C |= (p(a, b) = 0∧ h(a, b) �= 0) for some (a, b) ∈ C
2 as we

wanted to show.

Exercises
5.1. A theory T is ∀1-axiomatizable if it has an axiomatization consisting of

universal sentences.
(a) Prove that T is ∀1-axiomatizable if and only if for every M |= T and

every A ⊂M , A is a model of T .

(b) Find an example of a complete ∀1-axiomatizable theory or show that
no such theory exists.

5.2. A theory T is ∃1-axiomatizable if it has an axiomatization consisting of
existential sentences.
(a) Prove that T is ∃1-axiomatizable if and only if for any model M of

T and any embedding f :M → N , N is also a model of T .

(b) Find an example of a complete ∃1-axiomatizable theory or show that
no such theory exists.

5.3. Show that the following are equivalent:
(i) T is finitely axiomatizable.

(ii) T is axiomatized by a single sentence.

(iii) Any axiomatization of T has a finite subset that axiomatizes T .

260 First-order theories

5.4. Show that the following theories are not finitely axiomatizable:
(a) The theory Ts of the integers with a successor function.

(b) The theory TRG of the random graph.

(c) The theory TACF0 of algebraically closed fields of characteristic 0.

5.5. Let T be a complete VE-theory that contains the theory of equivalence
relations TE . Show that T is finitely axiomatizable if and only if T has a
finite model.

5.6. Let Γ1 be the set of V<-sentences that hold in every finite model of TLO.
Let Γ2 be the set of sentences saying that there exist at least n elements
for each n ∈ N. Let TFLO be the set V<-sentences that can be derived
from Γ1 ∪ Γ2.
(a) Show that TFLO is a theory.

(b) Show that TFLO is quasi-finitely axiomatizable.

(c) Show that TFLO is not κ-categorical for any κ.

5.7. Let T1 and T2 be bi-definable theories each having finite vocabularies.
(a) Show that T1 is complete if and only if T2 is.

(b) Show that T1 is finitely axiomatizable if and only if T2 is.

(c) Show that T1 is quasi-finitely axiomatizable if and only if T2 is.

(d) Show that T1 is κ-categorical if and only if T2 is.

(e) Show that T1 is strongly minimal if and only if T2 is.

5.8. Let VP be the vocabulary consisting of a single unary relation P . Let T
be a complete VP -theory having infinite models.
(a) Show that T is countable categorical.

(b) Give examples showing that T may or may not be totally categorical.

5.9. Show that there exists a complete quasi-finitely axiomatizable V-theory
having infinite models for every finite vocabulary V.

5.10. For any first-order sentence ϕ, let Spec(ϕ) denote the finite spectrum of
ϕ (as defined in Exercise 2.3). Show that either Spec(ϕ) or Spec(¬ϕ) is
cofinite. (Hint: Use the previous exercise.)

5.11. Let VE be the vocabulary consisting of a single binary relation E. Let M
be an infinite VE-structure that interprets E as an equivalence relation.
Suppose that each equivalence class of M has the same size.
(a) Show that Th(M) is countably categorical.

(b) Show that Th(M) is uncountably categorical if and only if the
equivalence classes are finite.

(c) Show that Th(M) has quantifier elimination.

First-order theories 261

5.12. Let VE be the vocabulary consisting of a single binary relation E. Let T
be the VE-theory saying that E is an equivalence relation having infinitely
many equivalence classes of size 3, infinitely many equivalence classes of
size 5, and no other equivalence classes.
(a) Axiomatize T .

(b) How many models of size ℵ0 does T have up to isomorphism?

(c) How many models of size ℵ1 does T have up to isomorphism?

(d) Show that T does not have quantifier elimination.

(e) Show that T is model-complete.

5.13. Show that TDLO has 2ℵ0 nonisomorphic models of size 2ℵ0 .

5.14. Let V+
< = {<,Pb,Ps} be the vocabulary consisting of a single binary

relation < and two unary relations Pb and Ps. Let T−
DLOE be the V+

< -
theory axiomatized by the V<-sentences δ1–δ5 in Section 5.3 together with
the following two V+

< -sentences:

δ′6 : ∀x∀y(Ps(x) → ¬(y < x))

δ′7 : ∀x∀y(Pb(x) → ¬(x < y)).

So Ps(x) means x is small and Pb(X) means x is big.
(a) Show that T−

DLOE is incomplete.

(b) ShowthatT−
DLOE hasexactly fourcountablemodelsupto isomorphism.

(c) Show that T−
DLOE has quantifier elimination.

5.15. LetV<(C)be thevocabulary{<, c1, c2, c3, . . .} consistingof abinary relation
< and a denumerable set of constants. LetTCDLO be the complete expansion
of TDLO to a V+(C)-theory that says ci < cj if and only if i < j.
(a) Show that TCDLO has exactly three countable models up to

isomorphism.

(b) Show that TCDLO is complete.

(c) Show that TCDLO has quantifier elimination.

5.16. Let VE be the vocabulary consisting of a single binary relation E. Let TE

be the VE-theory that says E is an equivalence relation. LetM be a model
of TE that has exactly one equivalence class of size n for each n ∈ N and
no other equivalence classes.
(a) Axiomatize Th(M).

(b) Show that Th(M) is not finitely axiomatizable.

(c) Show that M is not κ-categorical for any κ.
Let V+ = {E, f} where f is a unary function. Let ϕ+ be the V+-sentence
saying for each x there exists a unique y such that both E(x, y) and

262 First-order theories

∀z(¬f(z) = y). Let M+ be an expansion of M to a V+-structure that
interprets f as a one-to-one and onto function and models ϕ+.
(d) Show that Th(M+) is finitely axiomatizable.

(e) Show that Th(M+) is not κ-categorical for any κ.

5.17. Let M and M+ be as in Exercise 5.16.
(a) Show that M is minimal but not strongly minimal.

(b) Show that M+ is not minimal.

5.18. Complete the proof of Proposition 5.58 by showing that T has quantifier
elimination if and only if condition (ii)′ holds.

5.19. Let T be a countable complete theory. Show that T has quantifier elim-
ination if and only if condition (ii)′ from Proposition 5.58 holds for all
countable models M of T .

5.20. Let B be the set of all finite sequences of 0s and 1s (including the empty
sequence). Let M = (B|S) be the structure in the vocabulary of a single
binary relation S that interprets S as follows. For sequences s1 and s2 in
B, M |= S(s1, s2) if and only if s2 is obtained by adding a 0 or a 1 to the
end of s1. So S is a successor relation and every element of B has exactly
two successors and at most one predecessor.
(a) Show that Th(B) is bi-definable with a model-complete theory that

has a finite relational vocabulary. (Include a constant for the element
having no predecessor.)

(b) Show that any theory in a finite relational vocabulary that is bi-
definable with Th(B) cannot have quantifier elimination.

(c) Show that B is a strongly minimal structure.

5.21. Let VPs be the vocabulary consisting of denumerably many unary relations
P1,P2,P3, . . . and let I and O be disjoint finite subsets of N. Let ϕI,O(x)
be the VPs-formula

∧
i∈I Pi(x) ∧

∧
i∈O ¬Pi(x).

This formula says that x is in each of the sets defined by Pi for i ∈ I
and outside each of the sets defined by Pi for i ∈ O. Let TP be the VPs-
theory axiomatized by the sentences saying that there exist at least n
elements satisfying ϕI,O for each n in N and any finite disjoint subsets I
and O of N.
(a) Show that TP has quantifier elimination.

(b) Show that TP is not κ-categorical for any κ.

5.22. An automorphism of a structure M is an isomorphism f : M → M from
M onto itself. Let T be a countable complete theory.
(a) Suppose that, for anyM |= T and tuples (a1, . . . , an) and (b1, . . . , bn)

satisfying the same atomic formulas in M , there is an automorphism

First-order theories 263

f of M with f(ai) = bi for i = 1, . . . ,n. Show that T has quantifier
elimination.

(b) Suppose that T has quantifier elimination. Show that, for anyM |= T
and tuples (a1, . . . , an) and (b1, . . . , bn) satisfying the same atomic
formulas in M , there exist an elementary extension N of M and an
automorphism f of N with f(ai) = bi for i = 1, . . . ,n.

5.23. Let TE = Th(M2) where M2 is the countable VE-structure defined in
Example 5.18. Let Ts = Th(Zs) where Zs is the Vs-structure defined in
Example 5.20.

We define a theory T that contains both of these theories. Let V be
the vocabulary {E, s}. Let T be the set of all V-sentences that can be
derived from the set TE ∪ Ts ∪ {∀x∀y(s(x) = y → E(x, y))}.
(a) Show that T is complete.

(b) Refer to Exercise 5.22. Demonstrate a model M of T and tuples
(a1, . . . , an) and (b1, . . . , bn) from the universe of M such that

• (a1, . . . , an) and (b1, . . . , bn) satisfy the same atomic formulas
in M , and

• there is no automorphism f of M for which f(ai) = bi for i =
1, . . . ,n.

(c) Show that T has quantifier elimination.

5.24. Let T be a theory. Prove that T is model-complete if and only if, for any
model M of T , T ∪ D(M) is complete.

5.25. Let T be a theory. Let M be a model of T that can be embedded into any
model of T . Show that if T is model-complete, then T is complete.

5.26. Show that T is model-complete if and only if, for any models M and N of
T with M ⊂ N , there exists an elementary extension M ′ of M such that
M ⊂ N ⊂M ′.

5.27. Let T be a model-complete theory. Let T∀∃ be the set of all ∀2-sentences
ϕ such that T � ϕ. Show that M |= T∀∃ if and only if M |= T .
(Hint: Show that every model of T∀∃ has an elementary extension that is
the union of a chain of models of T .)

5.28. Let T be a theory and let M be a model of T . Show that M is existen-
tially closed with respect to T if and only if M is existentially closed with
respect to T∀.

5.29. Show that the following theories have the amalgamation property:
(a) The theory of graphs TG.

(b) The theory of linear orders TLO.

(c) The theory of fields TF .

264 First-order theories

5.30. Let T be a theory. A theory T ′ is the model-companion of T if T ′
∀ = T∀

and T ′ is model-complete.
(a) Show that TRG is the model-companion of TG.

(b) Show that TDLO is the model-companion of TLO.

(c) Show that TACF is the model-companion of TF .

5.31. Refer to the previous two exercises. Prove that if T has the amalgamation
property and T ′ is the model-companion of T , then T ′ has quantifier
elimination.

5.32. Verify that aclM (aclM (A)) = aclM (A) for any structureM and any subset
A of the underlying set of M .

5.33. Let M be a strongly minimal V-structure having underlying set U . Let
ϕ(x, y) be a V-formula having two free variables. Show that there exists
n ∈ N such that, for all a ∈ U : |ϕ(a,M)| is infinite if and only if
|ϕ(a,M)| ≥ n. Show that this is not true for the minimal structureM from
Exercise 5.17.

5.34. Let M be a structure and let f : A → B be an M -elementary function
between subsets A and B of M . Show that A is algebraically closed if and
only if B is algebraically closed.

5.35. Let G be a graph having a strongly minimal theory. Let a and b be
vertices of G such that dimG(a, b) = 2. Let dG(a, b) be the length of
the shortest path (in G) from a to b if such a path exists and ∞ oth-
erwise. Prove that there are exactly three possible values for dG(a, b)
(including ∞).

5.36. Let T be a strongly minimal theory. Show that the following are
equivalent.
(i) T is locally modular.

(ii) If T is expanded by adding one constant to the vocabulary, then the
result is modular.

(iii) Some expansion of T by constants is modular.

5.37. Let T be a strongly minimal theory. Show that the following are
equivalent.
(i) T is modular.

(ii) If c ∈ aclM (A ∪ {b}), then c ∈ aclM ({a, b}) for some a ∈ A for any
model M of T and any subset A ∪ {b} of the underlying set of M
with aclM (A) = A.

(Hint: To show (ii) implies (i) use induction on n = dimM (A).)

First-order theories 265

5.38. Let Rf = {R|f ,<, +, ·, 0, 1} be an expansion of Ror where f is a unary
function.
(a) Show that if Rf interprets f(x) as a polynomial, then Rf is

o-minimal. (Use the fact that Ror is o-minimal.)

(b) Show that if Rf interprets f(x) as sin(x), then Rf is not o-minimal.

(c) For any real number x, the floor of x, denoted "x#, is greatest integer
less than or equal to x. Show that if Rf interprets f(x) as "x#, then
Rf is not o-minimal.

5.39. Let M be a V-structure and let A be a subset of the universe U of M . The
definable closure of A in M , denoted dclM (A), is the set of all d ∈ U such
that M |= ∀x(x = d ↔ ϕ(x)) for some V(A)-formula ϕ(x). (The formula
ϕ(x) is said to define the unique element d over A.) Show that if M is
o-minimal, then dclM (A) = aclM (A) for all A ⊂ U . Show that this is not
necessarily true if M is strongly minimal.

5.40. Show that TRG is not uncountably categorical.

5.41. We randomly construct a graph having vertices V = {v1, v2, v3, . . .}. For
each pair of vertices vi and vj , we flip a coin. If the coin lands heads up,
vi and vj share an edge. Otherwise, they do not share an edge. Suppose
that our coin is unfair. Say that our coin lands heads up only 1 out of
1000 times. Show that (after flipping the coin infinitely many times) the
resulting random graph will be isomorphic to GR (with probability 1).

5.42. We define a graph having N as vertices. Any natural number n can
be uniquely factored as pa1

1 · pa2
2 · pa3

3 · · · pam
m where the pis are dis-

tinct primes. We say that each of the exponents ai in this factorization
are “involved in n.” We now define our graph: two natural numbers
a and b share an edge if and only if either a is involved in b or b is
involved in a. Show that the resulting graph is isomorphic to the random
graph.

5.43. Show that for every substructure A of the random graph GR, either GR
∼=

A or GR
∼= (GR − A) (where (GR − A) is the substructure having the

vertices that are not in A as an underlying set).

5.44. Show that the 0–1 law fails for vocabularies that are not relational.
(Hint: Consider the sentence ∃xf(x) = x.)

5.45. Let TACFp be the Var-theory of algebraically closed fields of characteristic
p (for prime p). Prove that, for any Var-sentence ϕ, the following are
equivalent:
(i) TACF0 |= ϕ,

266 First-order theories

(ii) TACFp |= ϕ for sufficiently large primes p, and

(iii) TACFp |= ϕ for arbitrarily large primes p.

5.46. Algebraically closed fields of any characteristic are necessarily infinite.
However, every finite subset of TACFp has arbitrarily large finite models
for any prime p. Using this fact (and the previous exercise) prove Ax’s
theorem.

Ax’s theorem: Let f(x) be a polynomial having complex coefficients. If
f : C → C is one-to-one, then f is onto.

6 Models of countable theories

We define and study types of a complete first-order theory T . This concept allows
us to refine our analysis of Mod(T). If T has few types, then Mod(T) contains
a uniquely defined smallest model that can be elementarily embedded into any
structure ofMod(T). We investigate the various properties of these small models
in Section 6.3. In Section 6.4, we consider the “big” models of Mod(T). For any
theory, the number of types is related to the number of models of the theory. For
any cardinal κ, I(T ,κ) denotes the number of models in Mod(T) of size κ. We
prove two basic facts regarding this cardinal function. In Section 6.5, we show
that if T has many types, then I(T ,κ) takes on its maximal possible value of
2κ for each infinite κ. In Section 6.6, we prove Vaught’s theorem stating that
I(T ,ℵ0) cannot equal 2.

All formulas are first-order formulas. All theories are sets of first-order sen-
tences. For any structure M , we conveniently refer to an n-tuple of elements
from the underlying set of M as an “n-tuple of M .”

6.1 Types
The notion of a type extends the notion of a theory to include formulas and not
just sentences. Whereas theories describe structures, types describe elements
within a structure.

Definition 6.1 Let M be a V-structure and let ā = (a1, . . . , an) be an n-tuple of
M . The type of ā in M , denoted tpM (ā), is the set of all V-formulas ϕ(x̄) having
free variables among x1, . . . ,xn that hold in M when each xi in x̄ is replaced by
ai. More concisely, but less precisely: tpM (ā) = {ϕ(x̄)|M |= ϕ(ā)}.

If ā is an n-tuple, then each formula in tpM (ā) contains at most n free
variables but may contain fewer. In particular, the type of an n-tuple contains
sentences. For any structure M and tuple ā of M , tpM (ā) contains Th(M) as a
subset. The set tpM (ā) provides the complete first-order description of the tuple
ā and how it sits in M . This description is not necessarily categorical; many
tuples within the same structure may have the same type.

Example 6.2 Let Q< be the structure (Q| <) that interprets < as the usual order
on the rational numbers. This structure is a model of the theory TDLO of dense
linear orders discussed in Section 5.4. Consider the four-tuple (−2,−1, 1, 2). The

268 Models of countable theories

type tpQ<
(−2,−1, 1, 2) contains the formulas x1 < x2, x2 < x3, and x3 < x4.

Since TDLO has quantifier elimination, for any four-tuple ā = (a1, a2, a3, a4)
of rational numbers, if a1 < a2 < a3 < a4 then tpQ<

(ā) is the same as
tpQ<

(−2,−1, 1, 2).

Definition 6.3 Let Γ be a set of formulas having free variables among x1, . . . ,xn.
A structure M realizes Γ if Γ is a nonempty subset of tpM (ā) for some tuple ā
of M . Otherwise, M is said to omit Γ. The set Γ is realizable if it is realized in
some structure.

Note the distinction between the terms realizable and satisfiable. The set
tpM (ā) is realizable by definition, but rarely is tpM (ā) satisfiable (see Exer-
cise 6.4). This is because tpM (ā) contains formulas that are not sentences. Recall
that a formula ϕ(x̄) is equivalent to the sentence ∀x̄ϕ(x̄). So when we say that
a formula ϕ(x1, . . . ,xn) is satisfiable, we mean that it holds for all n-tuples of a
structure. When we say that ϕ(x1, . . . ,xn) is realizable, we mean that it holds
for some n-tuple of a structure.

We now define the key concept of this chapter.

Definition 6.4 An n-type is a realizable set of formulas having free variables
among x1, . . . ,xn. A type is an n-type for some n.

The sets tpM (ā) are examples of types. Moreover, these are the only
examples we need to consider. Every type is a subset of tpM (ā) for some M
and ā. The types tpM (ā) are called complete types. Types that are not complete
are called partial types. We typically use p, q, and r to denote types (Γ is used to
denote arbitrary sets of formulas). We often write a type with its free variables as
p(x1, . . . ,xn). The notation p(t1, . . . , tn) represents the set of formulas obtained
by replacing each xi with the term ti.

Since types are generally not satisfiable, they are not consistent. This is
unfortunate. Much of the previous chapters has been devoted to consistent sets
of formulas. We can recover results from the previous chapters and apply them
to types by making the following observation: the formula ϕ(x) is realizable if
and only if the sentence ϕ(c) is satisfiable for some constant c. We state this
more generally as the following proposition.

Proposition 6.5 Let Γ(x1, . . . ,xn) be a set of formulas having free variables
among x1, . . . ,xn. Let c1, . . . , cn be constants not in the vocabulary of Γ. Then
Γ(x1, . . . ,xn) is realizable if and only if Γ(c1, . . . , cn) is satisfiable.

Proof Γ(x1, . . . ,xn) is realizable if and only if

Γ(x1, . . . ,xn) is a subset of tpM (ā) for some M and ā.

Models of countable theories 269

This happens if and only if M ′ |= Γ(c1, . . . , cn) where M ′ is an expansion of
M that interprets the constants c1, . . . , cn as the tuple ā of M .

So for any realizable set of formulas, there is a closely related set of sentences
that is satisfiable. This allows us to apply properties regarding satisfiability to
types that are not satisfiable. In particular, the Compactness theorem remains
true when “satisfiable” is replaced with “realizable.”

Proposition 6.6 Let Γ(x1, . . . ,xn) be a set of formulas having free variables
among x1, . . . ,xn. Every finite subset of Γ is realizable if and only if Γ is
realizable.

Proof Let c1, . . . , cn be constants not in the vocabulary of Γ.
By Proposition 6.5, Γ(x1, . . . ,xn) is realizable if and only if Γ(c1, . . . , cn) is

satisfiable.
By the Compactness theorem, Γ(c1, . . . , cn) is satisfiable if and only in every

finite subset of Γ(c1, . . . , cn) is satisfiable.
Finally, again by Proposition 6.5, every finite subset of Γ(c1, . . . , cn) is

satisfiable if and only if every finite subset of Γ(x1, . . . ,xn) is realizable.

Let T be a complete theory. Any type that is realized in a model of T ,
whether it is partial or complete, is called a type of T . The set of all complete
types of T is denoted S(T). Equivalently, S(T) is the set of all complete types
that contain T as a subset. We denote by Sn(T) the set of all n-types in S(T).

Corollary 6.7 Let T be a complete theory and let Γ be a set of formulas having
free variables among x1, . . . ,xn. If each finite subset of Γ is a type of T , then Γ
is an type of T .

Proof Apply Proposition 6.6 to the set Γ ∪ T .

Example 6.8 Let VE be the vocabulary consisting of a single binary relation E.
Let M be the V-structure that interprets E as an equivalence relation having
exactly one equivalence class of size n for each n ∈ N and no other equivalence
classes. Let T = Th(M). We depict M as follows:

270 Models of countable theories

Each box represents an equivalence class. Each of these equivalence classes
determines a unique type in S1(T). For any m ∈ N, let pm be the type of an
element in the equivalence class containing exactly m elements. Any two such
elements have the same type (we cannot distinguish between two elements in
the same equivalence class using the vocabulary VE). Let ϕm be the VE-formula
saying that there are exactly m elements equivalent to x1. Then ϕm(x1) ∈ pm

and pm is the only type in S1(T) that contains ϕm.
The set S1(T) contains the types p1, p2, p3, and so forth. Given any element

a in the universe of M , tpM (a) equals pm, where m is the number of elements in
the equivalence class containing a. So M realizes each of the types pm for m ∈ N

and no other types. However, there does exist another type in S1(T).
Consider the set of V-formulas Γ(x1) = {¬ϕm(x1)|m ∈ N}. These formulas

say that, for each m ∈ N, there are not exactly m elements equivalent to x1.
Given any finite subset ∆ of Γ, ∆ ⊂ pm for sufficiently large m ∈ N. By Corol-
lary 6.7, Γ(x1) is a type of T . Let p∞ ∈ S1(T) be a complete type containing Γ as
a subset. This type says that there exist infinitely many elements equivalent to
x1. This type is not realized in M , but it is realized in an elementary extension
of M . Let N1 be the model of T having M as a substructure and also having one
denumerable equivalence class and no other infinite equivalence classes. Then N1

realizes the type p∞ as well as the types p1, p2, p3, . . . These are all of the types
in S1(T).

Now consider S2(T). This is the set of all 2-types realized in some model of
T . Each 2-type contains formulas having at most two free variables (namely x1

and x2). For anym and l in N, let pm,l be the complete 2-type that says there are
exactly m elements equivalent to x1 and l elements equivalent to x2. Then pm,l

is the unique 2-type containing the two 1-types pm(x1) and pl(x2) as subsets.
Each formula in pm,l can be derived from T ∪ pm(x1)∪ pl(x2). In particular, the
formula E(x1,x2) is in pm,l if and only if l = m.

Consider now the partial 2-type Γ∞,∞ = p∞(x1) ∪ p∞(x2). This 2-type is
the union of two complete 1-types, but it is not complete. To obtain a complete
2-type, we must say whether or not x1 is equivalent to x2. Let p∞,∞ be the
complete 2-type that contains Γ∞,∞ and the formula ¬E(x1,x2). This type is
not realized in N1, but it is realized in the elementary extension N2 of N1 that
contains exactly two denumerable equivalence classes.

Let T be a complete theory and let p be in S(T). By definition, p is realized
in some model of T . As the previous example indicates, something stronger is
true. Given any M |= T there exists an elementary extension N of M that
realizes p.

Proposition 6.9 Let T be a complete theory and let M |= T . Each type in S(T)
is realized in some elementary extension of M .

Models of countable theories 271

Proof Let p be an n-type in S(T). Let ED(M) be the elementary diagram ofM .
Let c1, . . . , cn be constants that do not occur in ED(M). By the Joint Consistency
lemma 4.63, ED(M)∪p(c1, . . . , cn) is consistent. By Proposition 4.27, there exists
a model N of ED(M)∪ p(c1, . . . , cn). This model realizes p and is an elementary
extension of M .

6.2 Isolated types
A type in S(T) may be realized in some models of T and omitted in others. In
this section, we focus on those types in S(T) that are realized in every model
of T .

Definition 6.10 Let T be a complete theory and let p be an n-type in Sn(T). If
there exists some formula θ ∈ p such that p is the only type in Sn(T) containing
θ, then p is said to be isolated in Sn(T) and the formula θ is said to isolate p in
Sn(T). A partial n-type is an isolated type of T if it is contained in a complete
type that is isolated in Sn(T). Otherwise, it is a nonisolated type of T .

Our goal for this section is to show that the isolated types of T are realized
in every model of T and that, for countable T , these are the only types realized
in every model of T .

Example 6.11 In Example 6.8, the type pm is isolated by the formula ϕm for
each m in N. These are the only isolated types in S1(T). Likewise, the 2-types
pm,l for m and l in N are the only isolated types of S2(T). The isolated types
are precisely the types that are realized in M . These types are also realized in
every model of Th(M).

Proposition 6.12 Let T be a complete theory and let p be a type of T . If p is
isolated, then p is realized in every model of T .

Proof Let q be an isolated type in Sn(T) that contains p. Let θ(x̄) be a for-
mula that isolates q in Sn(T). There exists a model M of T that realizes q. In
particular, M |= ∃x̄θ(x̄). Since T is complete, the sentence ∃x̄θ(x̄) is in T .

Let N be an arbitrary model of T . By the semantics of ∃, N |= θ(ā) for
some tuple ā of N . Since tpN (ā) is in Sn(T) and contains θ(x̄), this type must
be q. Since N was an arbitrary model of T , every model realizes q, and, hence,
p as well.

If the vocabulary is countable, then the converse of Corollary 6.12 holds. If
a type of T is realized in every model of a countable theory T , then that type
must be isolated. Put another way, every nonisolated type of T is omitted by
some model of T . To prove this, we use a Henkin construction to obtain a model
that omits a given nonisolated type. The proof of Theorem 4.2 serves a precedent

272 Models of countable theories

for such a construction. The reader may want to refer to that proof. Essentially,
the following theorem is proved by adding one step to the proof of Theorem 4.2.

Theorem 6.13 (Omitting Types) Let T be a complete theory in a countable
vocabulary V. If p is a nonisolated type in S(T), then there exists a model M of
T that omits p.

Proof We want to demonstrate a structure that models T and omits p.
Let V be the vocabulary of Γ. Let V+ = V ∪ {c1, c2, c3, . . .} where each ci is

a constant that does not occur in V. Let C denote the set {c1, c2, c3, . . .}. Let D
denote the set of V+-terms and let Dn be the set of n-tuples of elements from D.

We shall define a complete V+-theory T+ with the following three properties.

Property 1 Every sentence of T is in T+.

Property 2 For every V+-sentence in T+ of the form ∃xθ(x), the sentence θ(ci)
is also in T+ for some ci ∈ C.

Property 3 For each d̄ in Dn, there exists a formula ϕ(x̄) in p such that the
sentence ¬ϕ(d̄) is in T+.

As in the proof of Theorem 4.2, Property 2 allows us to find a model M+ of
T+. By Property 1, M+ is a model of T . Property 3 ensures that p is not the
type of any tuple of V+-terms in Dn. Recall from the proof of Theorem 4.2 that
the underlying set of M+ is a set of V+-terms. It follows that M+ is a model of
T that omits p as was required. So if we can successfully define T+ having the
above three properties, then this will prove the theorem.

We define T+ in stages. Let T0 be T .
Since the vocabulary V is countable, V+ is denumerable. By Proposi-

tion 2.47, there are denumerably many V+-formulas. It follows that there
are denumerably many V+-terms and V+-sentences. Let {d̄1, d̄2, d̄3, . . .} be an
enumeration of Dn and let {ϕ1,ϕ2,ϕ3 . . .} enumerate the set of all V+-sentences.

Suppose that Tm has been defined in such a way that Tm is consistent and
only finitely many sentences of Tm contain constants in C. We define Tm+1 in
two steps. First, we define T ′

m+1 in the same way that Tm+1 was defined in both
Theorems 4.2 and 4.27.

Step 1:
(a) If Tm ∪ {¬ϕm+1} is consistent, then define T ′

m+1 to be Tm ∪ {¬ϕm+1}.
(b) If Tm∪{¬ϕm+1} is not consistent, then Tm∪{ϕm+1} is consistent. We divide

this case into two subcases.
(i) If ϕm+1 does not have the form ∃xθ(x) for some formula θ(x), then just

let T ′
m+1 be Tm ∪ {ϕm+1}.

(ii) Otherwise ϕm+1 has the form ∃xθ(x).

Models of countable theories 273

In this case let T ′
m+1 be Tm ∪ {ϕm+1} ∪ {θ(ci)}, where i is such that ci does

not occur in Tm ∪ {ϕm+1}.

We know from the proof of Theorem 4.2 that if Tm is consistent, then so is
T ′

m+1. This was the first claim of that proof. Also, if Tm contains only finitely
many sentences that use constants from C, then so does T ′

m+1. This is because
T ′

m+1 is obtained by adding only a sentence or two to Tm.
In Step 2, we ensure that the tuple d̄m+1 in the enumeration of Dn does not

realize p.
Step 2: Let Tm+1 = T ′

m+1 ∪ {¬ψ(d̄m+1)}, where ψ(x̄) is any formula in p such
that Tm+1 is consistent.

We must verify that such a formula ψ(x̄) ∈ p exists. Let Θ(c̄, d̄m+1) be
the conjunction of the finitely many sentences in T ′

m+1 that contain constants
from C. Then T ′

m+1 is equivalent to T ∪ {Θ(c̄, d̄m+1)}. In particular, T ′
m+1 �

Θ(c̄, d̄m+1) (by ∧-Introduction). The tuple c̄ contains all the constants that occur
in T ′

m+1 and do not occur in d̄m+1. The sentence Θ(c̄, d̄m+1) may not contain all
(or any) of the constants in d̄m+1 = (d1, d2, . . . , dn). Let Θ(c̄, x̄) be the formula
obtained by replacing each occurrence of di in Θ with xi (for i = 1, . . . ,n).

Consider the formula ∃ȳΘ(ȳ, x̄). Since T ′
m+1 � Θ(c̄, d̄m+1), this formula is

realized in every model of T ′
m+1.

If this formula is not in p, then its negation is (since p is a complete type).
In this case, let ψ(x̄) be ¬∃ȳΘ(ȳ, x̄). Since ¬ψ(x̄) is equivalent to ∃ȳΘ(ȳ, x̄),
T ′

m+1 � ¬ψ(d̄m+1). In particular, Tm+1 = T ′
m+1 ∪ {¬ψ(d̄m+1)} is consistent.

So we may assume that the formula ∃ȳΘ(ȳ, x̄) is in p. In this case, we cannot
let ψ be this formula (since we want T ′

m+1 ∪ {¬ψ(d̄m+1)} to be consistent) nor
its negation (since it is not in p). To find a formula ψ that works we use the fact
that p is not isolated.

Since p is nonisolated, it is not the only type in S(T) containing the formula
∃ȳΘ(ȳ, x̄). Let q be another type in S(T) that contains this formula. Since p and
q are different types, there must be a formula in p that is not in q. Let ψ(x̄) be any
such formula. Then T∪{∃ȳΘ(ȳ, x̄),¬ψ(x̄)} is realizable (since it is a subset of q ∈
S(T)). It follows that T ∪{Θ(ȳ, x̄),¬ψ(x̄)} is also realizable. By Proposition 6.5,
T ∪{Θ(c̄, d̄m+1),¬ψ(d̄m+1)} is satisfiable. Note that T ∪{Θ(c̄, d̄m+1),¬ψ(d̄m+1)}
is Tm+1 = T ′

m+1∪{¬ψ(d̄m+1)}. Since it is satisfiable, it is consistent as we wanted
to show.

So given a consistent V+-theory Tm containing T and only finitely many
other sentences, we have defined the consistent V+-theory Tm+1 by adding a
few sentences to Tm. Starting with T0 = T , this iterative process generates
V+-theories T0, T1, T2, and so forth. Let T+ be the union of these theories.

Since each Tm is consistent, so is T+. Also, by Step 1 of the definition of
Tm+1, either ϕm+1 or ¬ϕm+1 is in Tm+1. Since this is true for each ϕm+1 in the

274 Models of countable theories

enumeration of all V+-sentences, T+ is a complete theory. Since T = T0 ⊂ T+,
T+ has Property 1. Part (b)(ii) of Step 1 guarantees that T+ has Property 2.
Step 2 guarantees Property 3.

So T+ has all of the desired properties and a model M+ of T+ can be
defined as in the proof of Theorem 4.2. The underlying set of M+ is a subset
of D. Property 3 of T+ ensures that no n-tuple of elements in D satisfies all
formulas of p. It follows that M+ is a model of T ⊂ T+ that omits p.

So, if T is countable, then a type in S(T) is realized in every model of T if
and only if it is isolated. This remains true when restricted to countable models.

Corollary 6.14 Let T be a countable complete theory. A type p ∈ S(T) is isolated
if and only if it is realized in every countable model of T .

Proof By Proposition 6.12, if p ∈ S(T) is isolated, then it is realized in every
model of T . In particular, it is realized in every countable model of T . Con-
versely, if p is nonisolated, then p is omitted from a model M+ of T by the
Omitting Types theorem. Moreover, the model M+ constructed in the proof of
that theorem is countable.

In particular, every type realized in the countable model of an ℵ0-categorical
theory must be an isolated type. This yields characterizations of ℵ0-categorical
theories in terms of S(T).

Theorem 6.15 Let T be a complete theory having infinite models. The following
are equivalent.

(i) T is ℵ0-categorical.

(ii) S(T) is countable and every type in S(T) is isolated.

(iii) Sn(T) is finite for each n ∈ N.

(iv) There are finitely many formulas in n free variables up to T -equivalence for
each n ∈ N.

Proof Note that “(i) if and only if (iv)” is a restatement of Theorem 5.32. We
proved as Proposition 5.31 that (iv) implies (i). It remains to be shown that (i)
implies (iv).

First, we show that (i) implies (ii). Suppose that T is ℵ0-categorical and let
p be any type in S(T). Then p is realized as tpN (ā) in some model N of T . By
the Downward Löwenhiem–Skolem theorem, there exists a countable elementary
substructure M of N containing ā in its universe. So p is realized in a countable
model of T . Since T is ℵ0-categorical, p is realized in every countable model of
T . By Corollary 6.14 of the Omitting Types theorem, p is isolated. Moreover,
since every type in S(T) is realized in the countable model M , there are only
countably many types in S(T).

Models of countable theories 275

Next we show that (ii) implies (iii). Suppose that (ii) holds. Then S(T)
is countable. Suppose for a contradiction that Sn(T) is denumerable. Let
{p1, p2, p3, . . .} be an enumeration of Sn(T). For each i ∈ N, there is a for-
mula ϕi that isolates pi. Let Γ = {¬ϕ1,¬ϕ2,¬ϕ3, . . .}. Every finite subset of
Γ is contained in infinitely many types in Sn(T). By Corollary 6.7, Γ is an
n-type of T . So Γ is a subset of some pi in Sn(T). Since Γ contains the for-
mula ¬ϕi, this is a contradiction. This contradiction proves that Sn(T) must be
finite.

It remains to be shown that (iii) implies (iv). Suppose that there are only
finitely many types in Sn(T). Let {p1, . . . , pk} enumerate Sn(T). If pi and pj are
distinct types in this set, then there is some formula ϕij that is in pi and not
in pj . By taking the conjunction of the formulas ϕij for various js, we obtain a
formula Φi that is contained in pi and no other type of Sn(T). We see that each
type in Sn(T) is isolated (we have incidently shown that (iii) implies (ii)).

Now let ϕ be any formula in the vocabulary of T having n free variables. We
claim that ϕ is T -equivalent to a disjunction of the formulas Φi for various values
of i. For example, if ϕ is contained in p1 and p1 and no other type in Sn(T),
then ϕ is T -equivalent to the formula Φ1∨Φ2. Since there are only finitely many
possible disjunctions of this form, there are finitely many formulas having n free
variables up to T -equivalence.

The proof of the Omitting Types theorem is similar to the proof of The-
orem 4.2. Unlike Theorem 4.2, however, the Omitting Types theorem does
not hold for theories having uncountable vocabularies (see Exercise 6.7). The
Omitting Types theorem can be extended in another way.

Theorem 6.16 (Countable Omitting Types) Let T be a complete theory in a
countable vocabulary V. Let p1, p2, p3, . . . be countably many types in S(T) each
of which is not isolated. There exists a model M of T that omits each pi.

Proof This can be proved by modifying the proof of the Omitting Types
theorem. See Exercise 6.9.

6.3 Small models of small theories
Let T be a countable complete theory having infinite models. If S(T) is countable,
then T is said to be a small theory. In this and the next sections, we investigate
some of the countable structures in Mod(T). We show that if T is small, then
Mod(T) contains a smallest countable model and a biggest countable model. Of
course, any two countable structures have the same size. When we refer to the
smallest or biggest countable model, we are referring to the types realized in
the model.

276 Models of countable theories

At minimum, any model of T must realize the isolated types in S(T). Count-
able atomic models realize only these types. When they exist, these are the
smallest countable models in Mod(T). At the other extreme, countable satur-
ated models realizes all types in S(T) (although this is not the full definition).
When they exist, these are the biggest countable models in Mod(T). We show
that such models do exist if T is small. Moreover, we show that atomic and
saturated models posses many useful properties.

We deal with atomic models in this section and saturated models in the
next. We begin with some examples (and nonexamples) of small theories.

Example 6.17 By Proposition 6.15, any ℵ0-categorical theory is small.

Example 6.18 Let M be the VE-structure defined in Example 6.8. Let T be
Th(M). It follows from the discussion in Example 6.8 that Sn(T) is countable
for each n. So T is small.

Example 6.19 Let R< be the V<-structure (R| <). The V<-theory of R< is
TDLO. Since TDLO is ℵ0-categorical, it is small.

Let CQ = (ca|a ∈ Q) be a countable set of constants. Let VQ be V< ∪ CQ.
Let RQ be the expansion of R< to a VQ-theory that interprets each constant
ca as the number a ∈ Q. Let T = Th(RQ). Then T is countable but not
small.

For each real number r, let pr denote tpRQ
(r). To see that T is not small,

consider the set P = {pr|r ∈ R}. Given any two distinct real numbers b and c,
there exists some rational number a between b and c. With no loss of generality,
we may assume that b is smaller than c. Then x1 < ca is a VQ-formula in pb

that is not in pc. We see that no two types in P are the same. It follows that
|S1(T)| ≥ 2ℵ0 and T is not small.

6.3.1 Atomic models. If T is small, then S(T) contains countably many non-
isolated types. By the Countable Omitting Types theorem 6.16, there exists a
model of T that omits all of them. Such a model is said to be atomic.

Definition 6.20 A structure M is atomic if tpM (ā) is an isolated type of Th(M)
for every tuple ā of M .

Example 6.21 The VE-structure M from Examples 6.8 and 6.18 is atomic.
Since M has no infinite equivalence class, each type realized in M is isol-
ated by the formula ϕm for some m ∈ N where ϕm is as defined in
Example 6.8.

Proposition 6.22 Let T be a countable complete theory. If T is small, then there
exists a countable atomic model M of T .

Models of countable theories 277

Proof By the Countable Omitting Types theorem 6.16 there exists a model that
omits all nonisolated types. By the Downward Löwenhiem–Skolem theorem, we
can find such a model that is countable.

As the following example shows, the converse of this proposition does
not hold.

Example 6.23 Let T be the VQ-theory from Example 6.19. This theory is not
small, but it does have a countable atomic model. Let QQ be the VQ-structure
having Q as an underlying set and interpreting < as the usual order and each
constant ca as the rational number a. This is a model of T . Each 1-type realized
in QQ is isolated by the formula x1 = ca for some a ∈ Q. It follows that every
type realized in QQ is isolated.

Next, we give an example of a countable theory that does not have a
countable atomic model. By Proposition 6.22, such a theory necessarily has
uncountably many n-types for some n.

Example 6.24 Let VPs be the vocabulary consisting of denumerably many unary
predicates Pi for i ∈ N. Let TP be the VPs-theory defined in Exercise 5.21.

For any subset A of N, let ΓA be the set of formulas containing Pi(x1) for
each i ∈ A and ¬Pi(x1) for each i �∈ A. By Corollary 6.7, this is a type of TP .
Since TP has quantifier elimination (by Exercise 5.21(a)), there is exactly one
type pA in S1(TP) containing ΓA. Moreover, each type p in S1(TP) is pA for
some A ⊂ N. It follows that |S1(TP)| = |P(N)| = 2ℵ0 .

For any p ∈ S1(TP), we claim that p is not isolated. Given any finite subset
∆ of p, there are infinitely many relations Pi that do not occur in ∆. By the
axioms of TPs, both ∆ ∪ {Pi(x1)} and ∆ ∪ {¬Pi(x1)} are realizable. So p is not
isolated by any formula. Since S1(TP) has no isolated types, TP cannot possibly
have an atomic model.

6.3.2 Homogeneity. Having established in Proposition 6.22 the existence of
countable atomic models for small T , we now investigate some of the properties
of these models. We show that countable atomic models are unique, prime, and
homogeneous.

Definition 6.25 A countable structure M is said to be homogeneous if, given
n-tuples ā and b̄ of M with tpM (ā) = tpM (b̄), for any c of M , there exists d such
that tpM (ā, c) = tpM (b̄, d).

Most of the countable structures we have discussed have been homogen-
eous. An example of a nonhomogeneous structure is provided by the structure
M in Example 5.56. Referring to that example, let ā = (a1, . . . , an) and let
b̄ = (b1, . . . , bn). These tuples share the same type in M even though they are

278 Models of countable theories

different in an obvious way. Whereas b̄ has equivalent elements that are far away
(in terms of s), there are no such elements equivalent to ā. The structure is not
homogeneous because this distinction cannot be expressed by a V-formula. A
structure is homogeneous if any two tuples having the same type are indistin-
guishable (unlike ā and b̄ in our example). This intuitive idea is made precise in
Exercise 6.19.

We now develop some properties of homogeneous structures that will be
useful for our investigation of atomic and saturated structures.

Proposition 6.26 Let T be a countable complete theory. Let M be a countable
model of T and let N be a homogeneous model of T . Suppose that every type
in S(T) that is realized in M is also realized in N . There exists an elementary
embedding f :M → N .

Proof If a complete theory has a finite model, then all of its models are iso-
morphic (by Proposition 2.81). So we may assume that M is denumerable.
Enumerate the underlying set of M as UM = {a1, a2, a3, . . .}. Let UN be the
underlying set of N .

We construct an elementary embedding f :M → N step-by-step. In step n
we define bn = f(an).
Step 1: Since N realizes every type realized in M , there exists b1 ∈ UN such
that tpM (a1) = tpN (b1). Let f(a1) = b1.

Let ān denote the n-tuple (a1, . . . , an). Suppose that, for some n ∈ N,
b̄n = (b1, . . . , bn) has been defined such that tpM (ān) = tpN (b̄n).
Step n + 1: We want to define bn+1 = f(an+1) so that tpM (ān, an+1) =
tpN (b̄n, bn+1).

Since N realizes every type realized in M , there exists an (n + 1)-tuple
(c1, . . . , cn+1) of N such that tpN (c1, . . . , cn+1) = tpM (a1, . . . , an+1). Let c̄n be
(c1, . . . , cn).

Since tpN (c̄n) and tpN (b̄n) both equal tpM (ān), these two types equal each
other. Since N is homogeneous, there exists bn+1 such that tpN (b̄n, bn+1) =
tpN (c̄n, cn+1). Since tpN (c̄n, cn+1) = tpM (ān+1) we have tpN (b̄n, bn+1) =
tpM (ān, an+1) as desired. Let f(an+1) = bn+1.

In this manner we construct an infinite sequence b1, b2, b3, . . . of elements of
UN and define f :M → N by f(ai) = bi for each i ∈ N. Since tpM (ān) = tpN (b̄n)
for each n ∈ N, this function is an elementary embedding.

If two countable homogeneous modelsM and N realize the same types, then
they can be elementarily embedded into each other by the previous proposition.
Moreover, expanding on the proof of this proposition, we can construct and
isomorphism between M and N .

Models of countable theories 279

Proposition 6.27 Let T be a countable complete theory. Let M and N be two
countable homogeneous models of T that realize the same types of S(T). Then
M ∼= N .

Proof We may assume that M and N are denumerable and enumerate the
underlying sets as

UM = {a1, a2, a3, . . .} and UN = {b1, b2, b3, . . .}.

As in Proposition 5.31, we can give a back-and-forth argument to construct
an isomorphism f :M → N . In step n + 1 of this construction, we must define
both f(an+1) and f−1(bn+1). We can define both of these in the same manner
that f(an+1) was defined in the proof in the previous proposition. We leave the
details as Exercise 6.21.

We return to our discussion of small models. We show that countable atomic
models are homogeneous. As we shall see in the next section, the property of
being homogeneous is by no means restricted to countable atomic models.

Proposition 6.28 Countable atomic structures are homogeneous.

Proof Let M be a countable atomic structure and let ā and b̄ be two n-tuples
of M realizing the same type p in Sn(Th(M)). Since M is atomic, this type is
isolated by a formula θ(x̄). Let c be any element of M . Let ψ(x̄,xn+1) isolate
tpM (ā, c). Then ∃yψ(x̄, y) is in tpM (ā) = p. Since p is also the type of b̄ in M ,
M |= ∃yψ(b̄, y). SoM |= ψ(b̄, d) for some d inM . So ψ(x̄, y) is in tpM (b̄, d). Since
this formula isolates tpM (ā, c), we have tpM (ā, c) = tpM (b̄, d). By the definition
of homogeneous, M is homogeneous.

Corollary 6.29 Countable atomic models are unique up to isomorphism.

Proof Let M and N be two countable atomic models of a complete theory T .
Then M and N are homogeneous by the previous proposition. Since M and
N each realize only the isolated types in S(T), M and N are isomorphic by
Proposition 6.27.

6.3.3 Prime models. At the outset of this section, we said that atomic count-
able models are in some sense the “smallest” countable models. We justify this
terminology by showing that the atomic countable model of a theory, if it exists,
can be elementarily embedded into any other model of that theory.

Definition 6.30 Let T be a theory and let M be a model of T . If M can be
elementarily embedded into every model of T , then M is said to be a prime
model of T .

Proposition 6.31 Let T be a countable complete theory. A model M of T is a
prime model of T if and only if M is countable and atomic.

280 Models of countable theories

Proof Suppose M is prime. By the Downward Löwenhiem–Skolem theorem,
there exists a countable model of T . Since M can be elementarily embedded into
this model, M must be countable. It remains to be shown that M is atomic. Let
p be a nonisolated type in S(T). By the Omitting Types theorem 6.13, there
exists a model N of T that omits p. Since M can be elementarily embedded into
N , M must also omit p (see Exercise 6.1). So M realizes only the isolated types
in S(T) and is atomic.

Now suppose that M is countable and atomic. Then every type realized in
M is realized in every model of T . By Proposition 6.26, M can be elementarily
embedded into any homogeneous model of T . In a similar manner, we show that,
sinceM is atomic, it can be elementarily embedded into any model (homogeneous
or not).

Since M is countable, we can enumerate the underlying set of M as UM =
{a1, a2, a3, . . .}. (As usual, if M is finite, then this proposition is trivial.) For
each n ∈ N, let ān denote the n-tuple (a1, . . . , an). Let N be an arbitrary model
of T . Let b1 be an element of N that realizes the isolated type tpM (a1).

Suppose that, for some n ∈ N, we have defined an n-tuple b̄ = (b1, . . . , bn)
of N so that tpN (b̄n) = tpM (ān). Let θ(x1, . . . ,xn+1) be a formula that isolates
tpM (ā, an+1). Since b̄n has the same type as ān, N |= ∃yθ(b̄n, y). So N |=
θ(b̄n, bn+1) for some element bn+1 of N . Since there is only one type in Sn+1(T)
containing θ, tpN (b1, . . . , bn+1) = tpM (a1, . . . , an+1).

In this manner we can construct a sequence b1, b2, b3, . . . as in the proof
of Proposition 6.26. Let function f defined by f(ai) = bi is an elementary
embedding of M into N .

Since N was arbitrary, M is prime.

We summarize the results of this section. If T is a small theory, then there
exists an atomic countable model M of T . This model is unique up to isomorph-
ism, is homogeneous, and can be elementarily embedded into any model of T .
In this sense, M is the smallest model of T . Countable atomic models also exist
for theories that are not small (recall Example 6.23 and see Exercise 6.14). We
now turn our attention to big countable models.

6.4 Big models of small theories
We define and investigate countable saturated models of a countable complete
theory. We show that countable saturated models, like countable atomic models,
are homogeneous and unique up to isomorphism. We also show that every
countable model of a theory can be elementarily embedded into the countable
saturated model (provided it exists). So countable saturated models are the
largest countable models in the same sense that countable atomic models are

Models of countable theories 281

the smallest models. In the second part of this section, we extend the notion of
saturation to apply to uncountable structures.

6.4.1 Countable saturated models. Before defining countable saturated mod-
els, we must introduce the concept of a type over a set. Let M be a V-structure
having underlying set UM . Let A be a subset of UM . A type over A is a type that
allows parameters from A. More specifically, an n-type over A is a set of V(A)-
formulas in n free variables that is realized in some elementary extension of M .

Example 6.32 Consider the structure Q< = {Q| <}.
Let A be the set {1, 2, 3}. The three numbers in A break Q into four intervals.

Each of these intervals corresponds to a 1-type over A. These types are isolated
by the formulas

(x1 < 1), ¬(x1 < 1) ∧ ¬(x1 = 1) ∧ (x1 < 2),

¬(x1 < 2) ∧ ¬(x1 = 2) ∧ (x1 < 3), and ¬(x1 < 3) ∧ ¬(x1 = 3).

In addition, there are the three types over A isolated by the formulas x1 = 1,
x1 = 2, and x1 = 3. So there are seven isolated types over A.

Let B be the natural numbers and let C be the set of all rational numbers.
Then there are denumerably many types over B exactly one of which is non-
isolated. The nonisolated type contains the formulas ¬(x1 < n) for each n ∈ B.
This type is not realized in Q< but is realized in an elementary extension of Q<.
As was shown in Example 6.19, there are 2ℵ0 types over C.

We make formal the definition of a type over a set and introduce notation
for this concept.

Definition 6.33 Let M be a V-structure having underlying set UM . For any
subset A of UM , and for any tuple b̄ = (b1, . . . , bn) of elements of UM , the type
of b̄ over A in M , denoted tpM (b̄/A), is the set of all V(A)-formulas having free
variables among x1, . . . ,xn that hold in M when each xi in x̄ is replaced by bi.

The types tpM (b̄/A) are called complete types over A. Let S(A) denote the
set of all complete types over A. The subset of all n-types in S(A) is denoted by
Sn(A). Since the theory T is not mentioned in this notation, S(A) is ambiguous
when taken out of context. In Example 6.32, we said that S(A) contains seven
types when A = {1, 2, 3}. If T is the theory of the rational numbers with addition
and multiplication, then this is not true. We shall only use the notation S(A)
when T is understood.

Definition 6.34 Let T be a complete theory. A countable model M of T is
saturated if, for every finite subset A of the underlying set of M , every 1-type in
S(A) is realized in M .

282 Models of countable theories

Example 6.35 Let T be the VE-theory defined in Example 6.8. Recall that M
is the model of T having exactly one equivalence class of size n for each n ∈ N.
It was shown that there exists a type in S1(T) that is not realized in M . So
this structure is not saturated. Let Nm be the model of T having exactly m
infinite equivalence classes. Let A = {a1, . . . , am} be a set of elements from
each of these infinite classes. The type over A saying that x1 has an infinite
class but is not equivalent to ai for each i is not realized in Nm. The only
countable saturated model of T is the countable model containing denumerably
many infinite equivalence classes.

Example 6.36 Let T be the theory defined in Example 5.56. The model
containing countably many copies of Z in each equivalence class is the only
saturated model of T .

As with atomic models, countable saturated models exist for small theories.
Unlike the atomic models, these are the only theories having countable saturated
models.

Proposition 6.37 A complete theory T is small if and only if it has a countable
saturated model.

Proof Suppose first that T has a countable saturated model M . Then every
type in S(T) is realized by some tuple of M . Since M is countable, S(T) must
be countable also and T is small.

Conversely, suppose that T is small. Let M1 be a countable model of T . We
define an elementary chain of countable models M1 ≺M2 ≺M3 . . .

Suppose that countable Mn has been defined. Let A be a finite subset of
the underlying set of Mn. If S1(A) is uncountable, then so is Sk+1(T) where
k = |A|. Since T is small, this is not the case. So we can enumerate S1(A)
as the possibly finite set {p1, p2, . . .}. For each pi in this set, there exists an
elementary extension of Mn realizing pi. By the Downward Löwenhiem–Skolem
theorem, there exists a countable elementary extension Ni of Mn that realizes
pi. By Proposition 4.37, there exists a countable model MA of T such that Mn

and each Ni can be elementarily embedded into MA. Since Mn is countable,
there are countably many finite subsets of Mn. Again applying Proposition 4.37,
there exists a countable model Mn+1 of T such that MA can be elementariliy
embedded into Mn+1 for each finite subset A of Mn.

Let M be the limit of the elementary chain M1 ≺ M2 ≺ M3 · · · . Then M
is a countable model of M . Any finite subset A of the universe of M is in the
universe of Mn for some n ∈ N. By the definition of Mn+1, every type in S1(A)
is realized in Mn+1. Since Mn+1 ≺M , every type in S1(A) is realized in M and
M is saturated.

Models of countable theories 283

Proposition 6.38 Countable saturated models are homogeneous.

Proof Let M be a countable saturated model of a complete theory T and let

ā = (a1, . . . , an) and b̄ = (b1, . . . , bn) be two n-tuples of M that realize the same
type in Sn(T). Let c be an element of M . Let p1(x1) = tpM (c/ā). Let p2 be
the type over b̄ obtained by replacing each occurrence of ai in p1 with bi (for
i = 1, . . . ,n).

Claim p2(x1) is realizable.

Proof Let Φ(x1, b̄) be the conjunction of a given finite set of formulas in p2(x1).
Then Φ(x1, ā) ∈ p1(x1, ā). By the definition of p1, M |= Φ(c, ā). So M |=
∃yΦ(x1, ā). Since ā and b̄ have the same type in M , M |= ∃yΦ(y, b̄). This
shows that any finite subset of p2(x1) is realizable. The claim then follows from
Proposition 6.6.

Since M is saturated, p2(x1) is realizable in M . Let d be an element of M
that realizes this type. Then tpM (b̄, d) = tpM (ā, c) and M is homogeneous.

So countable saturated models, like atomic models, are homogeneous. From
this fact we can immediately deduce two more properties of countable saturated
models. They are universal and unique.

Definition 6.39 Let T be a theory and letM be a countable model of T . If every
countable model of T can be elementarily embedded into M , then M is said to
be a universal model of T .

Corollary 6.40 Countable saturated models are universal.

Proof This follows from Propositions 6.38 and 6.26.

The converse of Corollary 6.40 does not hold. Exercise 6.26 provides an
example of a countable universal model that is not saturated. For the universal
model to be saturated, it must be homogeneous.

Proposition 6.41 Let T be a small theory. A countable model M of T is
saturated if and only if it is universal and homogeneous.

Proof A countable saturated model is universal and homogeneous by Corol-
lary 6.40 and Proposition 6.38. We must prove the converse. Suppose that M
is a countable model of T that is both universal and homogeneous. Let A be a
finite subset of M and let p be a type in S1(A). We must show that there exists
an element d so that tpM (d/A) = p.

The type p is realized in some elementary extension ofM . By the Downward
Löwenhiem–Skolem theorem, p is realized in some countable model N containing
A. So tpN (c/A) = p for some element c of N . Since M is universal, N can
be elementarily embedded into M . Let f :N → M be elementary. Let B be

284 Models of countable theories

{f(a)|a ∈ A}. Note that B does not necessarily equal A, but it does have the
same type as A in M . That is, tpM (ā) = tpM (b̄), where (a1, . . . , ak) is some
enumeration of A and b̄ = (f(a1), . . . , f(ak)). Since M is homogeneous, there
exists d so that tpM (d, ā) = tpM (f(c), b̄). For all formulas ϕ(x1) in p, since
N |= ϕ(c) and f :N → M is elementary, we have M |= ϕ(d). So tpM (d/A) = p

and p is realized in M . Since p is arbitrary, M is saturated.

Next we show that the saturated model of a theory is unique up to iso-
morphism. This fact, like Corollary 6.40, is an immediate consequence of
Proposition 6.38.

Corollary 6.42 Let T be a complete small theory. Any two countable saturated
models of T are isomorphic.

Proof This follows immediately from Propositions 6.38 and 6.27.

We summarize. Let T be a small theory. Then T possesses both a countable
atomic model M and a countable saturated model N . Each of these is unique up
to isomorphism. The countable atomic model is the smallest model in the sense
that it can be elementarily embedded into any model of T . The countable sat-
urated model M is the biggest countable model of T in the sense that every
countable model of T can be elementarily embedded into M . Countable sat-
urated models are characterized by this property together with homogeneity.
Likewise, countable atomic models are characterized as prime models (which are
necessarily homogeneous).

We turn to theories that are not small in the next section. We close the
present subsection by extracting the following characterization of ℵ0-categorical
theories from the above results.

Proposition 6.43 A theory is ℵ0-categorical if and only if it has an atomic model
and a countable saturated model that are isomorphic.

Proof Suppose T is ℵ0-categorical. Since ℵ0-categorical theories are small, T
possesses a countable atomic model and a countable saturated model. These
models must be isomorphic since T only has one countable model up to
isomorphism.

Conversely, suppose that T has an atomic model N and a countable satur-
ated model M with N ∼=M . Since M is universal, any countable model of T can
be elementarily embedded into M . Since N ∼=M , any countable model of T can
be elementarily embedded into the atomic model. It follows that every countable
model of T realizes only isolated types. So every type in S(T) must be isolated
and T is ℵ0-categorical by Proposition 6.15.

Models of countable theories 285

6.4.2 Monster models. By definition, countable saturated models, as well
as homogenous models and universal models, are countable. The following
definitions extend these notions to uncountable structures.

Definition 6.44 Let M be a V-structure having universe U and theory T =
Th(M). Let κ be an infinite cardinal.

We say that M is κ-saturated if, for each A ⊂ U with |A| < κ, every type in
S1(A) is realized inM . We simply say thatM is saturated ifM is |M |-saturated.

We say that M is κ-universal if every model N of T with |N | < κ can
be elementarily embedded into M . We simply say that M is universal if M is
|M |-universal.

To extend the notion of notion of a homogeneous model, recall from Sec-
tion 5.7 the definition of an M -elementary function. Note that a countable
model M is homogeneous if and only every finite M -elementary function can
be extended.

Definition 6.45 Let M be a structure and let κ be an infinite cardinal. We say
that M is κ-homogeneous if, for each A ⊂ U with |A| < κ and each a ∈ U ,
every M -elementary function f :A → U extends to an M -elementary function
g :A∪{a} → U . We simply say thatM is homogeneous ifM is |M |-homogeneous.

Proposition 6.46 A structure M is κ-saturated if and only if M is both
κ-homogeneous and κ-universal.

Proof This can be proved in the same manner as Proposition 6.41. We leave
this as Exercise 6.30.

In particular, a model is saturated if and only if it is both homogeneous and
universal. As with countable saturated models, we can use the homogeneity of
saturated models to show that any two elementarily equivalent saturated models
of the same cardinality must be isomorphic (see Exercise 6.31).

Now let T be a theory and suppose we wish to analyze the collectionMod(T)
of all models of T . Suppose that we only care to consider models in Mod(T) of
size less than κ. Since κ may be a ridiculously large cardinal, this is a reason-
able assumption. If M is a saturated model of T of size κ, then we can replace
the collection Mod(T) with the model M . Every structure in Mod(T) that we
care to consider is an elementary substructure of M (since M is κ-universal).
Moreover, any isomorphism between substructures of these models extends to an
automorphism of M (by homogeneity and Exercise 6.20). Rather than consider-
ing the elements of Mod(T) as separate entities, the saturated model M allows
us the convenience of working within a single model. Such a model is referred to
as a monster model. Model theorists often use the preamble “we work inside of
a monster model M”

286 Models of countable theories

Unfortunately, saturated models of large cardinalities may not exist. To
guarantee the existence of arbitrarily large saturated models, we must assume
set theoretic hypotheses beyond ZFC such as the General Continuum Hypothesis
or (less severely) the existence of inaccessible cardinals. If we want to avoid such
considerations, then we must settle for κ-saturated models instead of saturated
models. Since they are both κ-universal and κ-homogeneous, κ-saturated models
may serve as monster models. Although they are not necessarily homogeneous,
κ-saturated models possess the fortunate property of existence. We prove this as
the following proposition. The proof of this proposition also shows why saturated
models may not exist. The κ-saturated model we construct is much larger than
κ and so is not necessarily saturated.

Proposition 6.47 Let T be a complete theory having infinite models. Let κ be
a cardinal. There exists a κ-saturated model of T .

Proof As in the proof of Proposition 6.37, we define an elementary chain of
models M1 ≺M2 ≺M3 · · · . To begin, let M1 be any model of T . Given Mi, let
Mi+1 be a model of T that realizes every type over every subset of the universe
of Mi. If δ is a limit ordinal, let Mδ be the union of the chain of Mβ for β < δ.
Consider the model Mα where |α| = κ. Any subset of size κ of the universe of
Mα must also be a subset of Mβ for some β < α. Every type over A is realized
in Mβ+1 ≺Mα.

6.5 Theories with many types
Let T be a theory that is not small. By definition, |S(T)| is uncountable. We
show that, in fact, |S(T)| = 2ℵ0 . We use this fact to show that T has the maximal
number of nonisomorphic countable models.

Lemma 6.48 Let T be a countable complete theory. Let P be an uncountable
subset of S(T). There exists a formula ψ such that both ψ and ¬ψ are contained
in uncountably many types of P .

Proof Let V be the vocabulary of T . Let F (T) denote the set of all V-formulas
that occur in some p in S(T). That is, F (T) is the set of formulas that are
realized in some model of T . Each formula in F (T) is either contained in
uncountably many types of P or countably many (possibly zero) types of P .
Let {ϕ1,ϕ2,ϕ3, . . .} be the (possibly finite) set of those formulas in F (T) that
occur in only countably many types of P .

Let Pi be the set of all types in P that contain the formula ϕi. Then Pi is
countable. Let Pϕ be the union of all the Pis. Since it is a countable union of
countable sets, Pϕ is countable (by Proposition 2.43).

Models of countable theories 287

Now, Pϕ is the set of all types in P that contain ϕi for some i. Since P
is uncountable, there must be uncountably many types in P that are not in
Pϕ. Suppose it were the case that, for every formula ψ ∈ F (T), either ψ ∈ Pϕ

or ¬ψ ∈ Pϕ. Then there would be at most one type of in P not contained in
Pϕ (namely, the type consisting of ¬ϕi for each i). So this cannot be the case
and there must exist some formula ψ such that neither ψ nor ¬ψ is in Pϕ. By
the definition of Pϕ, both ψ and ¬ψ are contained in uncountably many types
of P .

Proposition 6.49 Let T be a countable complete theory. If T is not small, then
|S(T)| = 2ℵ0 .

Proof First, we show that |S(T)| ≤ 2ℵ0 . Since T is countable, the set of all
formulas in the vocabulary of T can be placed into one-to-one correspondence
with N (by Proposition 2.47). Since each type is a set of formulas, |S(T)| ≤
|P(N)| = 2ℵ0 .

Now suppose that T is not small. We show that |S(T)| ≥ 2ℵ0 .
By definition, 2ℵ0 is the cardinality of the set of all functions from N to the

set {0, 1}. Each such function can be viewed as a denumerable sequence of 0s
and 1s. For each of these sequences, we define a distinct type in S(T).

Since T is not small, S(T) is uncountable. By Lemma 6.48, there exists a
formula ψ such that both ψ and ¬ψ are contained in uncountably many types
of S(T).

Let χ0 be ¬ψ and χ1 be ψ.
Let s be a finite sequence of 0s and 1s. For either i = 0 or i = 1, let s � i

be the sequence obtained by adding an i to the end of sequence s.
Suppose that we have defined a formula χs that is contained in uncountably

many types in S(T). Let Ps be the set of types in S(T) that contain χs. By
Lemma 6.48, there exists a formula ψ such that both ψ and ¬ψ are contained in
uncountably many types of Ps.

Let χs�0 be χs ∧ ¬ψ and χs�1 be χs ∧ ψ.
In this manner we define a formula χs for each finite sequence s of 0s and

1s. By design, we have both T � χs�0 → χs and T � χs�1 → χs. Moreover,
χs�0 and χs�1 cannot both be realized by the same elements of a model of T
since one formula implies ψ and the other implies ¬ψ.

Let {0, 1}ω denote the set of all denumerable sequences of 0s and 1s. For
t ∈ {0, 1}ω and n ∈ N, let t|n denote the first n terms of the sequence t. Let Γt

be the set of all formulas χs such that s = t|n for some n ∈ N.

Claim For each t ∈ {0, 1}ω, Γt is realizable.

Proof By Proposition 6.6, it suffices to show that any finite subset of Γt is
realizable. If ∆ is a finite subset of Γt, then, for some m ∈ N and every χs in ∆,

288 Models of countable theories

the sequence s has length less than m. Then T � χt|m → χs for each χs in ∆.
By definition, χt|m is contained in uncountably many types of S(T). It follows
that ∆ is contained in uncountably many types of S(T). In particular, ∆ is
realizable.

Let pt be a type in S(T) containing Γt. If t1 and t2 are distinct sequences in
{0, 1}ω, then pt1 and pt2 are distinct types in S(T) since there exists a formula ψ
such that ψ is contained in one of these types and ¬ψ is contained in the other.
It follows that |S(T)| ≥ |{0, 1}ω| = 2ℵ0 .

So, for any countable T , there are only two possibilities for |S(T)|. Either
|S(T)| = ℵ0 or |S(T)| = 2ℵ0 . This is true even if the continuum hypothesis is
false. Even if there exists cardinal numbers between ℵ0 and 2ℵ0 , the set S(T) is
forbidden from having such cardinalities.

We now show that if T is not small, then T has the maximal number of
nonisomorphic models of size ℵ0. First we compute this maximal number.

Proposition 6.50 Let T be a countable V-theory and let κ be an infinite cardinal.
There exist at most 2κ nonisomorphic models of T of size κ.

Proof Let U be any set of size κ. Let us count the number of V-structures
having U as an underlying set. Suppose we wish to define such a V-structure.

Given any constant c in V, we may interpret c as any element of U . There
are |U | = κ many possibilities.

We may interpret each n-ary relation in V as any subset of Un. There are
|P(Un)| = 2κ possible choices.

Finally, there are κκ = 2κ functions from Un to U . We may interpret each
n-ary function in V as any one of these functions.

So each symbol in V can be interpreted in at most 2κ different ways on the
set U . Since V is countable, there are at most ℵ0 · 2κ = 2κ ways to interpret this
vocabulary on U . That is, there are at most 2κ V-structures having underlying
set U .

Let M be a model of T of size κ. Then there is a one-to-one correspondence
between U and the underlying set of M . So, with no loss of generality, we may
assume that M has underlying set U . It follows that there are at most 2κ models
of T of size κ.

So a countable theory T can have at most 2ℵ0 countable models. If T is not
small, then it attains this maximal number.

Proposition 6.51 Let T be a countable theory. If |S(T)| = 2ℵ0 then the number
of nonisomorphic countable models is 2ℵ0 .

Proof Suppose |S(T)| = 2ℵ0 . Since each type in S(T) is realized in some count-
able model (by the Downward Löwenhiem–Skolem theorem), there must be at

Models of countable theories 289

least 2ℵ0 countable models. By the previous proposition there are also at most
this many countable models of T .

6.6 The number of nonisomorphic models
Let T be a theory. For any infinite cardinal κ, let I(T ,κ) denote the number
of nonisomorphic models of T of size κ. The function I(T ,x) = y, restricted to
infinite cardinals x, is called the spectrum of T . When restricted to uncount-
able cardinals, this function is called the uncountable spectrum of T . The
spectra provide a natural classification of the class of first-order theories. For
example, totally categorical theories are the theories having the constant function
I(T ,x) = 1 as a spectrum. We have also seen uncountably categorical theories
T having spectrum

I(T ,x) =

{
ℵ0, x = ℵ0

1, x > ℵ0.

The Baldwin–Lachlan theorem states that every uncountably categorical theory
that is not totally categorical has this function as a spectrum.

Of course, there are many possible spectra. Let T be a countable complete
theory that has infinite models. For any infinite cardinal κ, 1 ≤ I(T ,κ) ≤ 2κ.
The lower bound of 1 follows from the Löwenhiem–Skolem theorems and the
upper bound is from Proposition 6.50. It may seem that the possibilities for
I(T ,κ) are endless. It is a most remarkable fact that we can list the possible
uncountable spectra for T .

Largely due to the work of Shelah, the uncountable spectra for the seemingly
boundless and unmanageable class of countable first-order theories have been
determined. Moreover, the work of Shelah shows that the spectrum of a given
theory has structural consequences for the models of the theory. If a theory T has
an uncountable spectrum other than the maximal I(T ,κ) = 2κ, then the models
of T have an inherent notion of independence. We defined “independence” for
strongly minimal structures in Section 5.7. By Theorem 5.100, any strongly
minimal T has uncountable spectrum I(T ,κ) = 1. The notion of independence
for strongly minimal theories generalizes to a class of theories known as the
simple theories that includes all theories having uncountable spectra other than
I(T ,κ) = 2κ. For these theories, the notion of independence give rise to a system
of invariants (analogous to dimension) that determine up to isomorphism the
models of the theory. As humbling as it sounds, simple theories are beyond the
scope of this book (as are supersimple theories). In the next section, we shall
say a little more about simple theories and other classes of theories and provide
references.

290 Models of countable theories

Whereas the possible uncountable spectra for countable theories have
been determined, there remain open questions regarding the possible values of
I(T ,ℵ0). We will discuss these unanswered questions in the next section. In
the present section, we prove one notable fact regarding I(T ,ℵ0). We prove that
I(T ,ℵ0) cannot equal 2. In contrast, there exist theories T for which I(T ,ℵ0) = n
for every natural number n other than 2. The theory TCDLO from Exercise 5.15
has exactly three countable models. For any n > 3, there exist expansions of
TCDLO that have exactly n countable models up to isomorphism. The fact that
I(T ,ℵ0) cannot be 2 was proved by Vaught in [49].

Theorem 6.52 (Vaught) A complete theory cannot have exactly two countable
models.
Proof Let T be a complete theory. Suppose that T has two distinct countable
models. We show that there exists a third countable model for T .

Since T is complete and has more than one model, every model of T is
infinite.

If T is not small, then by Proposition 6.51, T has uncountably many
countable models. So we may assume that T is small.

By Proposition 6.22, there exists an atomic model M1 of T .
By Proposition 6.37, there exists a countable saturated model M2 of T .
Since T is not ℵ0-categorical, there exists a nonisolated type p ∈ Sm(T) for

some m ∈ N (by Theorem 6.15). Let ā be an m-tuple from the saturated model
M2 that realizes them-type p. Expand the vocabulary V of T by adding constants
c1, . . . , cm. Let N be the expansion of M2 to this vocabulary interpreting the
constants as the m-tuple ā.

Let T ′ = Th(N). Since T is not ℵ0-categorical, Sm(T) is infinite for some n
(again, by Theorem 6.15). If follows that Sm(T ′) is also infinite, and so T ′, too,
is not ℵ0-categorical. If T ′ has uncountably many nonisomorphic models, then
so does T . Since we are assuming that this is not the case, T ′, like T , has both
an atomic model N1 and a saturated model N2. Moreover, by Proposition 6.43,
N1 and N2 are not isomorphic. So N1 is not saturated. LetM3 denote the reduct
of N1 to the vocabulary of T . Since N1 is not saturated, neither is M3. Since
M3 realizes the nonisolated type p (ā is an m-tuple of M3), M3 is not atomic. It
follows that M3 is a model of T that is isomorphic to neither M1 nor M2.

6.7 A touch of stability
In this final and all too brief section, we give an overview of some of the concepts
that have shaped model theory during the nearly 40 years since the proof of
Morley’s theorem. We state without proof many nontrivial facts. References are
provided at the end of the section.

Models of countable theories 291

Definition 6.53 Fix a countable complete theory T and an infinite cardinal κ.
We say that T is κ-stable if for every subset A of a model of T , if |A| ≤ κ, then
|S(A)| ≤ κ.

This notion divides all first-order theories into four classes.

Definition 6.54 Let T be a countable complete theory.

T is stable if it is κ-stable for arbitrarily large κ.
T is superstable if it is κ-stable for sufficiently large κ.
T is ω-stable if it is κ-stable for all infinite κ.

We say that T is strictly stable if it is stable but not superstable. Likewise, we
say that T is strictly superstable if it is superstable but not ω-stable.

Alternatively, stable theories can be defined as those theories that are κ-
stable for some κ. If a theory is κ-stable for some κ, then it must be κ-stable
for arbitrarily large κ. Countable superstable theories are characterized as those
theories that are κ-stable for each κ ≥ 2ℵ0 . Also, “ω-stable” is synonymous
with “ℵ0-stable.” From these facts we see that every theory is ω-stable, strictly
superstable, strictly stable, or unstable.

Stability is a robust notion that has several equivalent formulations. The set
of stable theories is often defined in terms of definable orderings of the underlying
sets of models.

Definition 6.55 T has the order property if there is a formula ϕ(x̄, ȳ) such that
M |= ϕ(āi, b̄j) if and only if i < j for some M |= T and sequences (āi|i < ω) and
(b̄j |j < ω) of tuples of M .

Theorem 6.56 A theory is unstable if and only if it has the order property.

In particular, the theory of any infinite linear order is not stable. Note
that unstable theories, like TDLO, can be small. Like theories that are not small,
theories possessing the order property necessarily have the maximal uncountable
spectra.

Corollary 6.57 If T is unstable, then I(T ,κ) = 2κ for all uncountable κ.

The proof of Morley’s theorem in [32] utilizes the notion of ω-stability,
although Morley did not use this terminology. A key component of Morley’s
proof shows that if T is κ-categorical for uncountable κ, then T is ω-stable. The
terminology “κ-stable” is due to Rowbottom. In the 1970s, the properties of
stable theories were developed (primarily in the work of Shelah). These theor-
ies possess an intrinsic notion of independence, called forking independence. By
a “notion of independence” we mean that forking independence satisfies some

292 Models of countable theories

basic properties such as symmetry: if ā is forking independent from b̄, then b̄ is
forking independent from ā.

A primary motivation for the study of stable theories was Shelah’s pro-
gram of classifying theories according to their uncountable spectra (as discussed
in the previous section). By the previous corollary, unstable theories have the
maximal uncountable spectra. Shelah proved that this is also true for theories
that are not superstable. So, for the classification problem, one may focus on
the superstable theories and further refine this class (into DOP and NDOP).
However, the tools developed for this study apply to a much wider class of
theories.

In his 1996 PhD thesis, Byunghan Kim proved that the notion of fork-
ing independence extends beyond the stable theories to a class known as the
simple theories. Introduced by Shelah in a 1980 paper, the simple theories con-
tain several important unstable first-order theories such as the theory of the
random graph (from Section 5.4). The term “simple” is used to indicate that
unstable simple theories share some of the properties of stable theories. Among
the unstable theories, these are the simplest to understand (from the point
of view of stability theory). By Theorem 6.56, unstable simple theories must
possess the order property. However, they avoid the following strict version of
this property.

Definition 6.58 A theory T has the strict order property if there is a formula
ϕ(x1, . . . ,xn, y1, . . . , yn) such that

M |= ϕ(āi, āj) if and only if i < j for some M |= T and sequences (āi|i < ω)
of n-tuples of M .

Simple theories, like stable theories, do not have the strict order property.
Moreover, the notion of “forking” can be defined for these theories. Kim’s the-
orem states that forking gives rise to a notion of independence for simple theories
just as it does for stable theories. In particular, forking independence is sym-
metric. This discovery, 16 years after Shelah introduced simple theories, has
made this an active area of current research in model theory. The notion of sim-
plicity is now viewed as an extension of stability. The simple theories encompass
the stable theories just as the stable theories encompass the superstable theories,
and so forth.

Thus the world of all first-order theories is divided into several classes. We
list these classes below and provide at least one example from each. The class
of tame theories is not precisely defined. A theory is “tame” if it lends itself to
model-theoretic analysis. This class certainly includes all simple theories. It also
includes the o-minimal theories discussed in Section 5.7. Whereas these theories
share some of the model-theoretic features of strongly minimal theories, the o-
minimal theories by definition possess the strict order property and so are not
simple. Theories that are not tame are called wild.

Models of countable theories 293

A hierarchy of first-order theories:
• The wild theories contain undecidable theories such as TN discussed in

Chapter 8.

• The tame theories include well-behaved theories such as the o-minimal
theories and each of the theories below.

• The simple theories include the theory of the random graph and each of the
theories below.

• The stable theories include the superstable theories below and also strictly
stable theories such as the following.
Let Vω = {Ei|i < ω} be the vocabulary containing countably many binary
relations.
Let Tst be the V-theory saying that
– each Ei is an equivalence relation,

– ∀x∀y(Ei+1(x, y) → Ei(x, y)) for each i,

– each equivalence class of Ei contains infinitely many equivalence classes
of Ei+1 for each i.

This theory is stable but not superstable.

• The supertable theories include the ω-stable theories below and also strictly
superstable theories such as the following Vω-theory.
Let Tsst be the Vω-theory saying that
– each Ei is an equivalence relation,

– there are exactly two Ei equivalence classes for each i,

– the equivalence relation defined by Ei(x, y) ∧ Ej(x, y) has exactly four
infinite classes for i �= j.

This theory is superstable but not ω-stable.

• The ω-stable theories include all uncountably categorical theories as well
as some noncategorical theories such as the theory of a single equivalence
relation having two infinite classes.

• The uncountably categorical theories include the strongly minimal theor-
ies by Proposition 5.100. Each uncountably categorical structure is closely
linked to a strongly minimal structure. For example, recall the strongly
minimal structure Zs = (Z|s) (the integers with a successor function). Let
ZP = (Z|s,P) be the expansion of Zs containing a unary relation P that
holds for every other integer. That is, ZP models ∀x(P (x) ↔ ¬P (s(x))).
This structure is closely linked to Zs. Like Zs, ZP is an uncountably cat-
egorical structure. Since P (x) defines an infinite and co-infinite subset of
ZP , the theory of ZP is not strongly minimal.

• The strongly minimal theories include the theory of Zs as well as the theories
of vector spaces and algebraically closed fields discussed in Section 5.7.

294 Models of countable theories

Note that the countably categorical theories are omitted from the above
list. Whereas uncountably categorical theories are necessarily ω-stable, count-
ably categorical theories provide a cross-section of the above classification. There
exist countably categorical theories that are strongly minimal (such as Tclique),
unstable (the random graph), and unsimple (dense linear orders). Lachlan’s The-
orem states that countably categorical theories cannot be strictly superstable.
Whether the same is true for strictly stable theories is an open question.

A related open question is the following:

Does there exist a countable simple theory T with 1 < I(T ,ℵ0) < ℵ0?

The theory TCDLO (defined in Exercise 5.15) is an example of such a theory that
is not simple. The question regarding simple theories has been resolved for cer-
tain cases. The Baldwin–Lachlan theorem states that there are no uncountably
categorical examples. Byunghan Kim has extended this result to a class of simple
theories known as the supersimple theories (this class contains all superstable
theories as well as some unstable theories).

A most famous open question in this area is known as Vaught’s Conjecture.
This conjecture asserts that the number of countable models of a complete count-
able theory is either countable or 2ℵ0 . If the continuum hypothesis holds and
2ℵ0 = ℵ1, then this conjecture is an immediate consequence of Proposition 6.50.
If the continuum hypothesis does not hold, then there exist cardinals between
ℵ0 and 2ℵ0 . Vaught’s Conjecture asserts that I(T ,ℵ0) cannot take on such val-
ues. Robin Knight has recently proposed a counter example to this conjecture.
However, Knight’s example is not simple. So the following question remains:

Does there exist a countable simple theory T with ℵ0 < I(T ,ℵ0) < 2ℵ0?

As with the former question, partial results have been obtained. Shelah,
Harrington, and Makkai showed that the answer is “no” for ω-stable theor-
ies. Buechler proved that Vaught’s Conjecture holds for a class of superstable
theories.

For more on stability theory, I recommend to the beginner both Poizat [39]
and Buechler [6]. The later chapters of [39] are devoted to stability theory and
serve as an excellent introduction. As the title suggests, [6] is entirely dedicated
to the subject. Many of Shelah’s important results are contained in his epic [43].
Although this book is the well spring of stability theory, I do not recommend
it as a source for learning stability theory. I also do not recommend studying
the sun by staring directly at it. Secondary sources are preferable. Baldwin [1]
is more comprehensive than both [39] and [6] and far more accessible than [43].
Both [26] and [37] are also recommended, but are unfortunately currently out of
print. For simple theories, Wagner [50] is recommended.

Models of countable theories 295

Exercises
6.1. LetM and N be V-structures and let f :M → N be an elementary embed-

ding. Show that N realizes every type that M realizes, but N does not
omit every type that M omits.

6.2. Let T be a complete V-theory. For any V-formula ϕ, let Sϕ denote the set
of all types in S(T) that contain ϕ. The set {ϕ1,ϕ2, . . .} of V-formulas is
said to be a cover of Sn(T) if every type in Sn(T) is in Sϕi

for some i.
Show that, for any n ∈ N, any cover of Sn(T) has a finite subset that is
also a cover of Sn(T).

6.3. Let T be a complete theory that has a finite model. Show that every type
in S(T) is isolated.

6.4. Let T be a complete theory having infinite models.
(a) Show that any type in Sn(T) for n > 1 is not satisfiable.

(b) Give an example of a type p ∈ S1(T) that is satisfiable.

6.5. Let T be a complete theory and let p be a type of T . Show that the formula
θ isolates p over T if and only if θ is realized in some model of T and, for
each formula ϕ ∈ p, T � θ → ϕ.

6.6. Let T be a complete V-theory. Suppose that Sn(T) is finite for some
n ∈ N.
(a) Show that there are only finitely many V-formulas in n free variables

up to T -equivalence.

(b) Show that T is not necessarily ℵ0-categorical by providing an
appropriate example.

6.7. We demonstrate that the Omitting Types theorem fails for theor-
ies in uncountable vocabularies. Let M be the VE-structure defined
in Example 6.8 (and Exercise 5.16). Let T be Th(M). Let C =
{ci|i < ω1} be an uncountable set of constants. Let V ′ be the expan-
sion VE ∪ C. Let T ′ be any expansion of T to a complete V ′-theory
that says each of the constants in C are distinct. Consider the par-
tial type q = {¬ϕ1(x1),¬ϕ2(x1),¬ϕ3(x1), . . .}. Recall that ϕm(x1) is
the VE-formula saying that there exists exactly m elements equivalent
to x1.
(a) Show that q is not isolated.

(b) Show that q is realized in every model of T ′.

(c) Show that for each complete type p in S1(T ′) containing q, either p
is isolated or p is omitted from some model of T .

6.8. Suppose we attempt to generalize the proof of the Omitting Types the-
orem 6.13 to theories having uncountable theories in the same manner

296 Models of countable theories

that Theorem 4.2 was generalized to Theorem 4.27. Specifically what goes
wrong?

6.9. Let T be a complete theory in a countable vocabulary V.
(a) Let p1 and p2 be nonisolated types in Sn(T). Following the proof of

the Omitting Types theorem 6.13, prove that there exists a countable
model of T that omits both p1 and p2.

(b) Let p1, p2, . . . , pk be nonisolated types in Sn(T) (for k ∈ N). Describe
how the proof of the Omitting Types theorem 6.13 can be modified
to construct a model of T that omits each pi.

(c) Let p1, p2, p3, . . . be countably many types inSn(T) each of which is not
isolated. Describe how the proof of the Omitting Types theorem 6.13
can be modified to construct a model of T that omits each pi.

6.10. Give an example of a complete countable theory T and a nonisolated type
p ∈ S(T) such that p is not omitted in any uncountable model of T . That
is, show that Corollary 6.14 fails for uncountable models.

6.11. Let T be a small theory. Prove that there exists an isolated type
in S(T).

6.12. Find an example of a theory T in a finite vocabulary so that Sn(T) contains
no isolated types for some n ∈ N.

6.13. Let T be a countable complete theory and let p be a type in S1(T).
(a) Suppose that, for any model M of T , there are only finitely many

elements a such that p = tpM (a). Show that p is isolated.

(b) Suppose that, for some model M of T , there is exactly one element
a such that p = tpM (a). Show that p is not necessarily isolated by
demonstrating an appropriate example.

6.14. Let T be a complete countable V-theory. The isolated types are said to be
dense in S(T) if every V-formula contained in a type of S(T) is contained
in an isolated type of S(T). Prove that T has a countable atomic model
if and only if the isolated types are dense in S(T).

6.15. Let T be a countable complete theory. Show thatM is a prime model of T
if and only if T can be elementarily embedded into every countable model
of T .

6.16. For any n-tuple ā of elements from an V-structureM , let qftpM (ā) denote
the set of quantifier-free V-formulas in tpM (ā). Prove that the following
are equivalent statements regarding a complete theory T .
(i) For any M |= T , n ∈ N, and any n-tuples ā and b̄ of M , if

qftpM (ā) = qftpM (b̄) then tpM (ā) = tpM (b̄).

Models of countable theories 297

(ii) For any n ∈ N, models N and M of T , and any n-tuple ā of M and
b̄ of N , if qftpM (ā) = qftpN (b̄) then tpM (ā) = tpN (b̄).

(iii) T has quantifier elimination.

6.17. Let T be a small theory and let M be the countable saturated model of T .
Prove that T has quantifier elimination if and only if the following holds.
For any n ∈ N, if (a1, . . . , an) and (b1, . . . , bn) are n-tuples of M that
satisfy the same atomic formulas in M , then for any an+1 there exists
bn+1 such that (a1, . . . , an, an+1) and (b1, . . . , bn, bn+1) satisfy the same
atomic formulas in M .

6.18. Let T be a theory. Suppose that there exists a unique nonisolated type in
S1(A) for each subset A of each model of T . Prove that T is uncountably
categorical but not countably categorical. (Hint: Show that T is strongly
minimal.)

6.19. Recall that an isomorphism f :M →M from a structure M onto itself is
called an automorphism of M . Say that two elements a and b from the
universe of M are indistinguishable in M if there exists an automorphism
of M such that f(a) = b. Suppose that M is a countable homogen-
eous structure. Prove that a and b are indistinguishable if and only if
tpM (a) = tpM (b).

6.20. We show that the notion of a homogeneous structure can be defined in
terms of automorphisms (see the previous exercise).
(a) Let M be a countable structure. Prove that M is homogeneous if

and only if, given any two tuples (a1, . . . , an) and (b1, . . . , bn) of M
having the same type in M , there exists an automorphism f of M
such that f(ai) = bi for each i = 1, . . . n.

(b) Let M be a structure (not necessarily countable). Prove that M
is homogeneous if and only if every M -elementary function can be
extended to an automorphism.

6.21. Prove Proposition 6.27.

6.22. Let T be an incomplete theory. Show that T may have a countable atomic
model, but it cannot have a prime model.

6.23. Let M be a countable saturated structure. Show that, for any subset A of
the underlying set of M , every type in S(A) is realized in M . (That is, if
every 1-type is realized, then every type is realized.)

6.24. Let M be a countable model of a complete theory T . Prove that M is
the countable saturated model of T if and only if M is homogeneous and
realizes every type in S(T).

298 Models of countable theories

6.25. Let T be the theory in the vocabulary {E, s} defined in Example 5.56 of
the previous chapter. Prove that T is complete by showing that T has a
countable atomic model.

6.26. Let V be the vocabulary consisting of a binary relation E and a unary
function s. Let T∞ be the V-theory that says E is an equivalence relation
having infinitely many equivalence classes and each class contains a copy
of (Z|s). (So T∞ is a modified version of T from the previous exercise.)
Show that T∞ has a countable universal model that realizes every type in
S(T) but is not saturated.

6.27. A set of sets S is said to have the finite intersection property if the
intersection of any finite number of sets in S is nonempty.
(a) Let Zs = (Z|s) be the Vs-structure that interprets the unary function

s as the successor function on the integers. Let D be the set of all
infinite subsets of Z that are definable (by some Vs with parameters
from Z). Show that D has the finite intersection property but the
intersection of all sets in D is empty. (For the first part, use the fact
that Zs is strongly minimal.)

(b) Let M be a countable V-structure having underlying set U . Show
that M is saturated if and only if the intersection of all sets in D is
nonempty for any set D of definable subsets of U having the finite
intersection property.

6.28. Show that if a structure in ℵn-saturated, then it is ℵn+1-universal.

6.29. Show that, for m ≤ n, if a structure is ℵn-homogeneous and ℵm-universal,
then it is ℵm+1-universal.

6.30. Show that a structure is κ-saturated if and only if it is both κ-homogeneous
and κ-universal.

6.31. Let T be a complete theory. Let M and N be two uncountable homogen-
eous models of T that realize the same types of S(T). Show that M ∼= N

using transfinite induction. (Compare this with Proposition 6.27.)

6.32. Assuming that the general continuum hypothesis it true, show that every
theory has arbitrarily large saturated models.

6.33. Prove Morley’s theorem using the following facts.
• Let κ be an uncountable cardinal. If T is ω-stable and has an uncount-

able model that is not saturated, then T has a model of size κ that is
not ℵ1-saturated.

• If T is κ-categorical for some uncountable κ, then T is ω-stable.

7 Computability and complexity

In this chapter we study two related areas of theoretical computer science: com-
putability theory and computational complexity. Each of these subjects take
mathematical problems as objects of study. The aim is not to solve these prob-
lems, but rather to classify them by level of difficulty. Time complexity classifies a
given problem according to the length of time required for a computer to solve the
problem. The polynomial-time problems P and the nondeterministic polynomial-
time problems NP are the two most prominent classes of time complexity. Some
problems cannot be solved by the algorithmic process of a computer. We refer to
problems as decidable or undecidable according to whether or not there exists an
algorithm that solves the problem. Computability theory considers undecidable
problems and the brink between the undecidable and the decidable.

There are only countably many algorithms and uncountably many problems
to solve. From this fact we deduce that most problems are not decidable. To pro-
ceed beyond this fact, we must state precisely what we mean by an “algorithm”
and a “problem.” One of the aims of this chapter is to provide a formal defini-
tion for the notion of an algorithm. The types of problems we shall consider are
represented by the following examples.

• The even problem: Given an n ∈ N, determine whether or not n is even.

• The 10-clique problem: Given finite graph, determine whether or not there
exists a subgraph that is isomorphic to the 10-clique.

• The satisfiability problem for first-order logic: Given a sentence of first-order
logic, determine whether or not it is satisfiable.

The first problem is quite easy. To determine whether a given number is even, we
simply check whether the last digit of the number is 0, 2, 4, 6 or 8. The second
problem is harder. If the given graph is large and does contain a 10-clique as a
subgraph, then we may have to check many subsets of the graph before we find
it. Time complexity gives precise meaning to the ostensibly subjective idea of one
problem being “harder” than another. The third problem is the most difficult of
the three problems. This problem is not decidable (it is semi-decidable). Whereas
time complexity categorizes the first two problems, the third problem falls into
the realm of computability theory.

We still have not defined what constitutes a “problem.” We have merely
provided a few examples. Note that each of these examples may be viewed as

300 Computability and complexity

a function. Given some input, each problem requires a certain output. In each
of the examples we have cited, the output is a “yes” or “no” answer. This type
of problem is called a decision problem. Other problems may require various
output: the problem of finding the largest prime that divides a given number,
for example. More generally, let f(x̄) be a k-ary function on the non-negative
integers. Consider the following problem:

• The f-computability problem: Given x̄, determine the value of f(x̄).

If this problem is decidable, then the function f is said to be computable. We
claim that the f -computability problems are the only problems we need to
consider. In fact, we take this as our definition of a problem.

Every problem corresponds to a function
on the non-negative integers.

A decision problem corresponds to a function that only takes on the values
0 and 1 (we interpret 0 as “no” and 1 as “yes”). Let A be the set of all k-tuples x̄
for which f(x̄) = 1. The problem represented by f corresponds to the following
decision problem: given x̄, determine whether or not x̄ is in A. In this way, every
decision problem can be viewed as a subset of (N ∪ {0})k for some k.

Every decision problem corresponds to a relation
on the non-negative integers.

The Even Problem corresponds to the set of non-negative even numbers. For
the 10-Clique Problem, we can code each finite graph as a k-tuple of non-negative
integers. Likewise, every formula of first-order logic can be coded as a natural
number. We shall discuss the required coding procedures in this chapter and
the next.

The goal of this chapter is to give precise meaning to notions such as
algorithm, decidable, and polynomial-time. These notions have arisen in earlier
chapters. In Chapter 5, we defined decidable theories in terms of algorithms.
Given a V-theory T and a V-sentence ϕ, we may ask whether or not ϕ is a con-
sequence of T . This decision problem is decidable if and only if the theory T is
decidable. The Satisfiability Problem for First-order Logic (which we shall abbre-
viate FOSAT), was the central topic of Chapter 3. The corresponding problem
for propositional logic (denoted PSAT), was discussed in Chapter 1.

The definitions and results of the present chapter allow us to prove in the
final chapters some of the claims that were made in the previous chapters. In
Chapter 8, we prove that the theory of arithmetic and other theories are unde-
cidable. In chapter 10, we prove that FOSAT is undecidable. In contrast, PSAT
is decidable. However, there is no known algorithm that decides PSAT quickly.

Computability and complexity 301

This problem is NP-complete. Again, we do not prove this until the final chapter.
In the present chapter, we define the concept of NP-completeness and discuss
the relationship between PSAT and the P = NP question.

The topics of computability and complexity do not flow from the stream of
ideas embodied in the model theory of the previous chapters. In fact, Sections 7.2
and 7.6.2 are the only sections of this chapter that require logic. However, there
are strong connections between the topics of the present chapter and the logic of
the previous chapters. The formal nature of computability has historically and
philosophically linked this subject with the formal languages of logic. In addition
to the connections mentioned in the previous paragraphs, we have the follow-
ing fact: many of the classes of problems that naturally arise in computability
and complexity can be defined in terms of logic. We shall see evidence of this
fundamental fact in Sections 7.2, 7.6.2, 8.3, and 10.4.

7.1 Computable functions and Church’s thesis
We consider functions on the non-negative integers. Whenever we refer to a func-
tion in this chapter, we always mean a function of the form f : D → N ∪ {0}
where the domain D of f is a subset of (N ∪ 0)k for some k. If the domain D
happens to be all of (N∪{0})k, then the function f is said to be a total function.
Otherwise, f is a partial function.

Definition 7.1 Let f be an k-ary function on the non-negative integers. Then f is
computable if there exists an algorithm which, given an k-tuple ā of non-negative
integers,

• outputs f(ā) if ā is in the domain of f , and

• yields no output if ā is not in the domain of f .

To make this definition precise, we must state what constitutes an algorithm.
Informally, an algorithm is a computer program. We claim that the defini-
tion of a computable function is invariant under our choice of programming
language. If we have a computer program in C++ that computes the func-
tion f(x), then we can translate this to a program in Fortran or any other
language.

There are countably many computer programs and uncountably many func-
tions (Propositions 2.47 and 2.48). So most functions are not computable. This
fact flies in the face of empirical evidence. Nearly every function that natur-
ally arises in mathematics (every function one encounters in, say, calculus) is
computable. We shall demonstrate several functions that are not computable in
Section 7.6.1.

302 Computability and complexity

The set of computable functions is our primary object of study in this
chapter. We take two approaches to circumscribing this set from among the
uncountably many functions that are not computable. In Section 7.3, we make
definite the notion of an algorithm by specifying a simplified computer language.
This facilitates the analysis of the set of computable functions. In the present
section, we take a different approach. We consider some basic computable func-
tions and show how more complex computable functions can be derived from
them. We define a set of computable functions known as the recursive functions.
This set is generated from a few functions by applying a few rules. We prove
in Sections 7.3 and 7.4 that the two approaches yield the same functions: the
recursive functions of the present section are precisely those that are computable
by an algorithm in the sense of Section 7.3. Moreover, we claim that these func-
tions are precisely those functions that can be computed by a C++ program,
a Maple program, a Pascal program, or any other computer program. Thus,
we demonstrate that computability is not a vague notion. It is a robust concept
suitable for mathematical analysis.

7.1.1 Primitive recursive functions. We begin our analysis of computable
functions with some examples.

Example 7.2 The following functions are unquestionably computable:

the zero function Z(x) = 0,
the successor function s(x) = x+ 1, and
the projection functions pk

i (x1,x2, . . . ,xk) = xi.

The projection functions are defined for any k and i in N with i ≤ k.

Definition 7.3 The functions s(x), Z(x), and pk
i (x) from the previous example

are called the basic functions.

From two given unary functions f and g we can define various new functions.
One of these is the composition h(x) = f(g(x)). If we can compute both f(x)
and g(x), then we can compute h(x). We generalize this idea to k-ary functions.

Definition 7.4 Let S be a set of functions on the non-negative integers. The set
is said to be closed under compositions if given any m-ary function h in S and
k-ary functions g1, g2, . . . , gm in S (for any k and m in N) the k-ary function f
defined by

f(x1, . . . ,xk) = h(g1(x1, . . . ,xk), . . . , gm(x1, . . . ,xk))

is also in S.

Computability and complexity 303

The set of computable functions is closed under compositions. In particular,
since the basic functions Z(x) and s(x) are both computable, so is the function
s(Z(x)). This is the constant function c1(x) = 1. Likewise, each of the constant
functions cn(x) = n is a computable function.

Functions on the non-negative integers can also be defined inductively. That
is, we can define a function f(x) by first stating the value of f(0) and then
describing how to compute f(x + 1) given the value of f(x). For example, we
define the function f(x) = x! inductively as follows:

f(0) = 1 and f(x+ 1) = f(x) · (x+ 1).

There are numerous ways to extend this idea to k-ary functions for k > 1.
One way is provided by primitive recursion. Primitive recursion is a method for
defining an k-ary function in terms of two given functions: one of these is (k−1)-
ary and the other is (k + 1)-ary. For the case where k = 1, we define the 0-ary
functions to be the unary constant functions Z(x) and cn(x) for n ∈ N. Before
defining primitive recursion we demonstrate how it works with an example.

Example 7.5 Let h(x, y) = 1 and let g(x, y, z,w) = w · zxy. From these 2-ary
and 4-ary functions we define, using primitive recursion, the 3-ary function f .

Let f(0, y, z) = h(y, z), and f(x + 1, y, z) = g(x, y, z, f(x, y, z)). For fixed
values y0 and z0 of y and z, the above definition inductively defines the unary
function given by f(x, y0, z0). We have

f(0, y0, z0) = 1 and f(x+ 1, y0, z0) = f(x, y0, z0) · zxy0
0 .

From this definition, f(x, y, z) can be computed for any tuple (x, y, z) of non-
negative integers. Specifically, for any y and z, we have:

f(1, y, z) = zy f(4, y, z) = z6yz4y = z10y

f(2, y, z) = zyz2y = z3y f(5, y, z) = z10yz5y = z15y

f(3, y, z) = z3yz3y = z6y f(6, y, z) = z15yz6y = z21y.
, and

We can see from this sequence that f(x, y, z) is explicitly defined as follows:

f(x, y, z) = zy(x2+x)/2.

Definition 7.6 Let S be a set of functions on the non-negative integers. The set
is closed under primitive recursion if, for any k ∈ N, any (k − 1)-ary function h
in S, and any (k+1)-ary function g in S, the k-ary function f defined as follows

304 Computability and complexity

is also in S:

f(0,x2, . . . ,xk) = h(x2, . . . ,xk),
f(x1 + 1,x2, . . . ,xk) = g(x1, . . . ,xk, f(x1, . . . ,xk)).

If k = 1, then we allow h to be any constant function.

If both h and g are computable, then so is any function defined from h and g
be primitive recursion. So the set of computable functions is closed under prim-
itive recursion as well as composition. Also, the computable functions include
the basic functions Z(x), s(x), and pk

i from Example 7.2.

Definition 7.7 The set of primitive recursive functions is the smallest set con-
taining the basic functions and closed under both composition and primitive
recursion.

Whereas every primitive recursive function is computable, it is not true
that every computable function is primitive recursive. The primitive recursive
functions are only part of the set of computable functions. They are, however,
a sizable part.

Proposition 7.8 The addition function defined by a(x, y) = x + y is primitive
recursive.

Proof Let h(y) = p11(y) = y and g(x, y, z) = s(p33(x, y, z)) = s(z). Since h(x) is
a basic function, it is primitive recursive. Since g(x, y, z) is the composition of
basic functions, it is also primitive recursive. We define a(x, y) using primitive
recursion as follows:

a(0, y) = h(y) = y, and

a(x+ 1, y) = g(x, y, a(x, y)) = s(a(x, y)) = a(x, y) + 1.

It follows that a(x, y) is primitive recursive.

Unlike addition, subtraction does not determine a total binary function on
the non-negative integers. We let

�
− denote a modified subtraction operation that

is total. This function is defined as follows:

a
�
− b =

{
a− b if b ≤ a
0 otherwise.

Proposition 7.9 The function sub(x, y) = x
�
− y is primitive recursive.

Proof First we show that the predecessor function pred(x) = x
�
− 1 is primitive

recursive. Let h1(x) = Z(x) and g1(x, y) = p21(x, y). Let pred(0) = h1(0) = 0,
and pred(x+ 1) = g1(x, pred(x)) = x.

Computability and complexity 305

To define sub(x, y) by primitive recursion, let h2(x) = p11(x) and g2(x, y, z) =
pred(z). Then sub(x, 0) = h2(x) = x and sub(x, y + 1) = g2(x, y, sub(x, y)) =
pred(sub(x, y)) and so sub(x, y) is primitive recursive.

Proposition 7.10 The multiplication function defined by m(x, y) = xy is
primitive recursive.

Proof Let h(y) = Z(y) and g(x, y, z) = a(y, z). By Proposition 7.8, a(y, z) is
primitive recursive. We define m(x, y) using primitive recursion as follows:

m(0, y) = h(y) = 0, and

m(x+ 1, y) = g(x, y,m(x, y)) = a(y,m(x, y)) = y +m(x, y).

It follows that m(x, y) is primitive recursive.

Consider the exponential function exp(x, y) = yx. Since this function is not
total, it cannot be primitive recursive. If we define exp(0, 0) to be 1 (or any other
number), then the resulting function is primitive recursive.

Proposition 7.11 The function exp(x, y) is primitive recursive.

Proof Let h(y) = s(0) and g(x, y, z) = m(y, z). By the previous proposition,
m(y, z) is primitive recursive. We define exp(x, y) using primitive recursion as
follows:

exp(0, y) = h(y) = s(0) = 1, and

exp(x+ 1, y) = g(x, y, exp(x, y)) = m(y, exp(x, y)) = y · exp(x, y).

It follows that exp(x, y) is primitive recursive.

Proposition 7.12 Let p(x) be any polynomial having natural numbers as
coefficients. Then p(x) is primitive recursive.

Proof This follows from the fact that p(x) can be written as a composition of
constant functions, a(x, y), m(x, y), and exp(x, y).

By definition, the set of primitive recursive functions is closed under the
operations of composition and primitive recursion. By repeatedly using is fact,
we can generate more and more primitive recursive functions from the basic
functions. We next show that the set of primitive recursive functions is necessarily
closed under operations other than composition and primitive recursion.

Definition 7.13 Let S be a set of functions on the natural numbers. The set
is closed under bounded sums if, for any k-ary function f(x1, . . . ,xk) in S, the
function sumf (y,x2, . . . ,xk) =

∑
z<y f(z,x2, . . . ,xk) is also in S.

Proposition 7.14 The set of primitive recursive functions is closed under
bounded sums.

306 Computability and complexity

Proof Let f(x1, . . . ,xk) be a primitive recursive function.
Let h(x2, . . . ,xk) = 0 and let g(x1, . . . ,xk,xk+1) = f(x1, . . . ,xk) + xn+1.

Both h and g are primitive recursive. Moreover, the function sumf (y,x2, . . . ,xk)
can be defined from h and g by primitive recursion:

sumf (0,x2, . . . ,xk) = 0,

sumf (k + 1,x2, . . . ,xk) = g(k,x2, . . . ,xk, sumf (k,x2, . . . ,xk))

= f(k,x2, . . . ,xk) + sumf (k,x2, . . . ,xk).

Definition 7.15 Let S be a set of functions on the natural numbers. The set is
closed under bounded products if, for any k-ary function f(x1, . . . ,xk) in S, the
function prodf (y,x2, . . . ,xk) = Πz<yf(z,x2, . . . ,xk) is also in S.

Proposition 7.16 The set of primitive recursive functions is closed under
bounded products.

Proof The function prodf (y,x2, . . . ,xk) can be defined using primitive recursion
in the same manner that sumf (y,x2, . . . ,xk) is defined in Proposition 7.18.

Definition 7.17 Let S be a set of functions on the non-negative integers. The
set is closed under bounded search if the following holds. If f(x̄, y) is in S, then
so is the function bsf (x̄, y) defined as follows

bsf (x̄, y) =
{

the least z less than y such that f(x̄, z) = 0
y if no such z exists.

Proposition 7.18 The set of primitive recursive functions is closed under
bounded search.

Proof Let f(x̄, y) be a primitive recursive function. We show that bsf (x̄, y) can
be written as a composition of primitive recursive functions.

The predecessor function pred(x) was shown to be primitive recursive in the

proof of Proposition 7.9. Let pos(x) be the function x
�
− pred(x). This function

determines whether or not x is positive: pos(x) = 1 for nonzero x and pos(0) = 0.
We claim that

bsf (y, x̄) =
∑
z<y

(Πw<zpos(f(w, x̄))).

We leave the verification of this claim to the reader. By the previous proposi-
tions, bsf (y, x̄) is a composition of primitive recursive functions and is therefore
primitive recursive.

Computability and complexity 307

Thus, we see that the primitive recursive functions form a vast set of comput-
able functions. In fact, it may seem difficult to demonstrate a total computable
function that is not primitive recursive. We now give one well known example of
such a function.

7.1.2 The Ackermann function. We define a total binary function A(n,x)
that is computable but not primitive recursive. We refer to this function as the
Ackermann function. It is one of several variations of a function first introduced
by Wilhelm Ackermann in 1928. The function A(n,x) is defined as follows. For
(n,x) ∈ N

2,

A(0,x) = x+ 1,
A(n, 0) = A(n− 1, 1), and
A(n,x) = A(n− 1,A(n,x− 1)).

This function is computable. Let us compute some specific values of A(n,x).
Since A(0,x) = x + 1, we have A(0, 1) = 2, A(0, 2) = 3, and so forth. We also
have: A(1, 0) = A(0, 1) = 2, A(2, 0) = A(1, 1) = A(0,A(1, 0)) = A(0, 2) = 3,
A(1, 2) = A(0,A(1, 1)) = A(0, 3) = 4, and A(3, 0) = A(2, 1) = A(1,A(2, 0)) =
A(1, 3) = A(0,A(1, 2)) = A(0, 4) = 5. We record these and other values of
A(n,x) in Table 7.1.

Table 7.1 Values for A(n,x)

n = 0 1 2 3

x = 0 1 2 3 5

1 2 3 5 13

2 3 4 7 29

3 4 5 9 61

Although these computations may seem innocuous, it is practically
impossible to extend the above table much further to the right. The column
for n = 4 begins A(4, 0) = 13, A(4, 1) = 65534, and then the numbers get really
big. The column for n = 5 begins

A(5,0) = A(4,1) = 65533.

The computation of A(5, 1) is beyond the capabilities of any computer.
For each n ∈ N, let an(x) denote the unary function A(n,x). From the above

computations, we see that

a0(x) = A(0,x) = x+ 1,
a1(x) = A(1,x) = x+ 2,

308 Computability and complexity

a2(x) = A(2,x) = 2x+ 3, and
a3(x) = A(3,x) = 2x+3 − 3.

The function a4(x) is defined by A(4,x) = 22..
.2︸ ︷︷ ︸

x+3 times

− 3.

The functions an(x) for n > 4 cannot be expressed using conventional notation.
We make two observations regarding these functions. First, note that the function
an(x) can be defined inductively from the function an−1(x). This follows from the
rules A(n, 0) = A(n− 1, 1) and A(n,x) = A(n− 1,A(n,x− 1)) in the definition
of A(n,x). It follows that each an(x) is a primitive recursive function (since
a0(x) is). The second observation is that the function an−1(x) is smaller than
an(x) for each n ∈ N.

Definition 7.19 We say that g(x1, . . . ,xk) is smaller than f(x), and write g < f ,
if g(x1, . . . ,xk)<f(m) for all k-tuples x̄ having maximum entry xi = m. If g
happens to be unary, then g < f simply means that g(n) < f(n) for all n.

Let a∞(x) = A(x,x). This function is not smaller than any of the functions
an(x).

Proposition 7.20 The function a∞(x) = A(x,x) is not primitive recursive.

Proof We show that every primitive recursive function is smaller than am(x)
for some m ∈ N. The basic functions Z(x) and pk

i (x̄) are smaller than a1(x) and
s(x) is smaller than a2(x).

Suppose now that f is the composition of g and h and g < ai and h < aj for
some i and j in N. Further suppose that g and h are unary functions (we claim
that what follows generalizes to higher arities). We show that f(x) = g(h(x)) is
smaller than am+1 where m is larger than both i and j. To show this, we make
two observations: for any x ∈ N and m ∈ N ∪ {0}:

1. x < a(x−1)
m (1) (for x > 0 and m > 0), and

2. a(x+1)
m (1) = am+1(x),

where a(x)
m (1) denotes the composition am(am(· · · (am︸ ︷︷ ︸

x times

(1)))). We regard a(x−1)
m (1)

as a function of x.
To see that the first observation holds, note that a(x−1)

0 (1) = x for x > 0.
For the second observation, recall from the definition of the Ackermann

function that

am+1(x) = am(am+1(x− 1)) = am(am(am+1(x− 2))) = · · · .

We see that am+1(x) = a(x)
m (am+1(0)). Again by the definition of the Ackermann

function: am+1(0) = am(1). This establishes the second observation.

Computability and complexity 309

We now show that the composition of h and g is smaller than am+1(x).
We have

g(h(x)) < ai(aj(x)) < am(am(x)).
By observation 1, am(am(x)) < am(am(a(x−1)

m (1))).
By observation 2, am(am(a(x−1)

m (1))) = a(x+1)
m (1) = am+1(x).

Now suppose that f is defined from h and g by primitive recursion. Again,
we suppose for simplicity that f is unary. In this case, h(x) = c for some constant
c and g is a binary function. The function f is defined for each n ∈ N as follows:

f(0) = c and f(n+ 1) = g(n, f(n)).

Suppose that g < ai. We show that f < am for some m. Since aj < aj+1 for
each j, there exists j such that aj(0) is bigger than the constant c. Let m be
greater than both j and i+ 1.

We may assume that f(n)>n for each n (since f is smaller than some
function with this property). Likewise, we may also assume that g is an increasing
function. In particular, we use the inequality g(n, f(n)) < g(f(n), f(n)).

Claim f(n) < am(n) for all n.

Proof We prove this by induction on n.

f(0) = c < am(0) by our choice of m.

f(n+ 1) = g(n, f(n)) < g(f(n), f(n)) (by our previous remarks)

< ai(f(n)) < ai(am(n)) (by induction)

< am−1(am(n)) (since m > i+ 1)

= am(n+ 1) (since A(m,n+ 1) = A(m− 1,A(m,n))).

This completes the proof.

We conclude that the inductive method used to define A(n,x) is stronger
than primitive recursion. To generate the set of computable functions from the
basic functions, we must include closure operations beyond composition and
primitive recursion. We claim that, in addition these two operations, we need
only one more operation to obtain the entire set of computable functions. As we
shall show, it suffices to modify the operation of bounded search.

7.1.3 Recursive functions. We now define the recursive functions. In addition
to being closed under composition and primitive recursion, the set of recursive
functions is also closed under unbounded search.

310 Computability and complexity

Definition 7.21 Let f(x̄, y) be a (k+1)-ary function on the non-negative integers.
We denote by usyf(x̄, y) the (k)-ary function defined as follows. For a given
k-tuple x̄, usyf(x̄, y) = z if and only if f(x̄, y) is defined for each y ≤ z and z is
least such that f(x̄, z) = 0. If no such z exists, then x̄ is not in the domain of
usyf(x̄, y) .

Definition 7.22 Let S be a set of functions on the non-negative integers. The set
is closed under unbounded search if the following holds. If f(x̄, y) is in S, then
so is the function usy(x̄, y).

Definition 7.23 The set of recursive functions is the smallest set containing
the basic functions and closed under composition, primitive recursion, and
unbounded search.

Every recursive function is computable. To verify this, consider the unboun-
ded search process. Suppose that f(x̄, y) is computable. To compute usyf(ā, y)
for a given input ā, follow these steps:

(1) Let n = 0

(2) Compute f(ā,n)

(3) If f(ā,n) = 0, then usyf(ā, y) = n.

Otherwise add 1 to the value of n and go to (2).

Thus, usyf(ā, y) is computed in a finite number of steps provided that ā is in
the domain of usyf(x̄, y). If ā is not in the domain of usyf(x̄, y), then these three
steps will produce no output (the algorithm will either be unable to compute
step (2) for some n or it will form an infinite loop).

Conversely, we claim that every computable function is recursive. In par-
ticular, the Ackermann function is recursive. We prove this as a consequence
of Kleene’s Recursion theorem 7.38 of Section 7.4. Thus, we show that the
Ackermann function is recursive without providing an explicit definition of this
function in terms of unbounded search. We leave this explicit definition as
Exercise 7.12.

The assertion that every computable function is recursive is known as
Church’s thesis. Section 7.4 provides evidence for Church’s thesis. Not only do we
show that the Ackermann function is recursive, but we also prove that all func-
tions computable by programs in a specific programming language are recursive.
We do not prove Church’s thesis. Such a proof would have to consider every
conceivable programming language. This is not feasible. Moreover, even if we
were to somehow succeed in this task, then this still would not suffice as a proof
of Church’s thesis.

To fully understand Church’s thesis, we must make the distinction between
functions that are computable by a computer program and those functions
that are computable in the intuitive sense. A function is “programmable” if

Computability and complexity 311

there is a computer program (in some conventional programming language) that
computes the function. It need not be feasible to execute the program in a
reasonable amount of time or space. A function is “intuitively computable” if it
can somehow be computed by some algorithm. Whereas the notion of a recursive
function is precise, the notions of “programmable” and “intuitively computable”
are increasingly more vague. From these definitions, we have the following two
inclusions:

{
Recursive
Functions

}
⊂
{

Programmable
Functions

}
⊂
{

Intuitively Computable
Functions

}
.

Church’s thesis implies that each of these three sets contain the same functions.
There are two possible scenarios in which this thesis is false. One possibility is
that there exists a clever computer capable of computing a nonrecursive function.
We claim that this is not the case. That is, we claim that the first of the above
inclusions is not proper. We provide evidence for this following Theorem 7.38 of
Section 7.4. The other scenario involves the second inclusion.

Let us temporarily entertain the possibility that there exist functions that
are computable by some algorithm that cannot be implemented into a computer
program. For example, consider the function π(n) = the nth digit in the decimal
expansion of π. This function is intuitively computable since we have the fol-
lowing algorithm: construct a really big circle, measure the circumference and
diameter, and divide (“really big” depends on n). Likewise, consider the function
f(n) = |1000 · sinn| (rounded to the nearest integer). We can compute this func-
tion by constructing a really big triangle having an angle of n radians and taking
the ratio of two sides. If we are trying to program a computer to evaluate these
functions, then these algorithms do not lend much insight. There do, of course,
exist computer algorithms that compute π(n) and f(n) (for example, we can use
the Taylor series to compute the sine). However, it seems plausible that there
exist other algorithms that cannot be carried out by a computer. Church’s thesis
states that this is not the case: any function that is computable in the intuitive
sense is recursive. From this point of view, Church’s thesis is not a statement
of mathematics, but a statement of faith that precludes the possibility of proof
(although disproof is possible).

We make no assumptions regarding the veracity of Church’s thesis. We
focus our attention on the set of recursive functions. We show in Section 7.4 that
these functions are equivalent to the functions that are computable in a certain
computer language. Moreover, we claim that these are precisely those functions
that are computable by a program in C++ (or Basic or Cobol or Maple). This
provides evidence in support of Church’s thesis, but this not our aim. Regardless
of whether or not Church’s thesis is true, the set of recursive functions is of
natural interest. Henceforth, when we refer to the computable functions we mean

312 Computability and complexity

a function in this precisely defined set. Our aim in this chapter is to investigate
this set of computable functions and the corresponding concept of decidability.

7.2 Computable sets and relations
Let A be a subset of the non-negative integers. The characteristic function of A
(denoted χA(x)) is defined as follows:

χA(x) =
{

1 x ∈ A
0 x �∈ A.

The set A is said to be recursive if its characteristic function is recursive. Like-
wise, A is said to be primitive recursive if its characteristic function is. These
definitions can be extended to any relation R on N ∪ {0}. That is, the recurs-
ive (and primitive recursive) subsets of (N ∪ {0})k for k > 1 are defined in the
same manner that we have defined the recursive and primitive recursive subsets
of N ∪ {0}.

To each relation R on the non-negative integers there is an associated
decision problem: namely, the problem of determining whether or not a given
tuple x̄ is in the set R. This decision problem is said to be decidable if and only
if R is a recursive relation. By definition, every decision problem corresponds
to some relation. So to study recursive relations is to study the set of all decid-
able decision problems. In this section, we restrict our attention to the primitive
recursive relations. In Section 7.5 we consider the wider set of recursive rela-
tions and demonstrate (in Section 7.6) various subsets of N ∪ {0} that are not
recursive.

Example 7.24 Consider the binary relation x < y. The characteristic function
for this relation is defined by χ<(x, y) = 1 if x < y and χ<(x, y) = 0 otherwise.
This function can be defined as a composition of primitive recursive functions:

χ<(x, y) = 1
�
− (x

�
− y).

It was shown in Proposition 7.9 that sub(x, y) = x
�
− y is primitive recursive. It

follows that the relation x < y is also primitive recursive.

Primitive recursive relations allow us to define primitive recursive functions
by cases. For example, consider the function f(x) defined by cases as follows.

f(x) =
{
g(x) if x < 10
h(x) otherwise.

If g(x) and h(x) are both primitive recursive, then so is f(x). More generally,
we have the following.

Computability and complexity 313

Proposition 7.25 Let R1, . . . ,Rn be disjoint k-ary relations and let
g1(x̄), . . . , gn(x̄) be k-ary functions. If each of these functions and relations is
primitive recursive, then so is the function defined by cases as follows

h(x̄) =



g1(x̄) if R1(x̄)
g2(x̄) if R2(x̄)
.

gk(x̄) if Rk(x̄).

Proof We have

f(x̄) = g1(x̄) · χ1(x̄) + g2(x̄) · χ2(x̄) + · · · + gk(x̄) · χk(x̄),

where χi(x̄) denotes the characteristic function for the relation Ri(x̄) (for i =
1, . . . , k).

In this section, we show that several familiar relations (in addition to a < b)
are primitive recursive. We also show that, given two primitive recursive relations
A and B on the non-negative integers, the relations A ∪ B, A ∩ B, A × B,
and other relations are also primitive recursive. Rather than considering these
relations one-by-one and proving that each is primitive recursive, we instead take
advantage of our background in first-order logic. We show that if a relation is
definable by a quantifier-free formula in the vocabulary of arithmetic, then that
relation is primitive recursive.

Let N0 = (N ∪ {0}|+, ·, 0, 1) be the structure having the non-negative
integers as an underlying set that interprets the vocabulary Var = {+, ·, 0, 1}
in the usual way.

Proposition 7.26 Let A be a definable subset of N0. If A is definable by a
quantifier-free Var-formula, then A is primitive recursive.

Proof Let ϕA(x1, . . . ,xn) be a Var-formula that defines the k-ary relation A.
We show that A is primitive recursive by induction on the complexity of ϕA.
However, we do not proceed in the usual order. We first prove the induction step
and lastly consider the case where ϕA is atomic.

Suppose that θ(x̄) and ψ(x̄) are Var-formulas that define primitive recursive
subsets of N0. Let B be the relation defined by θ and let C be the relation
defined by ψ. Then the characteristic functions χB and χC are both primitive
recursive. We must show that the characteristic function of A is also primitive
recursive.

If ϕA(x̄) ≡ θ(x̄), then χA and χB are the same primitive recursive function.
If ϕA(x̄) is the formula ¬θ(x̄), then χA(x̄) is 1 if and only if χB(x̄) is 0.

So χA(x̄) = 1
�
−χB(x̄). Since both χB(x̄) and sub(x, y) = x

�
− y are primitive

recursive, so is χA(x̄).

314 Computability and complexity

Now suppose ϕA(x̄) is the formula θ(x̄) ∧ ψ(x̄). Then χA(x̄) equals the
composition m(χB(x̄),χC(x̄)) = χB(x̄) · χC(x̄).

In any of these cases, χA(x̄) is primitive recursive. This concludes the induc-
tion step of the proof. It remains to be shown that χA(x̄) is primitive recursive
in the case where ϕA(X̄) is an atomic Var-formula.

Since there are no relations in the vocabulary, atomic Var-formulas have
the form t1 = t2 for Var-terms t1 and t2. Each term is a composition of the
functions + and · applied to the constants and variables. So each Var-term may
be regarded as a polynomial p(x̄) having natural numbers as coefficients. If ϕA(x̄)
is atomic, then it must have the form p1(x̄) = p2(x̄). By Proposition 7.12, each
of the polynomials p1(x̄) and p2(x̄) are primitive recursive functions. We must
show that the relation of equality is also primitive recursive.

We previously demonstrated that the relation x < y is primitive recursive.
It follows that y ≤ x (the negation of x < y) is also primitive recursive. Likewise,
x ≤ y is a primitive recursive relation. Finally, the relation x = y, defined as
x ≤ y ∧ y ≤ x, is primitive recursive. (We are using the fact that the primitive
recursive relations are closed under negations and conjunctions. This was proved
as part of the induction step.)

If ϕA(x̄) is atomic, then χA(x̄) is the composition χeq(p1(x̄), p2(x̄)), where
χeq(x, y) = 1 if x = y and is otherwise zero. Since it is the composition of
primitive recursive functions, χA(x̄) is primitive recursive.

This completes the base step for the induction. We conclude that every
quantifier-free Var-formula defines a primitive recursive subset of N0.

The converse of Proposition 7.26 does not hold. In the next chapter we
prove that every primitive recursive relation is definable (see Corollary 8.15).
However, not every primitive recursive relation is definable by a quantifier-free
formula. The formula that defines a primitive recursive relation may require
quantifiers.

Definition 7.27 Let F be a set of Var-formulas. We say that F is closed under
bounded quantifiers if for any ϕ(x, y) ∈ F , the formula ∃y(y < x ∧ ϕ(x, y)) is
also in F where y < x is an abbreviation for the formula ∃z(y + z = x). (The
formula ϕ(x, y) may have free variables other than x and y.)

Let ∆0 be the smallest set of Var-formulas containing the atomic formulas
that is closed under equivalence, negation, conjunction, and bounded quantifiers.
Note that the negation of the formula ∃y(y < x ∧ ϕ(x, y)) is equivalent to the
formula ∀y(y < x → ¬ϕ(x, y)). So in any ∆0 formula, each variable y that is
quantified by either ∃ or ∀ is bounded by another variable as y < x. That is, the
bound variables are bounded by free variables. In particular, each ∆0 sentence
must be quantifier-free.

Computability and complexity 315

A relation is primitive recursive if and only if it is definable by a ∆0 formula.
We presently prove one direction of this fact. The other direction shall become
apparent after Section 8.3 of the next chapter and is left as Exercise 8.6.

Proposition 7.28 Let A be a definable subset of N0. If A is definable by a ∆0

formula, then A is primitive recursive.

Proof We must add one step to the proof of the previous proposition. Sup-
pose that ϕ(x, y) defines a primitive recursive subset A of N0. We must show
the formula ∃y(y < x ∧ ϕ(x, y)) also defines a primitive recursive subset. For
convenience, we assume that x and y are the only free variables of ϕ(x, y) (this
assumption does not alter the essence of the proof).

Let χA(x, y) be the characteristic function for A. Since this function is
primitive recursive, so is the function sumχ(x, y) =

∑
z<y χA(x, z) by Pro-

position 7.18. It follows that the function g(x) = sumχ(x,x) is also primitive
recursive. Note that 1

�
− g(x) equals 0 if χA(x, z) = 1 for some z < x and

otherwise 1
�
− g(x) equals 1. From this observation, we see that the func-

tion 1
�
− (1

�
− g(x)) is the characteristic function for the set defined by ∃y(y <

x ∧ ϕ(x, y)). It follows that this is a primitive recursive set.

Propositions 7.26 and 7.28 allow us to succinctly show that certain functions
and relations are primitive recursive. The aim for the remainder of this section
is twofold. One aim is to demonstrate some of the many familiar functions and
relations that are primitive recursive. The other aim is to show that a specific
binary function, namely pf(x, i), is primitive recursive. The name “pf” bestowed
to this function is an abbreviation for “prime factorization.” We shall make use
of this function and the fact that it is primitive recursive in Section 7.4.

Prior to defining the function pf(x, i), we define the relations div(x, y) and
prime(x). For any pair (x, y) of non-negative integers, the relation div(x, y) says
that x divides y and prime(x) says that x is prime. The relation div(x, y) holds
if and only if there exists a z such that x · z = y. Clearly, if such a z exists, then
z is at most y. So div(x, y) is definable by the ∆0 formula

∃z(z < y ∧ x · z = y) ∨ x = 1 ∨ (y = 0 ∧ ¬x = 0).

Likewise, prime(x) is defined by the formula

∀z(z < x→ (z = 1 ∨ ¬div(z,x))) ∧ (¬x = 1).

Since these formulas are ∆0, the relations div(x, y) and prime(x) are
primitive recursive by Proposition 7.28.

There are infinitely many primes. Let p1, p2, p3, . . . represent the enumera-
tion of the primes in increasing order. So p1 = 2, p2 = 3, p3 = 5, and so forth. We
claim that the function pr(i) = pi is primitive recursive. To make this function

316 Computability and complexity

total, let us set pr(0) = 0. This function can be defined by primitive recursion.
Let h(x) = Z(x) and let g(x, y) be the least prime number greater than y. To
verify that g(x, y) is primitive recursive, note that we can define this function
using bounded search. The least prime number greater than y must be less than
2y. (“Chebychev proved it, and Erdös proved it again, there is always a prime
between n and 2n.”) The function pr(i) is defined as follows:

pr(0) = h(0) = 0,

pr(n+ 1) = g(n, pr(n)).

We now define the prime factorization function pf(x, i). Every natural
number x can be factored as

x = pa1
1 p

a2
2 . . . pak

k ,

where pi denotes the ith prime number. Moreover, the exponents ai are uniquely
determined by x. This is the Fundamental Theorem of Arithmetic. We define
pf(x, i) to be the exponent ai that occurs on the ith prime in the prime factor-
ization of x. To make this a total function, we define pf(x, i) to be 0 if x = 0
or i = 0.

Proposition 7.29 The function pf(x, i) is primitive recursive.

Proof We sketch the proof. The function pf(x, i) equals y if and only if
div(pr(i)y,x) and ¬div(pr(i)(y+1),x) both hold. Such a number y must be less
than x (since px > x for all primes p and integers x). So we can define pf(x, i) in
terms of the primitive recursive function pr(i), the primitive recursive relation
div(x, y), and the primitive recursive operation of bounded search. It follows
that pf(x, i) is primitive recursive.

7.3 Computing machines
In the 1930s, Alan Turing described a theoretical computing machine to cap-
ture the notion of computability. Turing’s thesis states that every function that
is intuitively computable can be computed by a Turing machine. Modern com-
puters may be viewed as crude approximations of Turing’s machine (crude since
they do not have infinite memory). Variations of Turing’s machine known as
register machines were developed in the 1960s by Shepherdson, Sturgis, and
others. It was shown that each of these theoretical machines have the same
computing power. The functions computable by either a Turing machine or a
register machine are precisely the recursive functions. In light of these results,
Turing’s thesis is equivalent to Church’s thesis. Henceforth, we refer to this as
the Church–Turing thesis.

Computability and complexity 317

In this section, we describe a variation of the register machines. This
machine executes programs written in a specific programming language that
we shall describe. Functions computable by programs in this language are called
T-computable. At the conclusion of this section, we prove that every recursive
function is T -computable. We prove the converse of this in the next section.
So the computing machine we describe has the same computing power as any
register machine or Turing machine.

We now describe our programming language. As we have previously indic-
ated, it does not matter which programming language we choose. If a function
is computable by a program in PASCAL, then this program can be translated
to a program in C++ or any other programming language. For convenience and
definiteness, we use a simplified programming language we call T++. This lan-
guage is convenient because it has only four types of commands. Of course, if
we actually wanted to program a computer to perform a complicated task, then
this language would not be so convenient. For each i ∈ N, T++ has the following
commands:

Add i, Rmv i, RmvP i, and GOTO i.

A program in T++ is a finite sequence of commands.
We now describe a machine that runs a given T++ program P . This is

called a turnip machine or, more simply, a T -machine. The machine consists of
an enumerated row of bins. Each bin contains turnips. Let Bi denote the ith
bin. We assume there are enough bins (and turnips) to carry out the program.
Some of these bins may be empty. Whereas the bins are enumerated B1, B2,
B3, . . . , the commands that constitute the program are enumerated (1), (2), . . .
(the latter sequence is finite).

To run program P , the T -machine begins by reading the first command. We
now describe how the T -machine executes each of the four possible commands.
Suppose that the machine is reading command (10) of program P .

• If this command is Add i, then the machine puts one turnip in bin Bi and
then proceeds to the next command (namely, command (11)).

• If the tenth command is RmvP i, then there are two possibilities. If bin Bi is
empty, then the machine does nothing and proceeds to the next command.
Otherwise, the turnip machine removes one turnip from bin Bi and then
goes to the previous command (namely, command (9)).

• If the tenth command is Rmv i, then the T -machine removes a turnip from
bin Bi (if there is one) and then, regardless of whether or not there was a
turnip to be removed, proceeds to the next command (namely, (11)).

• Finally, the command GOTO i causes the turnip machine to go to
command (i) of program P .

318 Computability and complexity

The T -machine continues to operate until it comes to a line of the program
that does not exist. For example, the following program causes the T -machine
to halt immediately without doing anything:

(1) GOTO 12.

It is possible that the T -machine will never halt as the following T++ program
demonstrates:

(1) Add 4

(2) RmvP 4.

By adding one line the beginning of the previous program we obtain:

(1) RmvP 4

(2) Add 4

(3) RmvP 4.

If there is a turnip in bin B4 when we run this program, then the T -machine
removes a turnip and halts. Otherwise, if B4 is empty, the T -machine will
never halt.

The number of turnips in each bin when the T -machine halts (if it halts)
depends on how many turnips were in the bins at the outset. Thus, each T++

program determines a function. In fact, each program P determines many func-
tions. For each k ∈ N, we describe a k-ary function P (k) on the non-negative
integers. Given (x1, . . . ,xk) as input, put xi turnips in bin Bi for i = 1, . . . , k and
leave the bins Bj empty for j >k. Run program P . We define P (k)(x1, . . . ,xk)
to be the number of turnips in bin B1 when the machine halts. If the T -machine
does not halt, then P (k)(x1, . . . ,xk) is undefined.

Definition 7.30 Let f be a partial or total k-ary function on the non-negative
integers. We say that f is T-computable if f is P (k) for some T++ program P .
That is, f and P (k) have the same domain and f(x1, . . . ,xk) = P (k)(x1, . . . ,xk)
for any (x1, . . . ,xk) in this domain.

Of course, the actual hardware for the T -machine is irrelevant. We could use
cabbage instead of turnips. In fact, the concept of a T -machine does not require
any vegetables. Modern computers can be used to simulate turnip machines.
From now on, we assume that a T -machine is a computer that has been pro-
grammed to carry out the above commands. We view each Bi as a program
variable that may take on any non-negative integer value.

Although they may seem primitive, T -machines are capable of computing
any recursive function.

Computability and complexity 319

Proposition 7.31 Every recursive function is T -computable.

Proof We first show that the basic functions are T -computable. The successor
function s(x) corresponds to the one-lined program: (1) Add 1. The zero function
is computed by the following T++ program.

(1) Rmv 1

(2) RmvP 1.

Now consider the projection function pk
i (x1,x2, . . . ,xk) = xi (for i ≤ k). If

i = 1, then this function is computed by the program (1) GOTO 12 or any
other program that causes the T -machine to do nothing. For i > 1, consider the
following program.

(1) Rmv 1

(2) RmvP 1

(3) Add 1

(4) RmvP i

(5) Rmv 1.

This program moves the contents of Bi to B1. The first two lines set B1 to
zero. Lines (3) and (4) successively increase B1 while decreasing Bi. When Bi

reaches zero, we will have increased B1 one too many times. The final line of the
program corrects this.

We claim that the set of T -computable functions is closed under both com-
position and primitive recursion. We leave the verification of this as Exercise 7.9.
It follows that every primitive recursive function is T -computable.

It remains to be shown that the T -computable functions are closed under
unbounded search. Suppose that the function h(x1, . . . ,xn, y) is T -computable.
We describe a T++ program that computes the least value of y for which
h(x1, . . . ,xn, y) = 0.

(1) ZERO Bn+1

(2) COMPUTE h(B1, . . . ,Bn,Bn+1) STORE IN Bn+2

(3) GOTO 5

(3) GOTO 8

(5) RmvP n+ 2

(6) MOVE Bn+1 TO B1

(7) GOTO 10

(8) Add n+ 1

(9) GOTO 2.

320 Computability and complexity

The command ZERO Bn+1 is an abbreviation for the commands that set Bn+1

to zero. Line (6) moves the contents of Bn+1 to B1. We previously described
programs for each of these operations. Likewise, if h is computable, then we can
replace line (2) with a series of T++ commands (see Exercise 7.8).

We conclude that every recursive function is T -computable.

7.4 Codes
We describe a process for coding and decoding T++ programs as natural
numbers. To each T++ program P we assign a natural number called the code
for P . Given the natural number, we can recover the entire program. Codes
provide an invaluable tool for analyzing the set of T -computable functions.
Using these codes, we shall be able to prove that every T -computable function
is recursive. In light of this fact, the codes also lend insight into the recursive
functions. The codes allow us to show, among other things, that the Ackermann
function is recursive.

Prior to assigning codes to programs, we assign codes to individual
commands. To each command we assign a natural number as follows:

Command Number

Add i 4i

Rmv i 4i − 1

RmvP i 4i − 2

GOTO i 4i − 3

Each command corresponds to exactly one natural number and each natural
number corresponds to exactly one command. In particular, 0 is the only non-
negative integer that does not correspond to some T++ command. Let P be a
T++ program. We may view P as a finite sequence of natural numbers. Suppose
that P corresponds to the sequence (n1,n2, . . . ,nk). That is, ni is the num-
ber corresponding to command (i) of P (for i ≤ k = the length of P). Let
e = 2n13n25n3 · · · pnk

k , where pk denotes the kth prime number. The program P

uniquely determines the number e ∈ N. We refer to e as the code for P .
A given natural number e is the code for some T++ program if and only if e

is divisible by each of the first k primes (for some k) and no other primes. If e is
the code for a program P , then we can recover this program by factoring e. This
follows from the Fundamental Theorem of Arithmetic which states that every

Computability and complexity 321

natural number can be factored into primes in a unique manner. For example,
the number 12 factors as 2231. This number corresponds to the T++ program

(1) RmvP 1

(2) GOTO 1

having sequence (n1,n2) = (2, 1). The number 42 = 2 · 3 · 7 does not correspond
to a program since it is divisible by 7 but not 5.

We assign a program Pe to each e in N ∪ {0}. If e is the code for a T++

program, then let Pe denote this program. For those numbers that do not code
a program, we assign a “default program.” We arbitrarily choose the one-lined
program (1) GOTO 12 to be this program. So if e does not code a program, then,
by default, Pe is (1) GOTO 12. Consider the list of programs P0, P1, P2, P3 ,
Since every program has a code, this list includes every T++ program.

For each k ∈ N, let ϕk
e denote the function P (k)

e (this notation helps distin-
guish the computable function from the program that computes the function).
Consider the list of k-ary functions ϕk

0 , ϕk
1 , ϕk

2 , ϕk
3 , By Proposition 7.31,

this list includes every recursive k-ary function on the non-negative integers.
With the notable exception of the program (1) GOTO 12, every T++ pro-

gram occurs exactly once in the list P0, P1, P2, The same cannot be said
of the list of k-ary T -computable functions. Let f(x̄) be a k-ary T -computable
function. We show that f(x̄) occurs as ϕk

e for infinitely many e.

Notation 2 Let f(x̄) and g(x̄) be partial functions. We write f(x̄) $ g(x̄) if the
two functions have the same domain and f(x̄) = g(x̄) for any x̄ in this domain.

Proposition 7.32 If f(x̄) is a T -computable k-ary function, then f(x̄) $ ϕk
e(x̄)

for infinitely many e.

Proof To any program that computes f(x̄), we can add extraneous commands
to obtain another program that computes f(x̄).

In particular, each recursive k-ary function occurs infinitely many times in
the list ϕk

0 , ϕk
1 , ϕk

2 , ϕk
3 We next show that the recursive functions expend

this list.

Theorem 7.33 Every T -computable function is recursive.

Proof Let f(x̄) be a T -computable k-ary function. Then f(x̄) is ϕk
e(x̄) for some

e ∈ N. Our goal is to show that ϕk
e is recursive.

For convenience, suppose that k = 1. (This assumption does not alter the
essence of the proof.)

To compute ϕ1
e(x), we set B1 equal to x and Bj equal to 0 for j > 1 and then

run the program Pe. The T -machine executes the commands of Pe one-by-one in

322 Computability and complexity

the order determined by the program. We regard each executed command as a
“step” of the computation. Suppose that the T -machine has completed n steps
of the computation for some non-negative integer n.

• Let bin(e,x,n, j) denote the value of bin Bj at this stage of the computa-
tion, and

• let line(e,x,n) denote the line of the program that is to be executed next
by the T -machine according to the program Pe.

We claim that the functions line(e,x,n) and bin(e,x,n, j) are primitive
recursive. To verify this, we define these functions in a primitive recursive
manner. For fixed values of e and x, we define the functions line(e,x,n) and
bin(e,x,n, j) by induction on n. For each value of n, the function bin(e,x,n, j)
is defined for all j.

When n = 0, the T -machine has not yet begun the computation. We have

line(e,x, 0) = 1, and

bin(e,x, 0, j) =
{
x if j = 1
0 otherwise

To determine line(e,x,n+ 1) and bin(e,x,n+ 1, j), we consider the line of the
program previously executed, namely (line(e,x,n)), and examine the current
contents bin(e,x,n, j) of bin Bj . Let Ln = line(e,x,n). Since there are four
types of T++ commands, there are four possibilities for Ln.

If line (Ln) of Pe is the command GOTO 12, then we set line(e,x,n+1) = 12
and bin(e,x,n+1, j) = bin(e,x,n, j). Note that “line (Ln) of Pe is the command
GOTO 12” means that the exponent on the Lth

n prime in the prime factorization
of e is the number 4 · 12 − 3 = 45 that corresponds to the command GOTO 12.
Another way to express this is pf(e,Ln) = 45.

More generally, if pf(e,Ln) = 4i− 3 (corresponding to GOTO i), then

line(e,x,n+ 1) = i and bin(e,x,n+ 1, j) = bin(e,x,n, j) (for all j).

If pf(e,Ln) = 4i (corresponding to Add i), then

line(e,x,n+ 1) = line(e,x,n) + 1, and

bin(e,x,n+ 1, j) =

{
bin(e,x,n, j) + 1 if j = i

bin(e,x,n, j) if j �= i.

Computability and complexity 323

If pf(e,Ln) = 4i− 1 (corresponding to Rmv i), then

line(e,x,n+ 1) = line(e,x,n) + 1, and

bin(e,x,n+ 1, j) =

{
bin(e,x,n, j)

�
− 1 if j = i

bin(e,x,n, j) if j �= i.

Finally, if pf(e,Ln) = 4i− 2 (corresponding to RmvP i), then

bin(e,x,n+ 1, j) =

{
bin(e,x,n, j)

�
− 1 if j = i

bin(e,x,n, j) if j �= i
, and

line(e,x,n+ 1) =

{
line(e,x,n)

�
− 1 if bin(e,x,n, i) �= 0

line(e,x,n) + 1 if bin(e,x,n, i) = 0
.

Thus, we define the functions bin(e,x,n, j) and line(e,x,n). To see that
this definition is primitive recursive, we make three observations.

• By Proposition 7.29, pf(e,Ln) is primitive recursive.

• By Proposition 7.25, the above definitions by cases (including the cases
based on the values of pf(e,Ln)) are primitive recursive.

• The process of inductively defining the two functions simultaneously is
primitive recursive. We leave this as Exercise 7.11.

We conclude that the functions bin(e,x,n, j) and line(e,x,n) are primitive
recursive functions as claimed.

Our goal is to show that the function ϕ1
e(x) is recursive. If the computa-

tion terminates, then ϕ1
e(x) equals the value of bin(e,x,n, 1) for any n beyond

the final step of the computation. Moreover, the computation terminates pre-
cisely when line(e,x,n) refers to a line of the program that does not exist. If
Ln = line(e,x,n) is not a line of the program Pe, then pf(e,Ln) = 0. So the pro-
gram terminates at step n if n is least such that pf(e,Ln) = 0. So we can define
ϕ1

e(x) from bin(e,x,n, j) and line(e,x,n) using unbounded search. Explicitly,
for any e ∈ N:

ϕ1
e(x) $ bin(e,x, y, 1), where y = usnpf(e,Ln);Ln = line(e,x,n).

That is, ϕ1
e(x) is the composition bin(e,x,usnpf(e, line(e,x,n)), 1). Since

this function is defined from primitive recursive functions using unbounded
search, it is a recursive function. Since e was arbitrary, we conclude that every
T -computable function is recursive.

Theorem 7.33 frees us from our restrictive programming language T++.
Whereas this choice of programming language was somewhat arbitrary, the
resulting set of T -computable functions is not arbitrary. If we upgrade the
T -machine so that it recognizes commands for adding and multiplying Bi and

324 Computability and complexity

Bj , then this will not provide any new computable functions. We may assume,
without altering our concept of computability, that our programming lan-
guage contains any number of commands for various recursive operations. This
assumption may alter the concept of complexity. To define complexity classes in
Section 7.7, we choose a particular extension of T++.

The proof of Theorem 7.33 yields more than the statement of the theorem.
Suppose we add a truly new feature to T++. Consider the command Copy(i,Bj)
that sets Bc equal to Bi where c represents the contents of Bj . For example, if
B1 equals 9 and B2 equals 5, then Copy(1,B2) sets B5 equal to 9 (the contents
of B1 are “copied” to B5). This command offers a versatility in writing programs
that is found in virtually every programming language other than our contrived
T++. For example, this command allows us to write a program that, given input
n in bin B1, sets bin Bn equal to 1 and then halts. This simple task cannot be
performed by a T -machine operating on T++ commands (try it).

Corollary 7.34 Suppose that T -machine (version 7.4) is an upgraded version of
the T -machine that recognizes the command Copy(i,Bj) as defined above for
each i and j in N. The functions computable by this machine are precisely the
T -computable functions.

Proof This can be proved in the same manner as Theorem 7.33. The coding
must be changed to accommodate the new commands. The crux of the proof
shows that the functions line(e,x,n) and bin(e,x,n, j) are primitive recursive.
We can define these functions inductively as in the proof of Theorem 7.33 with
the following addition.

If pf(e,Ln) is the code for the command Copy(i,Bj), then

line(e,x,n+ 1) = line(e,x,n) + 1, and

bin(e,x,n+ 1, k) =
{
bin(e,x,n, i) if k = bin(e,x,n, j)
bin(e,x,n, k) otherwise

The Church–Turing thesis implies that the computing power of T++ cannot
be improved upon. The previous corollary corroborates this. We next provide
stronger evidence by showing that any function defined from recursive functions
in an inductive manner (such as the Ackermann function) is itself recursive.
We prove this as a consequence of Kleene’s Recursion theorem at the end of this
section. Prior to proving this, we extract two further results from the proof of
Theorem 7.33.

Corollary 7.35 (Kleene Normal Form) For every recursive function ϕk
e(x̄), there

exist two k + 2-ary primitive recursive functions f and g such that ϕk
e(x̄) $

f(e, x̄,usng(e, x̄,n)).

Computability and complexity 325

Proof Let f(e, x̄,n) = bin(e, x̄,n, 1) and g(e, x̄,n) = pf(e, line(e, x̄,n)).

So not only is every computable function recursive, every computable func-
tion is a recursive function having a certain form. The definition of ϕk

e(x̄) has only
one occurrence of the unbounded search process. Since every recursive function
is T -computable, every recursive function can be defined from the basic func-
tions using primitive recursion, composition, and at most one application of
unbounded search.

Corollary 7.36 The (k + 1)-ary function Uk defined by Uk(e, x̄) $ ϕk
e(x̄) is

recursive.
Proof By the proof of Theorem 7.33, Uk is the recursive function

bin(e, x̄,usnpf(e, line(e, x̄,n)), 1).

To prove Kleene’s Recursion theorem, we make use of the following lemma.

Lemma 7.37 For all natural numbers n and m, there exists a binary primitive
recursive function Sm

n such that

Sn
m(e,x1, . . . ,xm) = z implies ϕn

z (y1, . . . , yn) $ ϕ(m+n)e(x1, . . . ,xm, y1, . . . , yn).

Let us consider the content of this lemma prior to proving it. Suppose for
simplicity that m = n = 1. Let f(x, y) be a recursive binary function. Then
f(x, y) is the function ϕ2

e(x, y) for some e. For each number a, let fa(x) denote
the unary function defined by fa(y) $ f(a, y). Since f(x, y) is recursive, so
is fa(y). So fa(y) is the function ϕ1

z(y) for some z. The lemma states that
there exists a function S1

1 that produces a code z for fa(y) given (e, a) as input.
Moreover, this function is a primitive recursive function. If we replace x with
an m-tuple x̄ and y with an n-tuple ȳ, then we obtain the statement of the
lemma in its full generality. This lemma is commonly referred to as the S–m–n
Theorem.

Proof of Lemma 7.37 We prove this theorem for m = n = 1. The proof is the
same for arbitrary m and n.

Let f(x, y) denote ϕ2
e(x, y). To compute this function, we set bin B1 equal

to x, bin B2 equal to y, and run the T++ program Pe.
We now describe a T++ program Pz that computes the function fa(y) $

f(a, y) for given a.

(1) MOVE B1 to B2

(2) Add 1

. . .

(a+1) Add 1

(a+2) Pe.

326 Computability and complexity

This program moves the contents of B1 to B2, then sets B1 equal to a, and
then runs the program Pe that computes f(a, y). So this program computes the
function fa(x).

Given a and e, the function S1
1(a, e) computes the code z for the above

program. Clearly, this can be done for any given a and e and so S1
1(a, e) is a

total function. We must show that it is primitive recursive.
Let E(a) be the code for the program represented by the first a+ 1 “lines”

of the program Pz. Since MOVE B1 to B2 is itself a program, it is more than one
line. It is a subroutine. Let w be the number of lines in this subroutine and let
E(0) be its code. We define E(a) inductively by E(a + 1) = E(a)p4(a+w+1) (the
exponent 4 corresponds to the command Add 1). This is a primitive recursive
definition of the function E(a).

We now describe how to compute z from a and e. Since e is a code for
a program, e factors as e = pa1

1 p
a2
2 · · · pak

k for some k and nonzero a1 · · · ak. The
code for the above program Pz is the following product:

z = E(a)pâ1
1+wp

â2
2+w · · · pâk

k+w,

where âj = aj + 4w if aj has the form 4i − 3 and âj = aj otherwise (for j =
1, . . . , k). This represents “shifting” the lines of the program Pe. This program
constitutes lines (1 + w) through (k + w) of the program Pz. Because of this
shift, any occurrence of the command GOTO i (having code 4i− 3) in Pe must
be changed to GOTO i+ w in Pz.

The definition of âj by cases is primitive recursive by Proposition 7.25. The
prime factorization of e is primitive recursive by Proposition 7.29. Moreover, we
have shown the function E(a) to be primitive recursive. We conclude that the
function S1

1(e, a) = z, where z is as defined above, is primitive recursive.

Theorem 7.38 (Kleene’s Recursion theorem) Let f(y,x1, . . . ,xk) be a
(k+1)-ary recursive function. For some number e, the k-ary function defined by
f(e,x1, . . . ,xk) is the same function as ϕk

e(x1, . . . ,xk).

Proof Consider the (k + 1)-ary function h defined as

h(y,x1, . . . ,xk) $ f(S1
n(y, y),x1, . . . ,xk),

where S1
n is as in Lemma 7.37. Since it is the composition of recursive functions,

h is recursive. So h $ ϕk+1
d for some d. Let e = S1

n(d, d).
We have f(e,x1, . . . ,xk) $ f(S1

n(d, d),x1, . . . ,xk) (by our choice of e)
$ h(d,x1, . . . ,xk) $ ϕk+1

d (d,x1, . . . ,xk) (by our definition of h and d). By
Lemma 7.37, ϕk+1

d (d,x1, . . . ,xk) $ ϕk
z(x1, . . . ,xk), where z = S1

k(d, d). By our
definition of e, e = z and f(e,x1, . . . ,xk) $ ϕk

e(x1, . . . ,xk) as was required
to show.

Computability and complexity 327

Corollary 7.39 The Ackermann function A(x, y) is recursive.

Proof Let U2 be the ternary function defined by U2(e,x, y) $ ϕ2
e(x, y). This

function was shown to be recursive in Proposition 7.36. Using this function, we
define another ternary function f as follows:

f(y,n,x) =



x+ 1 if n = 0

U2(y,n− 1, 1) if x = 0 and n > 0

U2(y,n− 1,U2(y,n,x− 1)) otherwise.

By Kleene’s Recursion theorem, there exists e ∈ N such that f(e,n,x)$ϕ2
e(n,x).

It follows that

ϕ2
e(n,x) =



x+ 1 if n = 0

ϕ2
e(n− 1, 1) if x = 0 and n > 0

ϕ2
e(n− 1,ϕ2

e(n,x− 1)) otherwise.

Comparing this with the definition of A(,n,x) (Section 7.1.2), we see
that A(n,x) = ϕ2

e(n,x) for all n and x. Since ϕ2
e(n,x) is recursive, so

is A(n,x).

In a similar way, we can show that any given function defined from recursive
functions in an inductive manner is itself recursive. This gives credence to our
claim that every programmable function is recursive. For any specified program-
ming language, we could prove this claim. We have done this for the contrived
language T++. To prove that the set of C++ computable functions is the same
as the set of recursive functions, we would have to delve into the grammar of
C++. The skeptical reader may pursue the details regarding this or any other
programming language, but we do not. We accept our claim as fact and use the
terms computable and recursive interchangeably.

7.5 Semi-decidable decision problems
We further study the subsets of N∪{0}. In Section 7.2, we defined the recursive
subsets of N∪{0}. In the present section we consider the recursively enumerable
sets. The recursive sets are computable in the sense that they have comput-
able characteristic functions. The recursively enumerable sets are computably
generated in the following sense.

Definition 7.40 Let A be a set of non-negative integers. We say that A is
recursively enumerable if there exists a total recursive function f such that
A = {f(0), f(1), f(2), f(3), . . .}.

328 Computability and complexity

So a set is recursively enumerable if it is the range of some total recursive
function. Recall that every subset of (N ∪ {0})k corresponds to a decision prob-
lem. Whereas the recursive subsets correspond to decidable decision problems,
recursively enumerable subsets correspond to semi-decidable decision problems.

Definition 7.41 Let R be a subset of (N ∪ {0})k. The decision problem corres-
ponding to R is semi-decidable if the following k-ary function is computable:

h(x̄) =

{
1 if x̄ ∈ R
undefined otherwise.

Example 7.42 Consider the Validity Problem for First-Order Logic (FOVAL).
Given a first-order sentence ϕ, we must determine whether or not ϕ is valid.
We claim that this problem is semi-decidable. We describe an algorithm that
determines the correct answer given valid ϕ. This algorithm lists each of the
countably many formal proofs and checks them one-by-one. If a formal proof
for ∅ � ϕ is found, then the algorithm stops and outputs “yes, ϕ is valid.”
Otherwise, the algorithm produces no output. Intuitively, this is what is meant
by “semi-decidable.” Whereas this algorithm correctly determines whether a
given sentence is valid, it will not tell us whether a given sentence is not valid.

Formally, a decision problem is a relation on the non-negative integers.
The algorithm from the previous example is stated informally. To prove that
FOVAL is semi-decidable but not decidable, we code FOVAL as a subset of N.
In Section 8.4, we describe a procedure for coding sentences of first-order logic.
That the set of codes for valid sentences is recursively enumerable follows from
the completeness of first-order logic.

Examples of recursively enumerable sets that are not recursive are given
in the next section. The codes from the previous section are used to define
these and other noncomputable subsets of N ∪ {0}. In the present section, we
discuss some of the numerous equivalent ways to define the concept of recursively
enumerable sets.

Proposition 7.43 Let A be a proper subset of the non-negative integers. The
following are equivalent:

(1) A is recursively enumerable

(2) A is the domain of a partial recursive function

(3) the decision problem of determining whether or not a given number x is in
A is semi-decidable.

Computability and complexity 329

Proof Suppose first that A is recursively enumerable. Then A is the range of a
total recursive function f(x).

The binary function g(x, y) = (f(x)
�
− y) + (y

�
− f(x)) is also total recursive.

This function equals 0 if and only if y = f(x). The set A is the domain of the
function ubxg(x, y). Since this function is defined from a recursive function by
unbounded search, ubxg(x, y) is recursive. So (1) implies (2).

Suppose now that (2) holds. Suppose that A is the domain of a recursive
function f(x). By definition, the decision problem corresponding to A is semi-
decidable if and only if the following function is computable:

h(x) =

{
1 if x ∈ A
undefined otherwise.

Since f(x) is recursive, so is the composition c1(f(x)) $ h(x) (where c1 is the
constant function c1(x) = 1). So (2) implies (3).

Finally, suppose that (3) holds. Then h(x) (as defined above) is recursive.
So h(x) $ ϕ1

e(x) for some e. To compute h(x) we run program Pe with input x
in bin B1. Recall the primitive recursive functions bin(e,x,n, 1) and line(e,x,n)
from the proof of Theorem 7.33. If we run program Pe with input x, then the
computation terminates when pf(e, line(e,x,n)) = 0. Let a be any element
of A. Let

g(x,n) =
{
x if pf(e, line(e,x,n)) = 0
a otherwise.

The range of g(x,n) is A. To prove (1) we must find a unary function having
range A. Let

f(x) =

{
g(n,m) if x = 2n3m

a otherwise.

Clearly f(x) is a unary function having the same range as g(x, y). So A is
recursively enumerated by the function f(x) and (1) holds.

The characterization of recursively enumerable sets as the domains
of partial recursive functions yields the following characterization of the
recursive sets.

Proposition 7.44 A set A is recursive if and only if both A and Ā are recursively
enumerable (where Ā is the set of non-negative integers not in A).

330 Computability and complexity

Proof First, we show that recursive implies recursively enumerable. Let g(x)
be any recursive function having 1 in its domain, but not 0. If A is a recurs-
ive set, then the composition g(χA(x)) is a recursive function. This function
has domain A. By the previous proposition, A is recursively enumerable.
Moreover, if A is recursive, then so is Ā, whence both A and Ā are recursively
enumerable.

Conversely, suppose that both A and Ā are recursively enumerable. Then
A is the domain of ϕ1

e(x) and Ā is the domain of ϕ1
d(x) for some e and d. Let

f(x) = usn(pf(e, line(e,x,n)) · pf(d, line(e,x,n))). That is f(x) is the number
of steps it takes for either Pe or Pd to halt on input x. Since each x is either in
A or Ā, the function f(x) is total.

We have χA(x) = 1
�
− pf(e, line(e,x, f(x)). Since this function is recursive,

so is the set A.

We next state without proof a most remarkable characterization of the
recursively enumerable sets.

Definition 7.45 A set A of non-negative integers is said to be Diophantine if there
exists a polynomial p(x, y1, . . . , yn) having integer coefficients such that A =
{x| there exist non-negative integers a1, . . . ,an such that p(x, a1, . . . , an) = 0}.

Theorem 7.46 (Matiyasevich) A set is recursively enumerable if and only if it
is Diophantine.

Prior to its proof, this theorem was known as Davis’ conjecture. Yuri
Matiyasevich proved this theorem in 1970 following the work on this conjec-
ture by Martin Davis, Hilary Putnam, and Julia Robinson. To understand why
this theorem is remarkable, let us consider some examples of Diophantine sets:

• The set of even numbers is Diophantine (let p(x, y) = x− 2y).

• The set of perfect squares is Diophantine (let p(x, y) = x− y2).
• The set of composite numbers (numbers that are not prime) is Diophantine

(let p(x, y1, y2) = x− (y1 + 2)(y2 + 2)).

It is far more difficult to show that the following sets are Diophantine:

• The set {2, 4, 8, 16, 32, . . .} of powers of 2.

• The set of prime numbers.

• The set of palindromes {1221, 343, 11, 82628, 1010101, 8, 747, . . .}.

Computability and complexity 331

There is no obvious polynomial p(x, y1, . . . , yn) that works for any of these three
sets. Prior to Matiyasevich’s proof, the question of whether or not these sets
are Diophantine was an open question. In particular, Alfred Tarski posed the
question of whether or not the powers of 2 form a Diophantine set. Matiyasevich’s
theorem answers this and many other questions in the affirmative. Since the
function f(n) = 2n is easily shown to be primitive recursive, the range of this
function is recursively enumerable and, therefore, Diophantine. Likewise, since
the prime numbers form a primitive recursive set, this set, too, is Diophantine.
A number written in base 10 is a palindrome if it represents the same number
when written backwards. It is not difficult to show that this set is recursive.
By Matiyasevich’s theorem the set of palindromes and countless other sets are
necessarily Diophantine.

Matiyasevich’s theorem equates the number theoretic concept of
Diophantine set with the concept of a computability generated set. In prov-
ing this theorem, Matiyasevich showed that the class of Diophantine sets is far
more extensive than its definition suggests. This theorem also resolved a famous
open problem of mathematics known as Hilbert’s 10th Problem. This is one of
the 23 problems selected by David Hilbert as the most important mathematical
problems at the turn of the twentieth century. The 10th problem is one of the
more succinctly stated of Hilbert’s problems:

Hilbert’s 10th Problem Given a Diophantine equation with any number
of unknown quantities and with rational integral numerical coefficients: to
devise a process according to which it can be determined by a finite number
of operations whether the equation is solvable in rational integers.

There is no loss of generality in replacing the “rational integers” in this problem
with integers. Phrased this way, the problem is to find a method for determining
whether p(x1, . . . ,xn) = 0 has integer solutions where p(x̄) is a given poly-
nomial having integer coefficients. As stated, the problem is not to determine
whether such a process exists, but rather to find such a process. The implied
optimism of this statement underestimates the complexity of the integers and
reflects misconceptions that were commonly held at the time. These misconcep-
tions were dispelled by Gödel’s Incompleteness theorems that are the subject
of our next chapter. The First Incompleteness theorem shows that the integers
are extraordinarily complex in the following sense: the first-order theory of the
natural numbers (in a vocabulary containing both multiplication and addition)
is undecidable.

The subject of computability began with Gödel’s results and the work of
Kleene, Post, Turing, and others that followed. This subject made Hilbert’s 10th
Problem precise by providing a formal definition for the “process” described in

332 Computability and complexity

the problem. It became apparent that Hilbert’s 10th Problem may be unsolvable.
This idea motivated the work of Davis, Putnam, Robinson, and others that
culminated in Matiyasevich’s theorem. Matiyasevich’s theorem resolves Hilbert’s
10th Problem by showing that an algorithmic process as described in the problem
cannot exist. This follows from Matiyasevich’s theorem because there exist well
known recursively enumerable sets that are not computable. These sets are the
topic of the next section. For more on Matiyasevich’s theorem, the reader is
referred to Matiyasevich’s book [31].

7.6 Undecidable decision problems
In this section, we view some sets that lie beyond the brink of computability.

7.6.1 Nonrecursive sets. Let Wi be the domain of the function ϕ1
e(x). By

Proposition 7.43, the list

W0, W1, W2, W3, W4,

includes every recursively enumerable set. Let J = {x |x �∈ Wx}. If this set is
recursively enumerable, then J =We for some e. But then we have e ∈We if and
only if e �∈ We (by the definition of J). This is contradictory. We conclude that
J must be different fromWe for each e and so J is not recursively enumerable. It
follows that the characteristic function of J , although it is a well-defined function,
is not computable.

Now consider the set K = {x |x ∈Wx}.

Proposition 7.47 K is recursively enumerable, but not recursive.

Proof If K is recursive, then so is the complement of K in the non-negative
integers. The complement of K is J . Since, J is not recursive, neither is K.
Moreover, K is recursively enumerable since it is the range of the function
U2(x,x) from Proposition 7.36.

Let H1 be the set of ordered pairs (e,x) such that x ∈ We. That is, (e,x)
is in H1 if and only if x is in the domain of the function ϕ1

e computed by the
program Pe. To determine whether or not a given pair (e,x) is in H1 is to
determine whether or not the program Pe halts given input x. Likewise, we
define Hk as the set of (k + 1)-tuples (e, x̄) such that Pe halts given input x̄.
Let H = {e |(e, 0) ∈ H1}. To determine whether or not e is in H is to determine

Computability and complexity 333

whether or not Pe halts on input 0. This decision problem is known as the Halting
Problem. The problem corresponding to Hk is the Halting Problem on k-tuples.
These problems are undecidable.

Proposition 7.48 H is not recursive.

Proof We first show that H1 is not recursive. Note that K = {x |(x,x) ∈ H1}. If
we could determine whether or not a given pair is in H1, then we could determine
whether or not a given element is in K. Since K is not recursive, neither is H1.

We now show that H is not recursive. Given program Pe and input x, let Pd

be the program obtained by adding as a prefix x copies of the command Add B1

to the program Pe. Running Pd with input 0 has the same outcome as running
Pe with input x. So d ∈ H if and only if (e,x) ∈ H1. Since H1 is not recursive,
neither is H.

We have now demonstrated that J , K, and H are three examples of
nonrecursive sets. We have also demonstrated our primary tool for showing that
a given set is not recursive. To show that K is not recursive, we reduced K to J .
That is, we showed that if K is recursive, then so is J . Similarly, we reduced H
to K (by way of H1).

Definition 7.49 Let A and B be two sets of non-negative integers. We say that
A is recursively reducible to B, denoted A ≤r B, if there exists a recursive unary
function f such that x ∈ A if and only if f(x) ∈ B.

Proposition 7.50 If B is recursive and A ≤r B, then A is also recursive.

Proof If A ≤r B, then x ∈ A if and only if f(x) ∈ B for some recursive
function f . It follows that the characteristic function of A is the composition
χB(f(x)).

Conversely, if A ≤r B and A is not recursive, then B is not recursive. We
exploit this fact to provide many examples of nonrecursive sets. The set J is
not recursive by its definition. Each of the other nonrecursive sets we define can
be reduced to J . Rather than considering each set one-by-one, we prove Rice’s
theorem. This theorem provides a plethora of nonrecursive sets. Rice’s theorem
states that any nontrivial index set is not recursive.

Definition 7.51 A set of non-negative integers A is said to be an index set if the
following holds. If x ∈ A and ϕ1

x $ ϕ1
y, then y ∈ A.

For example, both J and K are index sets (they are defined in terms of the
indices i of the sets Wi). Likewise, the set of all x such that Wx contains the
number 5 is an index set. For a nonexample, consider the set

GOTO 12 = {x : Px is the program (1) GOTO 12 }.

334 Computability and complexity

Recall that, by default, any number such as 42 that does not code a T++ program
is in this set. Let y be the code for the program (1) GOTO 23. Then ϕ1

y, like
ϕ1

42, is the identity function. But whereas 42 ∈ GOTO 12, y �∈ GOTO 12.
So this set is not an index set. Note that this set is primitive recursive and,
therefore, decidable. The following theorem states that this is not the case for
any nontrivial index set.

Theorem 7.52 (Rice) Let A be an index set. If A is neither ∅ nor N∪ {0}, then
A is not recursive.

Proof Let A be a proper subset of N∪{0}. Let c be the code for the program:

(1) Add 1

(2) RmvP 1.

Since this program never halts ϕ1
c(x) is undefined for all x.

Claim If c ∈ A, then K ≤r Ā.

Proof By Proposition 7.47, K is recursively enumerable. It follows that the
following function is recursive:

hK(x) =

{
1 x ∈ K
undefined otherwise.

Since A is not N, there exists e ∈ Ā.
Since hK(x) is recursive, so is the function

g(x, y) =

{
ϕe(y) hK(x) = 1

undefined otherwise.

By Lemma 7.37, there exists a recursive function f(x) such that, for each x,
ϕf(x)(y) $ g(x, y).

Note that if x ∈ K, then ϕf(x)(y) $ ϕe. Otherwise, ϕf(x) $ ϕc. Since A is
an index set and c ∈ A and e �∈ A, we have x ∈ K if and only if f(x) ∈ Ā. So
K ≤r Ā as claimed.

So if c ∈ A, then Ā is not recursive by the claim. If Ā is not recursive, then
neither is A. If c �∈ A, then applying the claim to Ā yields K ≤r A. Either way,
A is not recursive.

Computability and complexity 335

Rice’s theorem provides an uncountable supply of nonrecursive sets. For
example, consider the following:

ID = {x |ϕ1
x is the identity function }

SQUARE = {x |ϕ1
x(y) $ y2}

FIN = {x |Wx is finite}
INF = {x |Wx is infinite}
COF = {x |Wx is co-infinite}
TOT = {x : ϕx is total}
REC = {x :Wx is recursive}.

Since each of these is a nontrivial index set, each is nonrecursive by Rice’s
theorem. In fact, none of these sets is recursively enumerable. Whereas each
of these sets is recursively reducible to K (and, therefore, to J as well), K is
not reducible to any of these sets. In this sense, each of the above sets is more
complicated than K.

The notion of recursive reducibility, as the notation ≤r suggests, imposes
an order on the subsets of N ∪ {0}. Each set is ranked in a hierarchy according
to this order. For example, INF ≤r COF (Exercise 7.25). Intuitively, this
means that the decision problem corresponding to COF is at least as difficult
as the decision problem for INF . If we had some way of determining whether
or not a given number is in COF (which we do not), then we could use this
procedure to determine whether or not a given number is in INF . Since both of
these problems are undecidable, this may seem like hairsplitting. There are two
reasons that we consider the hierarchy of undecidable decision problems. One
reason is that it serves as a precursor to the classification of decidable decision
problems that is the topic of the final two sections of this chapter. Another reason
is that this hierarchy relates concepts from computability to the first-order logic
of the previous chapters.

7.6.2 The arithmetic hierarchy. The definable subsets of N0 are called arith-
metic sets. The arithmetic hierarchy is the classification of these sets according
to the syntax of the formulas that define the set. Recall the definition of a ∆0

formula from Section 7.2.

Definition 7.53 A Var-formula is said to be Π1 if it has the form ∀yϕ(x̄, y) for
some ∆0 formula ϕ(x̄, y).

A Var-formula is said to be
∑

1 if it has the form ∃yϕ(x̄, y) for some ∆0

formula ϕ(x̄, y).

336 Computability and complexity

An arithmetic set is said to be Π1 if there exists a Π1 formula that defines
the set. The

∑
1 sets are defined analogously.

At the bottom of the arithmetic hierarchy we have the primitive recursive
sets. These are precisely the sets definable by ∆0 formulas. The

∑
1 sets

correspond to recursively enumerable sets.

Proposition 7.54 If a set is
∑

1, then it is recursively enumerable.

Proof Suppose that A is
∑

1. Let ∃yϕ(x, y) be a Var-formula that defines A,
where ϕ(x, y) is ∆0. By Proposition 7.28, the set B = {(x, y)|N0 |= ϕ(x, y)} is
primitive recursive. Let f(x) = usy(1

�
−χB(x, y)). Then f is a recursive function

having domain A and A is recursively enumerable.

Corollary 7.55 If a set is both
∑

1 and Π1, then it is recursive.

Proof The negation of a Π1 formula is a
∑

1 formula. The corollary follows from
Propositions 7.44 and 7.54.

The converses of these statements also hold. The
∑

1 sets are precisely the
recursively enumerable sets and the recursive sets are those in both

∑
1 and Π1.

This is proved as Corollary 8.15 of the next chapter.
Likewise, we classify every definable subset of N0.

Definition 7.56 Let n be a natural number.

• A Var-formula is said to be Πn+1 if it has the form ∀yϕ(x̄, y) for some ∆n

formula ϕ(x̄, y).

• A Var-formula is said to be
∑

n+1 if it has the form ∃yϕ(x̄, y) for some ∆n

formula ϕ(x̄, y).

• A Var-formula is said to be ∆n+1 if it both a Πn+1 formula and a
∑

n+1
formula.

An arithmetic set A is said to be Πn,
∑

n, or ∆n according to the formulas that
define A.

Note that every Πn set is
∑

n+1 and every
∑

n set is Πn+1 for each n ∈ N.
Since each first-order formula is equivalent to a formula in prenex normal form,
the arithmetic hierarchy includes every arithmetic set. Moreover, there exist
arithmetic sets at each of the denumerably many levels of the hierarchy. For
each n ∈ N, there exist sets that are

∑
n but not Πn and vice versa. This is the

Hierarchy theorem. We leave the proof of this as Exercises 7.29 and 7.30.
In this section, not only have we demonstrated examples of nonrecursive

sets, but we have also presented a vast hierarchy of such sets. Each of these
sets corresponds to both an undecidable decision problem and a noncomputable
function (namely, its characteristic function). Based on the results of Section 2.5,
we made the initial observation that, since there are uncountably many sets

Computability and complexity 337

and countably many recursive sets, most sets are not recursive. Likewise, most
decision problems are not decidable and most functions are not computable. In
this section, we have shown more than this. We have shown that, even among
the countably many definable subsets of N0, the recursive sets are the exceptions
and not the rule. Just as viewing the heavens puts earth into perspective, viewing
the plethora of nonrecursive sets puts the recursive sets and decidable decision
problems into proper perspective. We now return to earth and consider decidable
decision problems. For those who would like to pursue the study of nonrecursive
sets further, [48] is recommended.

7.7 Decidable decision problems
The previous sections of this chapter have concerned the distinction between
decision problems that are decidable and those that are not. We now focus on the
distinction between those problems that are decidable and those that are really
decidable. By definition, a decision problem is decidable if it can be resolved by
some algorithm. There is nothing in this definition that requires the algorithm
to be practical. A decision problem is said to be feasible if it can be resolved by
an algorithm using a reasonable amount of time and space. This is an intuitive
notion that will not be precisely defined. This notion depends not only on our
perception of “reasonable,” but also on our technological capabilities. Algorithms
that are not feasible today may become feasible with quantum computers or other
potential technologies of the future.

Rather than considering the vague notion of feasibility, we focus on precisely
defined complexity classes. In particular, we consider the class of polynomial-
time decision problems P and the class of nondeterministic polynomial-time
problems NP that contains P. The class P was defined in the Preliminaries
prior to Chapter 1. We repeat the definition.

Definition 7.57 An algorithm is polynomial-time if there exists a k ∈ N such
that, given any input of length n > 2, the algorithm halts in fewer than nk steps.
A decision problem is polynomial-time if it can be decided by a polynomial-time
algorithm. The set of polynomial-time decision problems is denoted P.

If a decision problem is not in P, then it is certainly not feasible. The
converse is not true. If an algorithm halts in fewer than n1,000,000 steps (given
input of length n), then it is polynomial-time but not necessarily feasible. So
the set of polynomial-time algorithms contains the set of feasible algorithms as
a proper subset.

To make the above definition of polynomial-time precise, we must specify
both how the “length” of the input is to be measured and what constitutes
a “step” of an algorithm. The length of the input is the number of digits. For
example, the length of 8427 is 4. The length of the ordered triple (17, 8, 109) is 6.

338 Computability and complexity

More generally, the length of a natural number x is "log(x)#+ 1, where "log(x)#
denotes the greatest integer less than log(x). The length of zero is 1. The length
of a k-tuple of numbers is the sum of each of the k lengths. We assume that
numbers are presented in the usual base 10 notation, in which case log is the
common base 10 logarithm.

To define a “step” of an algorithm, we must first define the notion of
an algorithm. We provide this definition in the second part of this section.
The formal definition of an algorithm yields natural measures of computational
time and space. In addition to the class of polynomial-time decision problems
P, we also define the classes of polynomial-space (PSPACE) and logarithmic
space (L). In the third and final part of this section, we define the notion of a
nondeterministic algorithm and make precise the class NP. We discuss the rela-
tionship between these various complexity classes. We begin with some examples.

7.7.1 Examples. We present several examples of decidable decision problems.
For each problem, we informally describe an algorithm (using either English
prose or pseudo-code) to verify that the problem is decidable. For some problems,
we also provide (again, informally) a nondeterministic algorithm. An algorithm
is a step-by-step procedure. At any stage of the algorithm, the next step is
completely determined. In contrast, a nondeterministic algorithm may have more
than one possible “next step” at a given stage. Essentially, in a nondeterministic
algorithm, we are allowed to guess. One purpose of this subsection is to illustrate
the complexity classes P, NP, and coNP. The “N” in NP and coNP indicates
that these classes are defined in terms of nondeterministic algorithms. Both NP
and coNP contain P as a subset.

Although we have not yet defined a “step” of an algorithm, we can verify
that certain problems are in P. We use the fact that any feasible algorithm is
polynomial-time. So tasks such as multiplying or dividing numbers that are
clearly feasible must be polynomial-time. We assume that if the input has
length n, then it can be read in at most n steps. So, in polynomial-time, we
can repeatedly read the input 1000 times, n times, or 3n5 times, but not 2n

times. We also use the fortunate fact that the composition of polynomials is
again a polynomial. If we write an algorithm that uses a certain polynomial-
time algorithm as a subroutine a polynomial number of times, then the resulting
algorithm, too, is polynomial-time.

For future reference, each decision problem is given a short name. To avoid
ambiguity, this name shall be written in capital letters.

The evens problem (EVENS)
The evens problem corresponds to the set of even natural numbers. Since we
can determine whether or not a given number is even merely by looking at its

Computability and complexity 339

last digit, EVENS is not only decidable, it is feasible. In contrast, consider
the problem PRIMES of determining whether or not a given natural number is
prime.

The primes problem (PRIMES)
The prime problem corresponds to the set of prime numbers. Since this set is
primitive recursive, we know that PRIMES, like the EVENS, is decidable. The
following algorithm, written in pseudo-code, resolves this problem:

Given: natural number n

if n = 1 then output “not prime” and halt

if n = 2 then output “prime” and halt

else for k = 2, . . . ,n−1 do:

divide n by k

if remainder is 0 then output “not prime” and halt

end for

output “prime”

halt

This algorithm outputs “prime” if and only if the input is a prime number.
Given input n, the algorithm checks each k between 1 and n to see if k divides n.
In fact, we only need to check this for k between 1 and

√
n (if n = a · b and a>

√
n,

then b <
√
n). This observation offers a more efficient algorithm. Now, suppose

we actually want to use this algorithm to determine whether or not a given
number n is prime. If n is a three-digit number, then 100 ≤ n ≤ 999. To execute
our algorithm, we must divide n by at most 32 numbers (since 32 >

√
999). We

can easily do this on a computer. But suppose n is 23 digits long. Then n is
between 1022 − 1 and 1023. If n happens to be prime, then it will take at least√

1022 computations for the algorithm to arrive at the output “prime.” If your
computer can do this, then take a prime number 45 digits long. The algorithm
will take 1022 steps. Compared to the length of the input, the algorithm takes
exponentially long. This algorithm is not polynomial-time.

The composites problem (COMP)
A natural number n is composite if n = a · b for natural numbers a and b both
smaller than n. Put another way n is composite if it is neither 1 nor prime. So the
above algorithm for PRIMES can be altered slightly to produce an algorithm

340 Computability and complexity

deciding the decision problem COMP corresponding to the set of composite
numbers. Consider now the following nondeterministic algorithm.

Given: natural number n
if n > 2 then choose i between 1 and n
divide n by i
if remainder is 0 then output “composite” and halt
halt

This algorithm is nondeterministic because of the command “choose i
between 1 and n.” If n is big, then there are many possible values for i. So
there are more than one way to proceed in the next step of the algorithm. If
we are lucky and choose a value of i that divides n, then the algorithm quickly
concludes that n is composite. So this algorithm, when its chooses correctly,
determines whether a number is composite in polynomial-time.

Definition 7.58 We define the class NP of nondeterministic polynomial time
decision problems. Let PROB be an arbitrary decision problem. Given certain
input, PROB produces an output of either “yes” or “no.” Let Y be the set of all
inputs for which PROB produces the output of “yes” and let N be the analogous
set of inputs that produce output “no.”

• If there exists a nondeterministic algorithm which, given input x, can pro-
duce the output “yes” in polynomial-time if and only if x ∈ Y , then PROB
is in NP.

• If there exists a nondeterministic algorithm which, given input x, can pro-
duce the output “no” in polynomial-time if and only if x ∈ N , then PROB
is in coNP.

The nondeterministic algorithm we gave for COMP demonstrates that this
decision problem is in NP. Since a number is not prime if and only if it is 1 or
composite, PRIMES is in coNP. It can also be shown that PRIMES is in
NP. This is not apparent from the above algorithms. To show that PRIMES
is in NP, we must come up with another algorithm. In fact, something much
stronger is true. In 2002, Agrawal, Kayal, and Saxena proved that PRIMES
is in P. In their article “Primes are in P,” they demonstrate an algorithm that
determines whether or not a number n is prime in fewer than l12 steps where l
is the number of digits in n.

The P = NP question asks whether every NP problem, like PRIMES,
is actually in P. This is among the most important unanswered questions of
mathematics.

Computability and complexity 341

Does coNP∩NP = P?

The big questions:

NP P coNP

Does coNP = NP?
Does P = NP?

If P = NP, then coNP = NP. This is because any polynomial-time
algorithm that determines whether an element is in a set A can also be used
to determine whether an element is not in A. That is, if we define the class
coP analogously to coNP, then coP necessarily equals P. This is not true
for nondeterministic algorithms. A nondeterministic algorithm that determines
whether an element is in A may be of no use in determining whether an element
is not in A. We shall say much about P = NP and other important questions
in Sections 7.8, 10.4, and 10.5. We presently present more examples.

The next examples are from graph theory. Given a finite graph, we ask
whether or not the graph has certain properties. We said that every decision
problem corresponds to a relation on the non-negative integers. To view the
following examples in this manner, we code each graph as a sequence of 1s and 2s.
There is a natural way to do this. If G is a graph having vertices {v1, . . . , vk},
then we define a k × k matrix as follows. The entry in row i and column j is 1
if vi and vk share an edge. Otherwise, this entry is 2. The resulting matrix is
called the adjacency matrix of G. To input the graph G into a T -machine, we
input the adjacency matrix as a k2-tuple.

The graph problem (GRAPH)
The graph problem asks whether or not a given finite string of natural numbers is
the adjacency matrix for some graph. We describe a polynomial-time algorithm
for deciding this problem. First, we read through the string of numbers and
check that each entry is either 1 or 2. At the same time, we count the entries to
determine the length n of the sequence. We then determine whether or not n is
a perfect square. We do this by checking whether k2 = n for each k ≤ √

n. Since
n is the length of the input, this can be done in polynomial-time. (In contrast,

342 Computability and complexity

recall the situation for PRIMES above. There, we could not check each k ≤ √
n

in polynomial-time since n was the input having length log(n).) The matrix
represents a graph if and only if it is symmetric and has 2s along the diagonal.
This is because the edge relation in a graph is, by definition, symmetric and
irreflexive. Checking these two properties is clearly a feasible task. The input is
an adjacency matrix for a graph if and only if each of the above conditions is
verified.

Since GRAPH is in P, we may consider decision problems that take finite
graphs as input. By this we mean that the decision problem takes a finite
string of numbers as input and verifies that the input represents a graph before
proceeding.

The connectivity problem (CON)
The connectivity problem asks whether or not a given finite graph is con-
nected. Recall that a graph is connected if, given any two vertices x and y,
there exists a path from x to y. We show that CON is in P. First, we
demonstrate a polynomial-time algorithm for the problem PATH. This decision
problem takes a finite graph and two vertices of the graph as input and
determines whether or not there exists a path between the given vertices.

Given: a graph with n vertices and two particular vertices x and y.
let S1 := {x}, let T1 := {x}, let i := 1
for i ≥ 1

if y ∈ Ti then
output “x is connected to y” and halt

else
let Si+1 = {v : v �∈ Si and v shares an edge with some z ∈ Ti}
let Ti+1 = Ti ∪ Si+1

if Si+1 is empty then
output “no path” and halt

else let i := i+ 1
end for
halt

We leave it to the reader to verify that this algorithm determines whether or
not x is connected to y in polynomial-time. Now consider CON . A graph with
n vertices is in CON if and only if the vertex corresponding to the first column
of the adjacency matrix is connected to each of the other n − 1 vertices. So we
can use the above algorithm n − 1 times to determine whether or not a graph
with n vertices is in CON . It follows that CON , like PATH, is in P.

Computability and complexity 343

The clique problem (CLIQUE)
The clique problem corresponds to the set of all pairs (G, k), where G is a
finite graph and k is a natural number such that G has the k-clique as a
subgraph. This problem is in NP as the following algorithm demonstrates.

Given: a graph G with n vertices and a natural number k ≤ n.
choose a subgraph H of G of size k
if every pair of vertices from H shares an edge
then output “clique present”
halt

This algorithm is clearly nondeterministic. There are many ways to choose
the subgraph H in the first step. Prior to halting, this algorithm checks whether
there exists an edge between every pair of vertices in H. Since |H| ≤ n, there are
at most n(n − 1)/2 < n2 pairs of vertices to consider. So this nondeterministic
algorithm halts in polynomial time and CLIQUE ∈ NP. The problem of
determining whether a given finite graph does not contain a k-clique is coNP.

The max-clique problem (MAXCLIQUE)
The max-clique problem corresponds to the set of all pairs (G, k) where G is a
finite graph and k is a natural number such that the largest clique in G has size k.
This problem is decidable. Given a finite graphG and natural number k, we could
check every subgraph of G of size k or larger. Not only is this algorithm not
feasible, it is not polynomial time. It is unknown whether or not MAXCLIQUE
is in NP.

The satisfiability problem for propositional logic (PSAT) and
related problems
Recall from the first section of the first chapter that formulas of propositional
logic contain the symbols ¬, ∧, ∨, →, and ↔, “(”, and “)” as well as any
finite number of atomic formulas which we denote A1, A2, A3, and so forth.
We now consider decision problems that take as input finite sequences of these
symbols. To conform to our formal definition of a decision problem, we code each
string of symbols as a natural number. For the present informal discussion, it is
unnecessary to delve into the details of the coding.

The Satisfiability Problem (PSAT) corresponds to the set of satisfiable
formulas of propositional logic. This problem is decidable since, given any
formula F of propositional logic, we can compute a truth table to determine

344 Computability and complexity

whether or not F is satisfiable. Recall that the truth table has 2n rows
where n is the number of atomic formulas occurring in F . However, to show
that F is satisfiable, we need only compute one row of the table. This
provides the following nondeterministic polynomial-time algorithm for PSAT :

Given: a formula F of propositional logic
compute one row of the truth table for F
if F has truth value 1 in this row
then output “satisfiable”
halt

So PSAT is in NP. It follows that the decision problem PUNSAT of
determining whether F is unsatisfiable is coNP.

It is not known whether PSAT is in P. In fact, PSAT is in P if and
only if P = NP. This decision problem is NP-complete. We define and discuss
this phenomenon in the next section. We prove that PSAT is NP-complete in
Section 10.4.

7.7.2 Time and space. We said that an algorithm is feasible if it can be
executed in a reasonable amount of time and space. We now specify how time
and space are to be measured.

First, we define the concept of an “algorithm.” That is, we provide this
notion with a definition that suffices for the complexity classes we are to consider.
To do this, we modify the notion of a T++ program. The purpose of T++ was
to serve as a simplified programming language to ease the coding process of
Section 7.4. Because of their simplicity, T++ programs are terribly inefficient.
They cannot even add in polynomial-time. Consider a T++ program that outputs
n + n given input n in bin B1. The command Add 1 must be repeated n times
in such a program. Since the length of n is measured in terms of log(n), this
program takes exponentially long.

We add commands to T++ to obtain the more efficient programming
language T �. The T � programs are executed by an upgraded version of the
T -machine that recognizes the new commands. We view the bins as program
variables that take on non-negative integer values. The main feature of T � is
that it allows us to work with the decimal presentation of a number. Suppose
that B1 equals 8472. The decimal presentation of B1 assigns the values 8, 4, 7,
and 2 to B1, B2, B3, and B4, respectively.

• The T � command Dec converts the value v of B1 into its decimal
presentation and stores the result and in bins B1,B2, . . . ,Bl where l is the
length of v.

Computability and complexity 345

• The T � command IDec(j) is the inverse of the Dec command. This com-
mand regards the values of B1, B2, . . . ,Bj as a decimal presentation of a
number. The command IDec(j) computes the value of this number and sets
B1 equal to the result.

So IDec(5) computes B1 + 10 ∗ B2 + 100 ∗ B3 + 1000 ∗ B4 + 10000 ∗ B5 and
sets B1 equal to the result. Writing a T++ program to do this would not be
pleasant, but it certainly could be done. The T � commands Dec and IDec(5)
are convenient names for T++ subroutines. The same is true for the T � command
Length(i, j).

• Length(i, j) sets Bj equal to the length of Bi.

Finally, T � also includes a variety of ways to move data.

• Copy(i, j) sets Bj equal to Bi.

• Copy(i,Bj) sets Bv equal to Bi where v is the value of Bj .

• Copy(Bi, j) sets Bj equal to Bv where v is the value of Bi.

The commands for T � include the T++ commands (Add i, Rmv i, RmvP i, and
GOTO i) and also, for each i and j in N, the commands:

Dec, IDec(i), Length(i, j), Copy(i, j), Copy(i,Bj), and Copy(Bi, j).

A T � program is a finite enumerated list of T � commands.

Definition 7.59 An algorithm is a T � program.

In previous sections, we tacitly defined an algorithm to be a T++ program.
For computability theory, the two definitions are equivalent. The additional com-
mands increase the efficiency, but not the computing power, of the programs.
By Corollary 7.34, the functions computable by T � programs are precisely the
T -computable functions.

Definition 7.60 Each executed T � command constitutes one step of the compu-
tation of an algorithm.

This definition of “step” makes precise the earlier definition of “polynomial-
time.” We claim that this definition captures our intuitive notion of what can and
cannot be accomplished in polynomial-time. Basic operations such as addition,
multiplication, and division are polynomial-time as they should be. If I were to
add two 7-digit numbers together without electronic (or mechanical) assistance,
then I would rely on an algorithm I learned long ago and add the numbers digit-
by-digit. Using the command Dec, we can mimic this familiar algorithm with a

346 Computability and complexity

T � program. Likewise, we can write T � programs that carry out the polynomial-
time procedures taught in grammar school for subtraction, multiplication, or
long division. It follows that T � programs (unlike T++ programs) can compute
polynomials in polynomial-time. We now turn from time to another measure of
computational complexity.

Definition 7.61 The space of a computation is the number of bins that are used.

To be more precise, we must state what it means to “use” a bin.

Definition 7.62 A computation uses bin Bi if the value of Bi is altered at some
step of the computation.

Definition 7.63 An algorithm is polynomial-space if there exists a k ∈ N such
that, given any input of length n > 1, the algorithm uses fewer than nk bins.

Space complexity also considers sublinear classes. These are classes where
the number of bins used is less than the length of the input. We do not con-
sider such classes in time complexity since we cannot even read the input in
sublinear time.

Definition 7.64 An algorithm is logarithmic-space if, given any input of length
n (for sufficiently large n), the algorithm uses fewer than log n bins.

There exist nonfeasible algorithms that use only a small fixed number of bins
(see Exercise 7.34). To make space a useful measure of complexity, we consider
algorithms that bound the size of the bins. We say that an algorithm is bounded
if each bin has value less than 10 at each step of the computation (provided this
is true of the input).

Definition 7.65 A decision problem is polynomial-space if there exists a bounded
polynomial-space algorithm that decides the problem. The set of all polynomial-
space decision problems is denoted PSPACE.

Definition 7.66 A decision problem is logarithmic-space if there exists a bounded
logarithmic-space algorithm that decides the problem. The set of all logarithmic-
space decision problems is denoted L.

We state without proof two facts regarding the relationship between these
complexity classes. For proofs, we refer the reader to either [36] or [47].

Proposition 7.67 L �= PSPACE.

Proposition 7.68 L ⊂ P ⊂ PSPACE.

By the former proposition, at least one of the two inclusions in the latter
proposition must be a proper inclusion. It is not known, however, which of these
is proper.

Computability and complexity 347

7.7.3 Nondeterministic polynomial-time. An algorithm is a T � program. By
this definition, any algorithm is deterministic in the sense that, once the input is
given, each step of the computation is completely determined. If we repeatedly
execute an algorithm with the same input, then we will repeatedly observe the
same computation and the same outcome. We now provide a formal definition
for the notion of a nondeterministic algorithm.

Let T �
ND be the programming language obtained by adding to T � the com-

mands “GOTO i OR j” for each i and j in N. The T -machine, upon reading this
command, proceeds either to line (i) or line (j) of the program. A T �

ND program
is a finite enumerated list of T �

ND commands.

Definition 7.69 An nondeterministic algorithm is a T �
ND program.

The GOTO i OR j command allows T � programs to nondeterministically
jump to one of any number of lines. For example, the following commands cause
the T -machine to go to line (5), (6), (7), or (8) of the program.

(1) GOTO 2 OR 5

(2) GOTO 3 OR 6

(3) GOTO 7 OR 8

The GOTO i OR j command can also be used to choose an arbitrary value for a
bin. For example, the following commands cause the T -machine to assign to bin
B2 an arbitrary number from 1 to 9.

(1) Zero B2

(2) Add B2

(3) Compute B2
�
− 8 and store result in B3

(4) GOTO 6

(5) GOTO 8

(6) RmvP B3

(7) GOTO 2 OR 8

(8) . . .

The reader may verify that the nondeterministic algorithms described earlier in
this section can be written as T �

ND programs.
The definition of a nondeterministic algorithm completes the definition of

NP (Definition 7.58). The class NL (“nondeterministic log-space”) is defined
analogously. A decision problem is in this class if any correct “yes” output can
be obtained by a nondeterministic algorithm using logarithmic-space. Replacing

348 Computability and complexity

“yes” with “no” yields the class coNL. In contrast to the open question
NP = coNP, we have the following fact.

Theorem 7.70 NL = coNL

For a proof of this, we refer the reader to section 8.6 of [47]. This theorem
represents one of only a few known facts regarding the relationship between these
complexity classes. We also have the following extension of Proposition 7.67.

Proposition 7.71 L ⊂ NL ⊂ P ⊂ NP ⊂ PSPACE.

By Proposition 7.68, at least one of the above inclusions must be proper.
This is essentially all that is known. In particular the possibility that L = NP
remains open.

7.8 NP-completeness
We define the concept of an NP-complete problem and provide examples.
Informally, the NP-complete decision problems are the most difficult problems
in NP. Cook’s theorem states that PSAT is NP-complete. We prove this the-
orem as a consequence of Fagin’s theorem in Section 10.3. In the present section,
we take the NP-completeness of PSAT as fact and use PSAT to find other
examples NP-complete sets.

Definition 7.72 A function f : (N ∪ {0})m → (N ∪ {0})n is a polynomial-time
function if there exists a polynomial-time algorithm that computes f .

Definition 7.73 For A ⊂ (N ∪ {0})m and B ⊂ (N ∪ {0})n, we say that A is
polynomial-time reducible to B, denoted A ≤p B, if there exists a polynomial-
time function f : A→ B so that x ∈ A if and only if f(x) ∈ B.

If A ≤p B, then the decision problem associated with A is at least as hard
as the decision problem for B. The relation ≤p is a refinement of recursively
reducible relation ≤r from Section 7.6. The relation ≤p distinguishes between
recursive sets whereas ≤r does not.

Definition 7.74 A set A is NP-complete if it is in NP and for every set B in
NP, B ≤p A.

Let PROB be an arbitrary decision problem. We refer to PROB as
NP-complete if the corresponding relation on the non-negative integers is
NP-complete. Likewise, we view ≤p as a relation on decision problems. To show
that PROP is NP-complete, it suffices to show that PROP is in NP and
PSAT ≤p PROB. This follows from the NP-completeness of PSAT (which we
are currently taking on faith).

Computability and complexity 349

Proposition 7.75 Let CNF − SAT be the problem of determining whether or
not a given formula of propositional logic in CNF is satisfiable. This problem is
NP-complete.

Proof Clearly, CNF −SAT ≤p PSAT (via the identity function). Since PSAT
is in NP so is CNF − SAT . Recall the CNF algorithm from Section 1.6.
This algorithm produces a CNF formula equivalent to a given formula F . This
algorithm is polynomial-time. So PSAT ≤p CNF − SAT . Since PSAT is
NP-complete, so is CNF − SAT .

Proposition 7.76 CLIQUE is NP-complete.

Proof The algorithm for CLIQUE from Section 7.7.1 demonstrates that
CLIQUE is in NP. To show that CLIQUE is NP-complete, we show that
CNF − SAT ≤p CLIQUE. We sketch a proof of this. Given a formula F in
CNF, we define a graph GF . Let F = {C1, . . . ,Ck} where each Ci is a set of liter-
als. Let {L1, . . . ,Lm} be the set of all literals occurring in some clause of F . We
must define the vertices and edge relation for GF . The set of all pairs (Ci,Lj)
where Lj is in Ci serves as the set of vertices. There is an edge between two
vertices (Ci,Lj) and (Cs,Lt) if and only if Ci �= Cs and Lj �≡ ¬Lt. The pro-
cess of producing the adjacency matrix for GF given F is feasible and therefore
polynomial-time. The following claim proves the proposition.

Claim F is satisfiable if and only if GF has a subgraph isomorphic to the k-clique
(where k is the number of clauses in F).

Proof Suppose F is satisfiable. Then A |= F for some assignment A. Each clause
of F contains a literal to which A assigns the truth value 1. For i = 1, . . . , k,
let f(i) be such that Lf(i) is in Ci and A |= Lf(i). Consider the set of vertices
Vk = {(C1,Lf(1)), (C2,Lf(2)), . . . , (Ck,Lf(k))}. Since A |= Lf(1)∧Lf(2), it cannot
be the case that Lf(1) ≡ ¬Lf(2). By the definition of the edge relation in GF ,
vertices (C1,Lf(1)) and (C2,Lf(2)) share an edge. Likewise, every pair of vertices
in Vk share an edge and so GF has the k-clique as a subgraph. Conversely if some
subset of vertices {(C1,Lf(1)), (C2,Lf(2)), . . . , (Ck,Lf(k))} form a k-clique, then
we can find an assignment A such that A |= Lf(i) for each i.

By verifying that PSAT is NP-complete in theorem 10.20, we conclude
that CNF − SAT , CLIQUE, and many other decision problems are also
NP-complete. This is analogous to the situation in Section 7.6.1 where we
demonstrated that the set J is nonrecursive and then reduced countless other
sets to J in Rice’s theorem. In this way, we were able to demonstrate the non-
recursiveness of many sets by explicitly verifying the nonrecursiveness of one
set. For NP-completeness, we do not have an analogue for Rice’s theorem. To
obtain many examples of NP-complete problems, we must consider the problems

350 Computability and complexity

one-by-one. The proof of NP-completeness usually involves a construction of
some sort. For example, we “constructed” the graph GF to prove Proposi-
tion 7.76. The construction relates two ostensibly different problems and can be
quite convoluted. We describe various known NP-complete problems. Instead of
proofs of NP-completeness, we provide references at the end of the section.

The Sum kkk problem (SUMk)
Recall the SUM10 Problem from the Preliminaries. Given a finite set of integers,
we are asked whether or not there exists a subset that adds up to 10. Similarly,
we define the SUMk for any integer k. It is easy to see that these problems are
in NP: choose an arbitrary subset and check to see if it sums up to k. Moreover,
SUMk is NP-complete. Given an arbitrary formula F , there is a process for
constructing a finite set of integers XF such that XF has a subset that sums to
k if and only if F is satisfiable.

The Hamilton problem
Let G be a finite graph. A Hamilton path for G is a path that includes each vertex
of G once and only once. The Hamilton problem is to determine whether or not a
given graph has a Hamilton path. This problem is closely related to the Traveling
Salesman problem. Given a set of cities, the Traveling Salesman problem is to
find the shortest route that visits each city. There is no known algorithm that
efficiently solves this basic problem. The Traveling Salesman problem is not a
decision problem and we do not refer to it as being NP-complete. The associated
Hamilton problem, however, is NP-complete.

The kkk-Colorability problem (kCOLOR)
A graph is said to be k-colorable if the vertices can be colored with k different
colors in such a way that no two vertices of the same color share an edge. The
k-Colorability problem is to determine whether or not a given finite graph is
k-colorable. For k > 2, this problem is NP-complete. For k = 2, it is not (see
Exercise 7.33).

Minesweeper
Many PCs come equipped with the game of Minesweeper. It is played on a grid
that is, for our purposes, infinite. There are bombs behind some of the squares
of the grid. The player does not know the location of these bombs. The goal

Computability and complexity 351

is to uncover squares that do not have bombs. When a square is uncovered,
the player either sees a bomb and the game is over, or there is a number that
tells the player how many bombs are under squares adjacent to the uncovered
square.

Now suppose we are playing this game and are considering a certain covered
square. We may have previously uncovered nearby squares that give us some
information. There are three possibilities. Either we can deduce from the known
information that there is a bomb under the square we are considering, or we
can conclude that there is no bomb, or there is not enough information. To be a
good Minesweeper player, we want to be able to determine which of these three
situations is confronting us. This problem turns out to be NP-complete.

More precisely, if we were to uncover many squares simultaneously, then we
would see an arrangement of bombs and natural numbers. Let

∑
be the set of all

finite arrangements consisting of bombs and natural numbers, including arrange-
ments that do not follow the rules of Minesweeper. Let MS be the set of those
configurations that can occur in the Minesweeper game. For example, a config-
uration that has a square containing the number 3 surrounded by 5 bombs is
not in MS. The decision problem corresponding to the set MS is NP-complete.
This problem is equivalent to the problem in the previous paragraph. If we can
determine whether a given configuration is consistent with the rules of Mine-
sweeper, then we can play the game effectively. Given a covered square, if we can
determine whether the existence of a bomb (or the lack thereof) is contradictory,
then we can determine which of the three possible scenarios is confronting us.

Since they are each NP-complete, the above problems are equivalent. If
we have an algorithm for solving one of these problems, then we can use that
algorithm to solve all of these problems. The proof of Proposition 7.76 demon-
strates how an algorithm for CLIQUE can be used for PSAT . Likewise, if you
are really good at playing Minesweeper, then you can use your skill to determ-
ine whether a given graph has a Hamilton path, or is 3-colorable, or whether
a given formula of propositional logic is satisfiable. More importantly, if you
have a polynomial-time algorithm for solving the Minesweeper Problem, then
you can win mathematical fame and the Clay Institute fortune by verifying that
P = NP.

Proposition 7.77 Some NP-complete problem is in P if and only if P = NP.

Proposition 7.78 Some NP-complete problem is in coNP if and only if
NP = coNP.

Each of these propositions follow immediately from the definition of
NP-complete.

352 Computability and complexity

Both [36] and [47] are excellent sources for computational complexity. With
the exception of the Minesweeper problem, each of the above decision problems
can be found in each of these two books. In addition, these books describe in
depth the relationship between the complexity classes of the previous section and
many other complexity classes that we have not considered. The Minesweeper
problem is shown to be NP-complete in the article [22].

Exercises
7.1 Let {f1, f2, f3, . . .} be an enumeration of the set of unary primitive recursive

functions. Let Upr be the binary function defined by Upr(x, y) = fy(x).

(a) Show that the set of unary primitive recursive functions can be
enumerated in such a way that Upr(x, y) is computable.

(b) Show that the unary function defined by g(x) = Upr(x,x) + 1 is not
primitive recursive.

(c) Can part (a) and (b) be repeated with the set of recursive functions
in place of the set of primitive recursive functions? Why or why not?

7.2 Show that the function G(x) = xx..
.x︸ ︷︷ ︸

x times

is primitive recursive.

7.3 Show that the function F (x) = x!(x − 1)!(x − 2)! · · · 3!2!1! is primitive
recursive.

7.4 Show that the function E(x,n) = n!(1+x+ x2

2 + x3

3! + · · ·+ xn

n!) is primitive
recursive.

7.5 Show that the function P (x, y) = x!/(x
�
− y)! is primitive recursive.

7.6 Let f(x, y) and g(x) be primitive recursive functions.

(a) Show that the function ha(x, y) =
∑

z<g(y) f(x, z) is primitive
recursive.

(b) Let hb(x) be the least value of y less than g(x) such that f(x, y) = 0.
If no such y exists, then hb(x) = g(x). Show that the function hb(x)
is primitive recursive.

7.7 Let n be a natural number. If we take the definition of “recursive function”
and replace the zero function Z(x) = 0 with the constant function cn(x) =
n, then we obtain the set of n-recursive functions. That is, the set of n-
recursive functions is the smallest set

• containing the basic functions s(x), pk
i (x), and the constant function

cn(x), and

Computability and complexity 353

• closed under composition, primitive recursion, and unbounded search.

For each n ∈ N, let N≥n = {n,n + 1,n + 2, . . .}. Prove that a function on
N≥n is recursive if and only if it is n-recursive.

7.8 Write T++ programs that perform the following tasks on a T -machine:
(a) Swap the contents of B1 and B2.

(b) Set B2 equal to B1 and leave B1 unchanged.

(c) Add B1 and B2 and store the result in B2.

(d) Multiply B1 and B2 and store the result in B2.

7.9 Show that the set of T -computable functions is closed under compositions
and primitive recursion.

7.10 Let f(x) be a function on the non-negative integers.
The history function of f(x), denoted fH(x), is defined inductively as

fH(0) = 1 and fH(n+ 1) = 2f(0)3f(1) · · · pf(n)
n ,

where pi denotes the ith prime.
Suppose that f(x) = g(fH(x)) for some primitive recursive

function g(x).
(a) Show that fH(x) is primitive recursive.

(b) Show that f(x) is primitive recursive.

7.11 Let h1(x̄) and h2(x̄) be k-ary primitive recursive functions. Let g1(x̄, y, z)
and g2(x̄, y, z) be (k+2)-ary primitive recursive functions. Suppose that (k+
1)-ary functions f1(x̄, y) and f2(x̄, y) are defined by simultaneous recursion
as follows.

f1(0, x̄) = h1(x̄),
f2(0, x̄) = h2(x̄),
f1(n+ 1, x̄) = g1(x̄, f1(n, x̄), f2(n, x̄)), and
f2(n+ 1, x̄) = g2(x̄, f1(n, x̄), f2(n, x̄)).

Show that both f1 and f2 are primitive recursive functions. (Hint: Consider
history functions for f1 and f2 as defined in the previous exercise.)

7.12 Give an explicit definition of the Ackermann function in terms of unbounded
search.

7.13 Let f be a k-ary function. The graph of f is the k+1-ary relation consisting
of all (x̄, y) such that f(x̄) = y.
(a) Show that f is a primitive recursive function if and only if the graph

of f is a primitive recursive set.

354 Computability and complexity

(b) Show that f is a recursive function if and only if the graph of f is a
recursively enumerable set.

(c) Show that f is a total recursive function if and only if the graph of f
is a recursive set.

7.14 Let f(x, y) = "x/y# where "x/y# denotes the greatest integer less than x/y.
Let g(x) be a primitive recursive function and let

h(x, y) =

{
f(x, y) y �= 0

g(x) y = 0.

Show that h(x, y) is primitive recursive. (Use the previous exercise and the
fact that a relation is primitive recursive if and only if it is definable by a
∆0 formula.)

7.15 Let f(x), g(x), and h(x) be primitive recursive functions. Let

e(x) =

{
f(x)g(x) if f(x) + g(x) > 0

h(x) if f(x) + g(x) = 0.

Show that e(x) is primitive recursive.

7.16 Let ϕ(x, y) be a ∆0 formula and let f(x) be a primitive recursive function.
Show that the formula ∃y(y < f(x) ∧ ϕ(x, y)) is ∆0, where y < f(x) is an
abbreviation for the Var-formula ∃z(y + z = f(x)).

7.17 Assuming that every primitive recursive set is ∆0, prove the following.
(a) Every recursively enumerable set is

∑
1.

(b) Every recursive set is both
∑

1 and Π1.

7.18 Let A be an infinite set. Prove that A is recursive if and only if it is the
range of an increasing recursive function.

7.19 Show that every infinite recursively enumerable set has an infinite recursive
subset.

7.20 Let A and B be recursively enumerable sets. Show that there exist recurs-
ively enumerable subsets A1 ⊂ A and B1 ⊂ B such that A1 ∩ B1 = ∅ and
A1 ∪B1 = A ∪B.

7.21 Show that the union of two recursively enumerable sets is recursive enu-
merable. Moreover, show that the function f(x, y) defined by Wx ∪Wy =
Wf(x,y) is a recursive function.

7.22 Repeat the previous exercise with intersections instead of unions.

7.23 Show that there exists a partial recursive function that cannot be extended
to a total recursive function.

Computability and complexity 355

7.24 Let A and B be subsets of N ∪ {0}. We say that A and B are recursively
separable if A ⊂ R and B ⊂ R̄ for some recursive subset R of N. Other-
wise, A and B are said to be recursively inseparable. Show that there exist
recursively enumerable A and B that are recursively inseparable.

7.25 Let FIN , INF , COF , TOT , and REC be as defined in Section 7.6.1.
(a) Show that FIN ≤r COF .

(b) Show that INF ≤r COF .

(c) Show that TOT ≤r COF .

(d) Show that COF ≤r REC.

7.26 (a) Show that TOT is Π2.

(b) Show that FIN is
∑

2.

(c) Show that COF is
∑

3.

7.27 Classify the set SQR = {e|ϕ1
e(x) = x2} as either Πn or

∑
n for some n.

7.28 Let Γ be either Πn or
∑

n for some n. We say that U ⊂ N
2 is Γ-complete if

U is Γ and for any set A that is Γ, A ≤r U . Show that REC = {e : We is
recursive } is

∑
3-complete.

7.29 Let Γ be either Πn or
∑

n for some n. We say that U ⊂ N
2 is Γ-universal

if for any set A that is Γ, there exists e such that A = {x|(e,x) ∈ U}.
(a) Show that it U is Γ-universal, then U is Γ-complete (see Exercise 7.28).

(b) Show that if U is
∑

n-universal, then Ū is Πn-universal.

(c) Show that if U is
∑

n-universal, then U is not ∆n.
(Hint: consider the set {x|(x,x) ∈ U}.)

7.30 Refer to the previous exercise.
(a) Show that the set H1 from Section 7.6.1 is

∑
1 universal.

(b) Let f : (N ∪ {0})2 → (N ∪ {0}) be a recursive one-to-one correspond-
ence.

Show that if Un is Πn-universal, then the set

{(e,n)|∃y(e, f(x, y)) ∈ Un}

is
∑

n-universal.

(c) Using the previous exercise, conclude that there exist
∑

n sets and Πn

sets that are not ∆n for each n ∈ N.

7.31 Show that constant functions cannot by computed by a T++ algorithm
in polynomial-time. Which functions can be computed by T++ in
polynomial-time?

356 Computability and complexity

7.32 Prove that every decision problem in NP is decidable.

7.33 Recall the k-Colorability problem from Section 7.8.

(a) Describe a polynomial-time nondeterministic algorithm for the
k-colorability problem for k > 2.

(b) Describe a polynomial-time algorithm for the 2-colorability problem.

7.34 Describe an algorithm that computes f(n) = 2n and uses only k bins for
some k ∈ N.

7.35 For each k ∈ N, let kPSAT correspond to the set of satisfiable formulas of
propositional logic that contain at most k atomic subformulas.
(a) Show that 2PSAT is in P.

(b) Using the fact that PSAT is NP-complete, show that 3PSAT is
NP-complete.

7.36 Let PV AL correspond to the set of valid sentences of propositional logic.
To which complexity classes does this problem belong? Is PV AL complete
for any of these classes? (Use the fact that PSAT is NP-complete.)

7.37 Let ϕ be a sentence in the vocabulary VR of graphs. The ϕ-Graph problem
is to determine whether or not a given finite graph models ϕ. Show that
the ϕ-Graph problem is in P for any first-order sentence ϕ.

8 The incompleteness theorems

In this chapter we prove that the structure N = (N|+, ·, 1) has a first-order
theory that is undecidable. This is a special case of Gödel’s First Incompleteness
theorem. This theorem implies that any theory (not necessarily first-order) that
describes elementary arithmetic on the natural numbers is necessarily undecid-
able. So there is no algorithm to determine whether or not a given sentence is true
in the structure N. As we shall show, the existence of such an algorithm leads to
a contradiction. Gödel’s Second Incompleteness theorem states that any decid-
able theory (not necessarily first-order) that can express elementary arithmetic
cannot prove its own consistency. We shall make this idea precise and discuss
the Second Incompleteness theorem in Section 8.5. Gödel’s First Incompleteness
theorem is proved in Section 8.3.

Although they are purely mathematical results, Gödel’s Incompleteness
theorems have had undeniable philosophical implications. Gödel’s theorems dis-
pelled commonly held misconceptions regarding the nature of mathematics.
A century ago, some of the most prominent mathematicians and logicians viewed
mathematics as a branch of logic instead of the other way around. It was thought
that mathematics could be completely formalized. It was believed that math-
ematical reasoning could, at least in principle, be mechanized. Alfred North
Whitehead and Bertrand Russell envisioned a single system that could be used
to derive and enumerate all mathematical truths. In their three-volume Prin-
cipia Mathematica, Russell and Whitehead rigorously define a system and use it
to derive numerous known statements of mathematics. Gödel’s theorems imply
that any such system is doomed to be incomplete. If the system is consistent
(which cannot be proved within the system by Gödel’s Second theorem), then
there necessarily exist true statements formulated within the system that the
system cannot prove (by Gödel’s First theorem). This explains why the name
“incompleteness” is attributed to these theorems and why the title of Gödel’s
1931 paper translates (from the original German) to “On Formally Undecid-
able Propositions of Principia Mathematica and Related Systems” (translated
versions appear in both [13] and [14]).

Depending on one’s point of view, it may or may not be surprising that
there is no algorithm to determine whether or not a given sentence is true in N.
More surprising is the fact that we can prove that there is no such algorithm.
The proof itself is truly remarkable. Gödel’s proof introduced the notions of

358 The incompleteness theorems

primitive recursive sets and relations discussed in the previous chapter. Gödel’s
proof gave impetus to the subject of computability theory years before the advent
of the computer. Moreover, Gödel deduced from his proof that any decidable
system that can perform arithmetic on the natural numbers cannot prove its own
consistency. This is a gem of mathematical reasoning and is, by any measure,
among the great results of twentieth century mathematics.

8.1 Axioms for first-order number theory
We discuss some consequences of Gödel’s First Incompleteness theorem. We
prove this theorem in Section 8.3. In the present section we accept this theorem
as a fact.

We distinguish two related first-order theories. The theory of arithmetic,
denoted TA is the theory of the structure A = {Z|+, ·, 0, 1}. The theory TN of
the structure N = (N|+, ·, 1) is first-order number theory. We focus on the latter
of these theories. By Gödel’s First Incompleteness theorem, not only TN , but
also related theories (such as TA) are undecidable.

We claim that elementary number theory is contained in TN . Peruse any
book on the subject and you will find that the statements of interest (the
theorems, lemmas, conjectures, and so forth) can be formulated as first-order sen-
tences in the vocabulary VN = {1, +, ·}. For example, the following VN -formulas
represent the concepts of divisibility and prime number:

let div(x, y) be ∃z(x · z = y)
and prime(x) be ∀z(div(z,x) → z = 1 ∨ z = x) ∧ ¬(x = 1).

By definition, N |= div(a, b) if and only if a divides b and N |= prime(a) if and
only if a is prime. We can express that there are infinitely many primes with the
VN -sentence

∀x(prime(x) → ∃y(prime(y) ∧ y > x),
where y > x is the VN -formula ∃z(x + z = y). Less obvious is the fact that we
can express the Fundamental Theorem of Arithmetic as a VN -sentence. There
are also VN -sentences that express the Chinese Remainder theorem, Wilson’s
Theorem, Fermat’s Last theorem, Goldbach’s Conjecture, and Gauss’ Law of
Quadratic Reciprocity.

The reader does not need to be familiar with the all of the theorems of
number theory listed in the previous paragraph. In the next section we show
that for every recursive subset A of N

n (for some n), there exists a VN -formula
ϕA(x1, . . . ,xn) such that ā ∈ A if and only if N |= ϕA(ā). This justifies our
admittedly vague claim that elementary number theory is contained in first-order
number theory.

The incompleteness theorems 359

The reader does need to be familiar with some basic number theory. The
reader should recall the Fundamental Theorem of Arithmetic and the fact that
there are infinitely many primes from the previous chapter (Sections 7.1 and 7.3).
In the present chapter, we shall state and use the Chinese Remainder theorem.
The reader should also be aware that the proof of Fermat’s Last Theorem eluded
mathematicians for hundreds of years before Andrew Wiles proved it in 1996 and
Goldbach’s Conjecture remains unanswered (see Exercise 2.8).

If TN had a decidable axiomatization, then, in principle, we could use
the methods of Chapter 3 to answer every open question of number theory.
By Gödel’s First Incompleteness theorem, this is not the case. Any deduct-
ive system (such as formal proofs or resolution) has inherent limitations. Since
it is undecidable, TN does not have a decidable first-order axiomatization
(see Proposition 5.10). However, we now demonstrate a second-order theory
containing TN that does have a decidable axiomatization.

Let us axiomatize TN . We begin with the following two axioms:

∀x¬(x+ 1 = 1),

∀x∀y(x+ 1 = y + 1 → x = y).

Any model of these two sentences is necessarily infinite. Together they say
that the function defined by (x + 1) is one-to-one but not onto. The following
axioms describe addition:

∀x∀y(x+ y = y + x),

∀x∀y(x+ (y + 1) = (x+ y) + 1).

Multiplication is described in a similar manner:

∀x∀y(x · y = y · x),
∀x(x · 1 = x),

∀x∀y(x · (y + 1) = (x · y) + x).

Each of these axioms is first-order. The final axiom, called the Induc-
tion Axiom, is second-order. Second-order logic is a topic of the next chapter.
Presently, it suffices to say that, in second-order logic, one can quantify over
relations. In the following second-order sentence, S(x) represents an arbitrary
unary relation.

∀1S(S(1) ∧ ∀x(S(x) → S(x+ 1))) → ∀xS(x).

In this sentence, “∀1S” is read “for all unary relations S” In effect,
the Induction Axiom says that any subset of the universe that contains 1 and is
closed under the function x+1 necessarily contains every element in the universe.

360 The incompleteness theorems

These axioms describe N completely and categorically. The first several axioms
inductively define addition and multiplication and the final axiom states that
induction works.

Proposition 8.1 Let M be a VN -structure. If each of the above axioms holds in
M , then M is isomorphic to N.

Proof As a VN -structure, M contains an element that interprets the constant 1.
We inductively construct an isomorphism f : N → M by sending 1 to this
element and (n + 1) to the successor f(n) + 1 of f(n) in M (for each n ∈ N).
If M satisfies the Induction Axiom, then the range of f must be all of the
underlying set of M . It follows that f is an isomorphism.

It follows from this proposition that second-order logic does not have com-
pleteness. That is, we cannot hope to define second-order analogues for first-order
resolution and formal proofs. Any such formal system would provide a system-
atic way to determine whether or not a sentence is a consequence of the above
axioms and, hence, whether or not the sentence is true in N. By Gödel’s First
Incompleteness theorem (which we are presently taking on faith), there is no
such algorithm.

It also follows from Proposition 8.1 that no first-order sentence nor set of
first-order sentences can express the Induction Axiom. First-order theories are
subject to the Löwenheim–Skolem theorems and are incapable of describing an
infinite structure such as N up to isomorphism. Although we cannot say “for all
subsets S . . .” in first-order logic, we can say “for all definable subsets S . . .” For
each VN -formula ϕ(x) in one free variable, let ψϕ be the VN -sentence

(ϕ(1) ∧ ∀x(ϕ(x) → ϕ(x+ 1)) → ∀xϕ(x)).

Let Γind be the set of all such sentences ψϕ. This set of sentences is a first-order
“approximation” of the Induction Axiom.

Definition 8.2 Let ΓN be the set of first-order sentences obtained from the above
axiomatization by replacing the Induction Axiom with the set Γind.

By Gödel’s First Incompleteness theorem, ΓN is incomplete. So these
sentences do not describe the structure N up to elementary equivalence.
However, the set ΓN is a natural fragment of TN to consider. This frag-
ment is often referred to as Peano Arithmetic. We describe the difference
between TN and Peano arithmetic in terms of both VN -structures and VN -
sentences.

LetM be a VN -structure. ThenM interprets the VN -terms 1, 1+1, 1+1+1,
and so forth. Denote the elements of M that interpret these terms as a1, a2, a3,
and so forth. If M |= ΓN , then the function e : N → M defined by e(n) = an

is an embedding. So any model of ΓN contains a substructure that is isomorphic

The incompleteness theorems 361

to N. In this sense, ΓN fully defines multiplication and addition on the natural
numbers. Since ΓN is incomplete, some of its models contain elements beyond
the natural numbers which exhibit behavior not witnessed in N. Whereas N can
be embedded into every model of ΓN , it cannot be elementarily embedded into
every model.

Since it is incomplete, there necessarily exists a V-sentence ϕ in TN that
cannot be derived from ΓN . It should be clear from the previous paragraph that
such a sentence ϕ cannot be atomic. In fact, it cannot be a Σ1 sentence (as
defined in Section 7.6.2).

Proposition 8.3 If ϕ(x1, . . . ,xk) is equivalent to a Σ1 formula, then
ΓN � ϕ(tn1 , . . . , tnk

) if and only if N |= ϕ(n1, . . . ,nk), where, for each n ∈ N,
tn denotes the VN -term 1 + 1 + · · · + 1︸ ︷︷ ︸

n times

.

Proof Since ΓN ⊂ TN , if ΓN � ϕ(tn1 , . . . , tnk
) then N |= ϕ(n1, . . . ,nk).

We must prove the converse of this. Suppose that N models ϕ(n1, . . . ,nk).
By completeness, it suffices to show that every model M of ΓN models
ϕ(tn1 , . . . , tnk

). If this is true for some formula ϕ, then it is also true for any
formula that is equivalent to ϕ. So we may assume that ϕ is in prenex normal
form.

Case 1 ϕ is a ∆0 formula (as defined in Section 7.2).

We proceed by induction on the number of quantifiers in ϕ. Since it is
∆0, each quantifier is bounded. Let M be an arbitrary model of ΓN . If ϕ
is quantifier-free, then M |= ϕ(tn1 , . . . , tnk

) since e : N → M (as defined
above) is an embedding. Now suppose that ϕ has n + 1 quantifiers. Our
induction hypothesis is that the proposition holds for any ∆0 formula having
at most n quantifiers. To ease notation, suppose that ϕ has only one free
variable x. If the first quantifier in ϕ is ∀, then there exists a ∆0 for-
mula ψ(x, y) having n quantifiers such that ϕ is equivalent to the formula
∀y(y < x → ψ(x, y)), where y < x is an abbreviation for the VN -formula
∃z(y + z = x).

If N |= ∀y(y < n→ ψ(n, y)) for some n ∈ N, then
N |= ψ(n,m) for each m < n, in which case
M |= ψ(tn, tm) for each m < n by our induction hypothesis.

It follows from the axioms in ΓN that M |= y < tn if and only if y = tm for
some m < n. It follows that M |= ∀y(y < tn → ψ(tn, y)) as we wanted to show.

Now suppose that the first quantifier in ϕ is ∃. Then ϕ has the form ∃yψ(x, y)
for some ∆0 formula ψ(x, y) having n quantifiers.

362 The incompleteness theorems

If N |= ∃yψ(n, y) for some n ∈ N,
then N |= ψ(n,m) for some m ∈ N, in which case
M |= ψ(tn, tm) by our induction hypothesis, and so M |= ∃yψ(tn, y).

By induction, the proposition holds for any ∆0 formula ϕ.

Case 2 ϕ is a Σ1 formula.

By definition, ϕ is a Σ1 formula if it has the form ∃yψ for some ∆0 formula ψ.
We have already considered such formulas in case 1. In the proof of case 1, we
did not use the fact that the quantifier ∃ is bounded in ∆0 formulas. So our
proof of case 1 also proves case 2.

In the final Section 8.5, we explicitly demonstrate a VN -sentence ϕ0 that
is true in N but cannot be derived from ΓN . If we augment ΓN by adding
ϕ0 as an axiom, then the result is still incomplete by Gödel’s First Incom-
pleteness theorem. There must exist a VN -sentence ϕ1 that is true in N that
cannot be derived from ΓN ∪ {ϕ0}. Likewise, continuing in this manner, there
exists a VN -sentence ϕn+1 that is true in N that cannot be derived from
ΓN ∪ {ϕ0,ϕ1, . . . ,ϕn} ⊂ TN . Any decidable set of sentences in TN is neces-
sarily incomplete. Contrapositively, any axiomatization of TN , such as TN itself,
is necessarily undecidable.

8.2 The expressive power of first-order number theory
The reason that TN = Th(N) is undecidable is that so many subsets of N
are VN -definable. In this section we prove that every recursive subset of N

n is
a definable subset of N. Moreover, these sets are definable by a Σ1 formulas.
The key to this immense expressive power is the fact that we can quantify over
sequences of variable length. We demonstrate this idea with an example.

Example 8.4 Let n be a natural number. Let Sn be the subset of N consisting
of those natural numbers that can be written as the sum of the squares of n
primes. That is, x ∈ Sn if and only if there exists prime numbers q1, . . . , qn (not
necessarily distinct) such that

x = (q1)2 + (q2)2 + · · · + (qn)2.

The set Sn is a definable subset of N. Recall the VN -formula prime(x) from the
previous section. Let ϕn(x) be the VN -formula

∃z1 · · · ∃zn
(

n∧
i=1

prime(zi) ∧ (z1 · z1 + · · · + zn · zn = x)

)
.

Clearly, ϕn(x) defines the set Sn.

The incompleteness theorems 363

Now consider the subset S of N
2 consisting of the pairs of natural numbers

(x,n) such that x ∈ Sn. That is (x,n) is in S if and only if x can be written
as the sum of the squares of n primes. Let us attempt to find a VN -formula
ϕS(x, y) that defines this set. The formula ϕS(x, y) must say that there exist
prime numbers q1, . . . , qy such that x = (q1)2 + (q2)2 + · · ·+ (qy)2. The obstacle
to writing such a formula is the phrase “there exist q1, . . . , qy.” It seems that the
number y of existential quantifiers in this formula is determined by a free-variable
of the formula itself! Later in this section, we show that we can overcome this
obstacle and define the first-order VN -formula ϕS(x, y).

To define the set S from the previous example, the formula ϕS(x, y) must
express that there exists a sequence of length y having certain properties. This is
an example of what we mean by “quantifying over sequences of variable length.”
Using S as an example, we demonstrate a technique for expressing the formula
ϕS(x, y). We then use this technique to show that any recursive subset of N is
definable.

To quantify over sequences of variable length, we encode the sequence. There
are many ways to do this. The method we use encodes a given sequence as a
triple of numbers l, m, and k. Any finite sequence of natural numbers uniquely
defines its “code” [l,m, k]. Conversely, given l, m, and k, we can “decode”
[l,m, k] to recover the original sequence. The coding and decoding process takes
place within first-order number theory. This allows us to replace “there exists
a sequence of length y such that. . .” with an expression of first-order number
theory that begins “∃l∃m∃k”

Given a finite sequence ā of natural numbers, the code for ā describes the
sequence completely and categorically. The number m is the maximum num-
ber in the sequence and the number l represents the length of the sequence. To
fully describe a particular sequence, we must provide more information. The
number k completes the description. This number is more complicated than
the maximum or the length of the sequence. We demonstrate k with some
examples.

First we show how to decode a sequence.

Example 8.5 Suppose we are given the code [3, 5, 590]. This code represents a
unique sequence of natural numbers a1, a2, a3. The first number of the code is
the length of the sequence. The second number in the code tells us that one
of the three numbers in the sequence is 5 and no number in the sequence is
larger than 5. The third number k = 590 is the “key” to decoding the sequence
a1, a2, a3. This key works as follows.

• Let d be the least number bigger than m that is divisible by each number
less than l + 1.

364 The incompleteness theorems

In our example, d = l! = 3 · 2 · 1 = 6.

• The first number of the sequence is the remainder when k is divided by d+1.

In our example, 590 has a remainder of 2 when divided by 6 + 1 = 7
(590 = 84 · 7 + 2). So the first number of the sequence is a1 = 2.

• The second number of the sequence is the remainder when k is divided by
2d+ 1.

In our example, 2d+ 1 = 13. Since 590 = 45 · 13 + 5, the second number is
a2 = 5.

• The third number of the sequence is the remainder when k is divided by
3d+ 1.

In our example, 3d+ 1 = 19. Since 31 · 19 = 589, the remainder a3 = 1. So
[3, 5, 590] is the code for the sequence (2, 5, 1).

Next, we demonstrate how to encode a given sequence.

Example 8.6 Suppose we wish to encode the sequence (2, 8, 1). Clearly l = 3
and m = 8. We must find a key k for the encryption. To find k, we must think
about how [3, 8, k] will be decoded. We want k to be such that

the remainder when k is divided by d+ 1 is 2,
the remainder when k is divided by 2d+ 1 is 8, and
the remainder when k is divided by 3d+ 1 is 1.

Recall from the previous example that d is the least number exceedingm divisible
by each number less than l + 1. Since 3! = 6 and m = 8, d is equal to 12. We
must find k such that the remainders when k is divided by 13, 25, and 37 are
respectively 2, 8, and 1.

There is a systematic way to find such a number k. The first step is to get
a calculator.

Let d1 = d+1, d2 = 2d+1, and d3 = 3d+1. Then k = a1b1d2d3+a2b2d1d3+
a3b3d1d2, where the bis are defined as follows:

Let b1 be least such that b1d2d3 has remainder 1 when divided by d1.
In our example, d2d3 = 25 ·37 = 925. We must find the least multiple of 925

that has a remainder of 1 when divided by d1 = 13. By checking each multiple
925, 2 · 925, . . . , 12 · 925, we find that 7 · 925 = 6475 = 13 · 488 + 1 (the Euclidean
algorithm works for this too). So b1 = 7.

Likewise, let b2 and b3 be least such that b2d1d3 has remainder 1 when
divided by d2 and b3d1d2 has remainder 1 when divided by d3.

The incompleteness theorems 365

In our example, we must find the least multiple of 481 = d1d3 that has
remainder 1 when divided by 25 = d2 and also the least multiple of 325 = d1d2
that has remainder 1 when divided by 37 = d3. Clearly, b2 = 21 and b3 = 23
since and 21 · 481 = 10101 = 404 · 25 + 1. and 23 · 325 = 202 · 37 + 1. (I confess,
I am using a computer algebra system.)

Now that we know b1, b2, and b3, we can compute

k = a1b1d2d3 + a2b2d1d3 + a3b3d1d2

= 2 · 7 · 25 · 37 + 8 · 21 · 13 · 37 + 1 · 23 · 13 · 25 = 101233.

There is more than one value for k that works as a code for the sequence (2, 8, 1).
What really matters is not the number k, but the remainder when k is divided
by d1d2d3. In our example, since 101233 has a remainder of 5033 when divided
by d1d2d3 = 12025, we can take k to be 5033, 101233, or any other number that
has remainder 5033 when divided by 12025.

Whereas there exist more than one code for a sequence, the opposite is not
true. There exists exactly one sequence for each code. The sequence (2, 8, 1) can
be recovered by decoding either of the codes [3, 8, 5033] or [3, 8, 101233].

In the previous examples we have successfully coded sequences of length
three using only three numbers l, m, and k. This is not too impressive. However,
any finite sequence can be coded in a similar manner. Regardless of the length
of the sequence, the code requires only the three numbers l, m, and k. In the
remainder of this section, we first show that the technique described in these
examples works and, secondly, use this technique to write VN -formulas to define
the set S from Example 8.4 and other subsets of N

n.
We view the coding process as a computable function. Given any finite

sequence of natural numbers as input, this function outputs the code [l,m, k].
As was pointed out in Example 8.6, there exists more than one code for each
sequence. To make it a function, we restrict the output to the code that has the
smallest value for k. To verify that our coding technique works, we must show
that this function is defined for all finite sequences of natural numbers and that
it is one-to-one. That is, we must show that every finite sequence has a code and
no two sequences have the same code.

Let us again walk through the coding process. Given a sequence (a1, . . . , al),
let l be the length of the sequence and let m be the largest ai in the sequence.
Let d be the least number exceeding m divisible by each number less than l+ 1.
Clearly, such d is uniquely defined. We must find k such that k has remainder
ai when divided by di = i · d + 1 (for each i = 1, . . . , l). To obtain the smallest
value for k, let k1 be the remainder when k is divided by d1 · d2 · · · · · dn. Output
[l,m, k1] as the code for (a1, . . . , al). The only step of this process that requires
verification is the existence of k. For this we use the Chinese Remainder theorem.

366 The incompleteness theorems

Definition 8.7 A set of natural numbers {d1, d2, . . . , dl} is said to be relatively
prime if, for 1 ≤ i < j ≤ l, there is no number that divides both di and dj other
than 1.

The Chinese Remainder theorem Let {d1, . . . , dl} be a relatively prime set of
natural numbers. Let (a1, . . . , al) be a sequence of natural numbers with ai ≤ di

for i = 1, . . . , l. There exists k ∈ N such that when k is divided by di, the
remainder is ai for each i = 1, . . . , l. Moreover, there exists a unique such k that
is less than d1 · d2 · · · dl.

Proof idea The idea behind the proof was demonstrated in Example 8.6. The
following formula computes k:

k = a1b1D1 + a2b2D2 + · · · + anbnDn,

where Di = (d1 ·d2 · · · dn)/di and bi is least such that biDi has remainder 1 when
divided by di. The existence of bi follows from the fact that the set {d1, . . . , dn} is
relatively prime. Note that di divides Dj for i �= j. So k has the same remainder
as aibiDi when divided by di. By design, biDi has remainder 1. So aibiDi has
remainder ai · 1 when divided by di.

For a detailed proof, the reader is referred to any book on elementary number
theory such as [19].

Proposition 8.8 For any l and d in N, if d is divisible by each number less than
l+1, then {d+1, 2·d+1, . . . , l ·d+1} is a relatively prime set of natural numbers.

Proof Consider di = i · d+ 1 and dj = j · d+ 1 for 1 ≤ i < j ≤ l. Let p divide
both di and dj . We want to show that p = 1.

Claim p divides d.

Proof Since p divides both di and dj , p divides dj − di = j · d− i · d = (j − i)d.
It follows that either p divides d or p divides (j − i). Note that (j − i) < l. By
assumption, (j − i) divides d. This proves the claim.

Since p divides d, it also divides i · d. Since p divides di, it also divides
di − i · d = 1. It follows that p = 1.

Corollary 8.9 Every finite sequence of natural numbers has a code [l,m, k].
Moreover, no two sequences have the same code.

Proof Any finite sequence has a length l and a maximal entry m. The existence
of k follows from the previous proposition, which allows us to apply the Chinese
Remainder theorem.

To see that no two sequences have the same code, consider the decoding
process described in Example 8.5. To decode [l,m, k] we first find d, the least
number greater than m divisible by each number less than l+ 1. Clearly, such a
number exists and is unique. We then divide k by d + 1, 2 · d + 1, . . . , l · d + 1

The incompleteness theorems 367

and take the remainders as the sequence a1, . . . , al. Since these remainders are
uniquely determined, so is the sequence a1, . . . , al.

So the process we have described for coding finite sequences works. We next
show that this process can be translated into the language of first-order number
theory. The following table translates some key phrases:

To say Use the VN -formula Denoted by

x is smaller than y ∃z(x + z = y) x < y

x is not bigger than y x < (y + 1) x ≤ y

x divides y ∃z(x · z = y) div(x, y)

y is divisible by each
number less than x+1

∀z(z ≤ x → div(z, y)) D(x, y)

y divided by x has
remainder z

(z < x)∧
∃q(y = q · x + z) rem(x, y, z)

The VN -formula rem(x, y, z) is the graph of a function. Given any x and y,
there is at most one z that satisfies rem(x, y, z). Let Rem(x, y) represent this
function. That is

z = Rem(x, y) is defined by ∃w(rem(x, y,w) ∧ z = w).

Definition 8.10 Let f : N
k → N be a k-ary function on the natural numbers.

We say that f is definable if there exists a VN -formula ϕf (x̄, y) such that

f(ā) = b if and only if N |= ϕf (ā, b).

We say that f is defined by ϕf (x̄, y).

We now show that we can decode sequences within first-order number
theory.

Proposition 8.11 Let code (l,m, k, i) be the ith element in the sequence obtained
by decoding [l,m, k]. This function is definable.

Proof Let ϕ(x, l,m) be the VN -formula x > m ∧ D(l,x). Let δ(x, l,m) be the
VN -formula

ϕ(x, l,m) ∧ ∀z(z < x→ ¬ϕ(z, l,m))

saying that x is least such that ϕ(x, l,m) holds. That is, δ(x, l,m) says that
x = d. The function code(l,m, k, i) = z is defined by

(i ≤ l) ∧ ∃d(δ(d, l,m) ∧ z = Rem(k, i · d+ 1)).

368 The incompleteness theorems

Next, we define a VN -formula seq(l,m, k) that says [l,m, k] is the code for a
finite sequence. If we randomly choose the numbers, l, m, and k, then [l,m, k] will
probably not be a code. For example, consider [2, 9, 24]. Since l = 2 and m = 9,
d = 10. We have a1 = Rem(24, 10 + 1) = 2 and a2 = Rem(24, 20 + 1) = 3. Since
the maximum entry of the sequence (a1, a2) is 3 and not 9, [2, 9, 12] is not a code
for this sequence. Since [2, 9, 12] is not the code for (2, 3), it is not the code for
any sequence. To say that [l,m, k] is the code for a sequence, we must say that
m is the maximum number in the sequence obtained by decoding [l,m, k].

Proposition 8.12 There exists an VN -formula seq(x, y, z) such that N |=
seq(l,m, k) if and only if [l,m, k] is the code for some sequence.

Proof Let seq(l,m, k) be the formula

∀i(i ≤ l→ code(l,m, k, i) ≤ m) ∧ ∃i(i ≤ l ∧ code(l,m, k, i) = m)).

Example 8.13 We now define the formula ϕS(x, y) from Example 8.4. We want
to say there exist primes q1, . . . , qy such that q21 + q22 + · · · + q2y = x. To do this,
we say there exists the sequence (a1, . . . , ay) defined as the partial sums

a1 = q21 , a2 = q21 + q22 , . . . , ay = q21 + q22 + · · · + q2y

and that x = ay. Let ps(x) be the VN -formula

∃z(prime(z) ∧ z · z = x)

saying that x is a prime number squared and let psd(x, y) be the VN -formula

∃z(x+ z = y ∧ ps(z))

saying that the difference y − x is the square of a prime number.
Let ϕS(x, y) be the VN -formula

∃m∃k∃l(seq(m, k, l) ∧ ps(a1) ∧ ∀i(i < y → psd(ai, ai+1)) ∧ x = ay),

where an is an abbreviation for code(m, k, l,n).

We are now able to show that every recursive subset of N is Σ1. We first
show that every recursive function on the natural numbers is definable by a Σ1

formula.

Proposition 8.14 Let f : N
n → N be an n-ary function on the natural numbers.

If f is recursive, then f is definable by a Σ1 formula.

Proof By Exercise 7.7, it suffices to prove this for the 1-recursive functions
on N. These are the function generated by composition, primitive recursion, and
unbounded search from the constant function c1(x) and the basic functions s(x)

The incompleteness theorems 369

and pn
i (x1, . . . ,xn) from Section 7.1. By the definitions of these functions:

s(x) = y is defined by the VN -formula y = x+ 1,
c1(x) = y is defined by the VN -formula y = 1, and
pn

i (x1,x2, . . . ,xn) = y is defined by the VN -formula y = xi.

Now suppose that f is a composition of functions:

f(x1, . . . ,xn) = h(g1(x1, . . . ,xn), . . . , gm(x1, . . . ,xn)).

Suppose further that the m-ary function h is defined by a Σ1 formula
ϕh(x1, . . . ,xm, y) and, for each i = 1, . . .m, the n-ary functions gi is defined
by a Σ1 formula ϕgi(x1, . . . ,xn, y). Then f is defined by the Σ1 formula

∃z1 · · · ∃zm
(

m∧
i=1

ϕgi(x1, . . . ,xn, zi) ∧ ϕh(z1, . . . , zm, y)

)
.

Next suppose that f is obtained from functions h and g by primitive recursion:

f(1,x2, . . . ,xn) = g(x2, . . . ,xn),

f(x1 + 1,x2, . . . ,xn) = h(x1, . . . ,xn, f(x1, . . . ,xn)).

We must show that if both g and h are definable by Σ1 formulas, then so is f .
For this, we must quantify over sequences of variable length.

Suppose that g and h are defined by ϕg(x2, . . . ,xn, y) and ϕh(x1, . . . ,xn,
xn+1, y). To find ϕf (x1, . . . ,xn, y), consider how to compute f(z,x2, . . . ,xn) for
given z and tuple x2, . . . ,xn. We first compute

f(1,x2, . . . ,xn) = g(x2, . . . ,xn) = a1.

We then use a1 to compute

f(2,x2, . . . ,xn) = h(1,x2, . . . ,xn, a1) = a2.

We then use a2 to compute

f(3,x2, . . . ,xn) = h(2,x2, . . . ,xn, a2) = a3,

and so forth. We generate the sequence a1, a2, . . . where each ai equals
f(i,x2, . . . ,xn). The formula ϕf (z,x2, . . . ,xn, y) says that there exists such a
sequence of length z and y is the last number in the sequence. That is, y = az.
More explicitly, let ϕf (z,x2, . . . ,xn, y) be the formula

∃l∃m∃k(seq(l,m, k) ∧ z = l ∧ ϕg(x2, . . . ,xn, a1)∧
∀i(i < y → ϕh(i,x2, . . . ,xn, ai, ai+1)) ∧ y = az),

370 The incompleteness theorems

where each ai abbreviates the VN -term code(l,m, k, i). Then ϕf (x̄, y) defines the
function f . Moreover, if both ϕg and ϕh are Σ1 formulas, then, by its definition,
so is ϕf . We have shown that the proposition holds for every primitive recursive
function f .

To show that every recursive function is definable by a Σ1 formula, we must
consider unbounded search. Suppose that f(x1, . . . ,xn) is defined as the least
natural number y such that both h(x1, . . . ,xn, y) = 0 and h(x1, . . . ,xn, z) is
defined for all z < y. Then f is defined by the Vf -formula

∀z(z < y → ∃w(ϕh(x1, . . . ,xn, z,w) ∧ ¬(w = 0))) ∧ ϕh(x1, . . . ,xn, y, 0).

Since the universal quantifier is bounded, this formula is Σ1 provided that
ϕh is.

Corollary 8.15 For any A ⊂ N
k, A is recursive if and only if it is both Σ1 and Π1.

Proof If A is both Σ1 and Π1, then it is recursive by Corollary 7.55. Conversely,
suppose that A is recursive. Then the function f(x̄) = s(χA(x̄)) is recursive where
χA is the characteristic function of A. By the previous proposition, f is defined
by a Σ1 formula ϕf (x̄, y). Since f(ā) = 2 if and only if ā ∈ A, the Σ1 formula
ϕf (x̄, (1+1)) defines the set A. Moreover, the compliment of A is defined by the
Σ1 formula ϕf (x̄, 1). So A is Π1 as well as Σ1.

Corollary 8.16 If M |= ΓN and N ⊂ M , then any recursive subset of N
n is a

definable subset of M .

Proof This follows immediately from Proposition 8.3 and Corollary 8.15.

8.3 Gödel’s First Incompleteness theorem
We now prove that TN is undecidable. We show that there is no algorithm that
determines whether or not a given VN -sentence is true in TN . Suppose that
ALG is an algorithm that takes VN -sentences as input and outputs either “yes”
or “no.” Further suppose that an output of “yes” means that TN � ϕ. We show
that the converse cannot be true. We show that there necessarily exists a VN -
sentence β in TN for which ALG does not give the correct affirmative output
of “yes.”

The key to our proof is on the first page of this book (page xiii) where we
find the following English sentence:

Let n be the smallest natural number that cannot be defined in fewer than
20 words.

The incompleteness theorems 371

To make this sentence more precise, let us only consider the words defined in the
Oxford English Dictionary. Let A denote the sentence:

There exists a least natural number that cannot be defined using at most
twenty words from the Oxford English Dictionary.

The “A” is for “antinomy.” Since there are only finitely many words in the Oxford
English Dictionary (contained in a mere finitely many volumes), there are only
finitely many possible sentences having at most 20 words. It follows that the
negation of A cannot be true. This negation entails that every number can be
defined in 20 words or less. On the other hand, A cannot be true. If A were true,
then it would contradict itself since it contains fewer than 20 words.

So, in English, we can write sentences such as A so that neither A nor the
negation of A is true. What prevents us from writing such sentences in first-order
logic? Of course, a VN -sentence cannot refer to the Oxford English Dictionary.
Let us attempt to modify the sentence A to obtain a sentence of first-order
logic. Instead of “words” let us count the number of symbols occuring in the
VN -sentence. The symbols include variables, the fixed symbols of first-order
logic, and the set VN . The length of a VN -formula is the number of symbols in
the formula. For example, ∃x(y + y = x) has length 9 (counting parentheses).
Consider now the sentence:

The number n is definable by a VN -formula ϕ(x) having length at most l.

We view this sentence as a formula, call it A′(n, l), having free variables n and l.
When we say that “n is definable by ϕ(x)” we mean that

N |= ϕ(a) if and only if a = n.

We now prove that A′(n, l) cannot be expressed in first-order logic.

Proposition 8.17 There does not exist a VN -formula ψ(x, y) such that:

N |= ψ(n, l) if and only if

n is definable by a VN -formula having length at most l.

Proof This follows from the elementary fact that TN is complete and consistent
(by Theorem 2.86). Given any VN -sentence ϕ, either ϕ or ¬ϕ is in TN . If there
exists a formula ψ(x, y) as described in the proposition, then we can write a
VN -sentence ΨA that is neither true nor false in N. We now describe this
sentence.

If ψ(x, y) is a VN -formula, then so is ¬ψ(x, y)∧ ∀z(¬ψ(z, y) → ∃w(x+w =
z)). Let θ(x, y) denote this formula. This formula says that x is the least number
not definable by a VN -formula having length at most y.

372 The incompleteness theorems

Let l be the length of θ(x, y). Then θ(x, (1 + 1)) has length l+m · 4, where
m is the number of occurences of the variable y in θ(x, y). Of course, m ≤ l. So
the length of θ(x, (1+1)) is at most 5l. In general, for any VN -term t, the length
of θ(x, (t)) is at most (h+2)l where h is the length of t (the “+ 2” is for the two
parentheses around t).

Let tn be the VN -term 1 + 1 + 1 + · · · + 1︸ ︷︷ ︸
n times

. This term has length 2n − 1.

Therefore, the term (tn) · (tn) representing n2 has length 2(2n− 1)+5 = 4n+3.
Let sn (the “square” of n) denote this VN -term. It follows that the formula
θ(x, (sn)) has length at most (4n + 5)l. Let N be such that N2 > (4N + 5)l.
That is, let N be any integer greater than 2l+

√
5l + 4l2. Let ΨA be the sentence

∃xθ(x, sN).

Claim N does not model the sentence ¬ΨA.

Proof If N |= ¬ΨA, then N |= ∀x¬θ(x, sN). By the definition of θ, this
means that there is no least number x such that ¬ψ(x, sN) holds. By induc-
tion, ψ(x, sN) holds for every non-negative integer x. This means that every
non-negative integer is definable by a formula having length at most N2. This
is impossible since, up to equivalence, there are only finitely many VN -formulas
of length less than N2. We must include the phrase “up to equivalence” because
there are infinitely many variables we may use. However, our choice of variables
does not matter. Every VN -formula having length at most N2 is equivalent to a
formula that uses only the following symbols:

x1,x2, . . . ,xN2 ,∧,∨,¬,→,↔, (,),∃,∀, =, 0, 1, ·, and + .

Since this is a finite list of symbols, only finitely many formulas of length N2

comprise these symbols.

Claim N does not model the sentence ΨA.

Proof The sentence ΨA asserts the existence of a least number x not definable
by a formula of length less than N2. But θ(x, sN) is a formula of length at most
(4N + 5)l < N2 that defines x. So ΨA is contradictory.

Since TN is consistent, each of the two claims hold. Since TN is complete
the proposition holds.

It may seem that our discussion regarding the sentence A has not accom-
plished much. We have established that this sentence is an antinomy and as such
cannot be expressed as a VN -sentence. Thus, we have provided no information
beyond that contained in the first paragraph of this book. However, we are now
prepared to prove the Gödel’s First Incompleteness theorem.

The incompleteness theorems 373

Theorem 8.18 TN is undecidable.

Proof Let ALG be an algorithm that halts in a finite number of steps and
outputs either “yes” or “no” given any VN -sentence as input. Suppose that, for
any VN -sentence ϕ, if ALG outputs “yes,” then TN � ϕ. We demonstrate a
VN -sentence β in TN for which ALG produces the incorrect output of “no.”

Let n be an non-negative integer. We say that n is ALG-definable by a
VN -formula ϕ(x) if ALG outputs “yes” when given the sentence

∀x(ϕ(x) ↔ x = tn)

as input (where tn is the VN -term representing n). Let R be the set of all
(n, l) ∈ N

2 such that n is ALG-definable by a formula ϕ(x) having length at
most l.

Claim R is recursive.

Proof We show that the characteristic function χR(x, y) is computable and
appeal to the Church–Turing thesis. To compute χR(n, l), given n and l, first
list every VN -formula in one free variable having length at most l. If we only
include formulas having variables among x,x1, x2, . . . ,xl, then this list is finite.
For each formula ϕ(x) in the list, run the algorithm ALG with the sentence
∀x(ϕ(x) ↔ x = tn) as input. If the algorithm halts with output “yes” for some
ϕ(x) in our list, then χR(n, l) = 1. Otherwise, if “no” is the output for each ϕ(x)
in the list, χR(n, l) = 0.

We have described an algorithm that computes χR(x, y). We conclude that
this function is recursive.

By Corollary 8.15, R is a definable subset of N. Let ψALG(x, y) be a
VN -formula that defines R. We now define a VN -sentence ΨALG in a manner
analogous to the definition of ΨA in the proof of Proposition 8.17. Let θALG(x, y)
be the formula

¬ψALG(x, y) ∧ ∀z(¬ψALG(z, y) → ∃w(x+ w = z))

saying that x is the least number not ALG-definable by a VN -formula having
length at most y. Let N be greater than 2l+

√
5l + 4l2, where l is the length of

θALG(x, y). Then N2 is greater than the length of θALG(x, sN), where sN is the
VN -term representing N2 as (tN) · (tN).

Let ΨALG be the sentence ∃xθALG(x, sN). Since only finitely many numbers
are ALG-definable by some VN -formula having length at most N2,

TN � ΨALG.

So N |= θALG(a, sN) for some a ∈ N. Since it asserts that x is the least number
such that ψALG(x, sN) does not hold, the formula θALG(x, sN) uniquely defines

374 The incompleteness theorems

a. So

TN � ∀x(θALG(x, sN) ↔ x = ta).

Let β be the sentence ∀x(θALG(x, sN) ↔ x = ta). Suppose we execute ALG
with input β. If the output is “yes,” then a is ALG-definable by the formula
θALG(x, sN) (by the definition of “ALG-definable”). Since the length of this
formula is less than N2 and a is not ALG-definable by such a formula, we
conclude that the output must be “no.”

Thus we have demonstrated a formula β ∈ TN for which ALG returns
the output “no.” Since ALG is an arbitrary algorithm, we conclude that TN is
undecidable.

We make two comments regarding the above proof. First, note that this
proof relies on the Church–Turing thesis. This is convenient, but by no means
necessary. Since ALG is an arbitrary algorithm, it would be quite tedious to
prove directly that R(x, y) is recursive. In the next two sections, we prove that
TN is undecidable by an alternative proof that avoids the Church–Turing thesis.
In fact, our “alternative proof” follows the original proof given by Kurt Gödel.
The above proof is due to George Boolos [5].

Secondly, note that the proof of Theorem 8.18 proves more than the
statement of Theorem 8.18.

Theorem 8.19 (Gödel’s First Incompleteness theorem) If T is a decidable
theory containing ΓN , then T is incomplete.
Proof Repeat the proof of Theorem 8.18 using Corollary 8.16 where
needed.

The proof of Theorem 8.18 also extends to certain theories that do not
contain ΓN (for example, see Exercise 8.11).

8.4 Gödel codes
In this section, we set the stage for the proof of Gödel’s Second Incompleteness
theorem. To each V-formula ϕ, we assign a natural number called the Gödel
code of ϕ. We let [ϕ] denote this natural number. Gödel codes for formulas are
analogous to the codes of T++ programs defined in Section 7.4 and are defined
in a similar manner.

We assign the odd natural numbers to symbols as follows:

() ¬ ∧ ∨ → ↔ = ∃ ∀ + · 0 1 x1 x2 . . .
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 . . .

Any finite string of symbols corresponds to a finite sequence of odd numbers.
Suppose that s is the string of symbols corresponding to the numbers a1, . . . , ak.

The incompleteness theorems 375

We assign to this string the number [s] = 2a1 ·3a2 ·5a3 · · · · ·pak

k where pk denotes
the (k)th prime number. This is the Gödel code for s.

Given a natural number n, there are many decision problems we may
consider.

• Is n the Gödel code for a symbol?

• Is n the Gödel code for a variable?

• Is n the Gödel code for a VN -term?

• Is n the Gödel code for a VN -formula?

• Is n the Gödel code for a VN -sentence in Skolem normal form?

We can decide the answers to these and other decision problems by factoring n.
If n is odd, then it is the code for some symbol. The number n codes a string
of symbols if and only if n is divisible by each of the first k prime numbers (for
some k) and is divisible by no other prime numbers. Such n must be even since
it is divisible by the first prime p1 = 2. If n codes a sequence a1, . . . , ak, then we
can recover this sequence from the prime factorization of n. Since the factoriz-
ation process is recursive, each of the above decision problems is decidable. By
Corollary 8.15, the sets corresponding to these problems are definable subsets
of N.

So there exist VN -formulas var(x), term(x), and form(x) that define the set
of Gödel codes for variables, terms, and formulas. That is, N |= form(n) if and
only if n = [ϕ] for some VN -formula ϕ. Moreover, we claim that these formulas
are ∆0 (see Exercise 8.7). Likewise, there exist ∆0 VN -formulas corresponding
to rules of derivation from Section 3.1.

Example 8.20 Consider the (,)-Introduction rule from Table 3.1. This rule states
that if Γ � ϕ, then Γ � (ϕ). We define a V-formula ϕPI(x, y) such that

N |= ϕPI(a, b) if and only if a = [ϕ] and b = [(ϕ)]

for some VN -formula ϕ. Let ϕ0(x, y) be the VN -formula that says there exists
m such that x = 2a13a2 · · · pam

m and y = 21 · 3a1 · · · pam−1
m pam

m+1p
3
m+2 for some

a1, . . . , am in N. Then

N |= ϕ0(a, b) if and only if a = [s] and b = [(s)]

for some string of symbols s. Let ϕPI(x, y) be the formula form(x) ∧ ϕ0(x, y).
By Exercise 8.7 form(x) is a ∆0 formula. It follows that ϕPI(x, y) is also ∆0.

Example 8.21 Consider the ∧-Introduction rule. We demonstrate a formula
ϕ∧I(x, y, z) so that

N |= ϕ∧I(a, b, c) if and only if a = [ϕ], b = [ψ], and c = [(ϕ) ∧ (ψ)]

376 The incompleteness theorems

for some VN -formulas ϕ, ψ, and θ. Let ϕ1(a, b, c) be the VN -formula expressing
that, for some m and n,

a = 2a13a2 · · · pam
m , b = 2b13b2 · · · pbn

n , and

c = 2a13a2 · · · pam
m p7m+1p

b1
m+2 · · · pbn

n+m+1.

This formula says that c is the Gödel code for the string of symbols formed by
putting a ∧ (having code 7) between the symbols coded by a and those coded
by b. When using ∧-Introduction, we must be careful to include parentheses
where needed. Let ϕ∧I(x, y, z) be the VN formula

∃u∃v(ϕPI(x,u) ∧ ϕPI(y, v) ∧ ϕ0(u, v, z)).

We claim that this formula, although it is not ∆0, is equivalent to a ∆0 formula.
By the definition of ϕPI(x, y), there is a primitive recursive function f(x) such
that ϕPI(x, y) implies y < f(x). So ϕ∧I(x, y, z) is equivalent to the ∆0 formula

∃u∃v((u < f(x)) ∧ (v < f(y)) ∧ ϕPI(x,u) ∧ ϕPI(y, v) ∧ ϕ0(u, v, z)),

where, as usual, x < y abbreviates the VN -formula ∃z(x+ z = y).

In a similar manner, many of the rules for derivations from Chapter 3 can
be expressed with ∆0 formulas. Let Generic rule be any rule from Table 3.1 other
than ∨-Elimination and →-Introduction. There is a ∆0 formula ϕrule(x1,x2, y)
such that N |= ϕrule(a1, a2, b) if and only if both

• a1 = [ϕ1],a2 = [ϕ2], and b = [ψ] for some VN -formulas ϕ1,ϕ2, and ψ, and

• the Generic rule states that if Γ � ϕ1 and Γ � ϕ2, then Γ � ψ.

This applies not only to rules in Table 3.1, but also to the rules of Tables 3.2
and 3.3 as well as DeMorgan’s rules, the Contradiction rule, the Cut rule, Modus
Ponens, ∧-Distributivity, and so forth.

Since VN can express rules for derivations, VN can express formal proofs.
There are two rules from Table 3.1 that we have not considered. Since it contains
Γ ∪ {ϕ} � ψ in its premise, →-Introduction does not have the same format as
our Generic rule. The formula representing →-Introduction is more complicated
than the formulas for the other rules. Rather than dealing with this rule, we
simply ignore it. For the same reason, we ignore ∨-Elimination. These rules are
redundant. By Exercise 1.16, the rules mentioned in the previous paragraph form
a complete set of rules for first-order logic.

So we have a complete set of rules of derivation for first-order logic and each
rule is represented by a ∆0 formula. Since there are only finitely many rules in
this set, there exists a VN -formula Der(x, y, z) that says x, y, and z each code
formulas and the formula coded by z can be derived from the formulas coded

The incompleteness theorems 377

by x and y by one of the rules in our set. This formula is the disjunction of the
formulas corresponding to each of the rules. We have

N |= Der(a, b, c) if and only if

• a, b, and c are the Gödel codes for VN -formulas ϕ, ψ, and θ, and

• θ follows from ϕ and ψ by ∧-Introduction or ∨-Distributivity or
∀-Introduction. . . and so forth.

Since it is a disjunction of ∆0 formulas, Der(x, y, z) is also a ∆0 formula.
For the remainder of this section, we exploit this fact and show that, for certain
VN -theories T , there exists a VN -formula PrT (x) that says “x is the Gödel code
of a formula that can be formally derived from T .”

Definition 8.22 A set of VN -sentences Γ is recursive if the set of Gödel codes
CΓ = {[ϕ]|ϕ ∈ Γ} is a recursive subset of N. Likewise, Γ is said to be primitive
recursive if CΓ is.

So a theory is recursive if and only if it is decidable. The set ΓN from
Section 8.1 is clearly recursive. In fact, ΓN is primitive recursive.

Proposition 8.23 For any recursive set of VN -sentences T , there exists a prim-
itive recursive set of VN -sentences T0 such that T � ϕ if and only if T0 � ϕ for
any VN -formula ϕ.

Proof The proof is known as Craig’s trick.
Let DT = {[ϕ]|T � ϕ}. If T is recursive, then DT is recursively enumer-

able. Let f(x) be a recursive function having DT as its range. Then the set of
consequences of T can be enumerated as ϕ1, ϕ2, ϕ3, . . ., where, for each n ∈ N,
f(n) = [ϕn].

Let T0 = {(ϕn) ∧ (ϕn) ∧ . . . ∧ (ϕn︸ ︷︷ ︸)
n times

|n ∈ N}.

This is Craig’s trick. Clearly, T � ϕ if and only if T0 � ϕ. Moreover, we can
determine whether or not a sentence ϕ is in T0 in a primitive recursive manner:
first count the number m of conjunctions in ϕ, and then compute f(1), . . .,
f(m+ 1). The formula ϕ is in T0 if and only if it is the conjunction of a formula
having Gödel code f(i) for some i = 1, . . . ,m + 1. (Exercise 8.15 offers a more
explicit proof.)

We now define the formula PrT (x) for any recursive V-theory T .

Proposition 8.24 For any recursive set of VN -sentences T , there exists a
VN -formula PrT (x) such that N |= PrT ([ϕ]) if and only if T � ϕ.

378 The incompleteness theorems

Proof By the previous proposition, it suffices to prove this for primitive recurs-
ive T . Let ψT (x) be a ∆0 formula such that N |= ψT ([ϕ]) if and only if ϕ ∈ T .
We define a subset R of N

2 inductively as follows:

(x, 1) ∈ R if and only if N |= ψT (x),
(x,n+ 1) ∈ R if and only if there exist y and z
such that (y,n) ∈ R, (z,n) ∈ R, and N |= Der(y, z,x).

The set R is primitive recursive by its definition. By Exercise 8.6 (which can
be extracted from our proof of Proposition 8.14), there exists a ∆0 VN -formula
DrT (x,n) that defines this set. So N |= DrT ([ϕ],n) if and only if ϕ is a sentence
that can be derived from T in at most n steps. Let PrT (x) be the formula
∃nDrT (x,n).

Now suppose that T is a recursive set of VN sentences that contains ΓN as a
subset. In this case, we claim that T � ϕ if and only if T � PrT (tϕ), where tϕ is a
VN -term such that N |= tϕ = [ϕ]. Essentially, this follows from the fact that ΓN

is strong enough to express the coding process described earlier in this section.
In particular, we use Proposition 8.3 to show that T � ϕ implies T � PrT (tϕ)
in the following proposition. The converse is left as Exercise 8.17.

Notation 1 As in the proof of Proposition 8.17, we let tn denote the VN -term
1 + 1 + 1 + · · · + 1︸ ︷︷ ︸

n times

for each n ∈ N. For any VN -formula ϕ, we let tϕ denote the

VN -term tn where n is the Gödel code [ϕ] of ϕ.

Proposition 8.25 Let T be a recursive set of VN -sentences such that ΓN ⊂ T .
For any VN -sentence ϕ, if T � ϕ, then T � PrT (tϕ).

Proof Suppose that T � ϕ. Then N |= PrT ([ϕ]) by Proposition 8.24. By the
definition of PrT (x), N |= DrT ([ϕ],n) for some n ∈ N. It follows that N |=
DrT (tϕ, tn). Since DrT (x, y) is ∆0, we have T � DrT (tϕ, tn) by Proposition 8.3.
Finally, T � PrT (tϕ) by ∃-Introduction.

Although T � ϕ implies T � PrT (tϕ), it is NOT ALWAYS TRUE that

(†) T � ϕ→ PrT (tϕ).

This is the crux of incompleteness. Just because something is true does not mean
that we can prove it is so. As we shall show in the next section, there necessarily
exists a sentence γ such that the sentence γ → PrT (tγ) cannot be derived from
T . By the definition of PrT in Proposition 8.24, γ → PrT (tγ) is a consequence
of T . So γ → PrT (tγ), like the sentence β from the previous section, is a true
sentence that cannot be derived from T . Thus, the failure of (†) reasserts Gödel’s
First Incompleteness theorem. Moreover, this failure has implications regarding

The incompleteness theorems 379

the nature of provability from which we deduce Gödel’s Second Incompleteness
theorem.

Although it is not true in general, (†) does hold in certain cases. In
particular, it holds whenever ϕ has the form PrT (tψ) for some VN -sentence ψ.

Lemma 8.26 Let T be a recursive set of VN -sentences such that ΓN ⊂ T . Let
ϕ be any VN -sentence and let ρ be the sentence PrT (tϕ). Then T � PrT (tϕ) →
PrT (tρ).

The proof of Lemma 8.26 is tedious and we omit it. We make some remarks
regarding this proof at the end of this section.

Lemma 8.27 Let T be a recursive set of VN -sentences such that ΓN ⊂ T . If
N |= Der(a, b, c), then T � (PrT (ta) ∧ PrT (tb)) → PrT (tc).

Proof Since N |= Der(a, b, c), a, b, and c are the Gödel codes for some
V-formulas ϕ, ψ, and θ. Moreover, θ follows from ϕ and ψ by one of our rules of
derivation. We see that

N |= (PrT (ta) ∧ PrT (tb)) → PrT (tc).

The sentence (PrT (ta) ∧ PrT (tb)) → PrT (tc) is a ∀2 sentence in disguise,
and so we cannot directly apply Proposition 8.3.

Instead, consider the formula

DrT (ta,x) ∧DrT (tb, y) → DrT (tc,x+ y + 1).

If we can derive this formula from T , then we can obtain the desired result by
∃-Distribution. We must show that

M |= DrT (ta,x) ∧DrT (tb, y) → DrT (tc,x+ y + 1).

for each model M of T . This is certainly true if M happens to be N. However,
M may contain “infinite” elements (in the sense of Exercise 4.10). Moreover,
since M may not be elementarily equivalent to N, these infinite elements may
behave differently than the natural numbers. By compactness, M |= DrT (ζ, η)
for infinite ζ and η in some model M of T . We must show that, even for these
strange infinite numbers, if M |= DrT (ta, ζ) and M |= DrT (tb, η), then M |=
DrT (tc, ζ + η + 1).

To see that this is the case, let us unravel the formula DrT (ta,x). In the
proof of Proposition 8.24, this formula was defined by primitive recursion from
the formulas ψT (x) andDer(x, y, z). Recall that, in N, the formula ψT (x) defines
the set of Gödel codes for sentences in T . In M , this formula may hold for an
element ζ which is infinite and therefore is not the Gödel code for any sentence.

Even so, the formula DrT (ta,x) asserts that there exists a sequence
a1, . . . , ax so that ax = ta and, for each k = 1, . . . ,x, either ψT (ak) or

380 The incompleteness theorems

Der(ai, aj , ak) for some i and j less than k. Since this formula is Σ1 (in fact, it
is ∆0), this assertion is true in any model of T by Proposition 8.3.

Since N |= Der(a, b, c), we have T � Der(ta, tb, tc) by Proposition 8.3.
From this and the definition of DrT in the previous paragraph it follows that
for any M |= T , if M |= DrT (ta, ζ) and M |= DrT (tb, η), then M |=
DrT (tc, ζ + η + 1).

Corollary 8.28 Let T be a recursive set of VN -sentences such that ΓN ⊂ T . Let
a = [ϕ], b = [ψ], and c = [(ϕ) ∧ (ψ)] for some VN -sentences ϕ and ψ. Then

T � (PrT (ta) ∧ PrT (tb)) → PrT (tc).

Corollary 8.29 Let T be a recursive set of VN -sentences such that ΓN ⊂ T . Let
a = [ϕ], b = [ψ], and c = [(ϕ) → (ψ)] for some VN -sentences ϕ and ψ. Then
T � (PrT (ta) ∧ PrT (tc)) → PrT (tb).

The proof of Lemma 8.26 is considerably more difficult than the proof of
Lemma 8.27. To prove Lemma 8.26, we must unravel the sentence PrT (tρ). By
its definition N |= PrT (tρ) ↔ PrT ([PrT ([ϕ])]). So,

N |= PrT (tρ) if and only if T � PrT ([ϕ]).

From this observation, we see that

N |= PrT (tϕ) → PrT (tρ).

But, to prove Lemma 8.26, we must show that this is true for all modelsM of T .
We must show that if M |= DrT (tϕ, η) for some η, then M |= DrT (tρ, ζ) for
some ζ. To see that this is the case, note that, given a formal derivation of ϕ
from T , one can construct, in a primitive recursive manner, a formal derivation
of PrT (tϕ) from T . It is the proof of this intuitive fact that is quite tedious.

Typically, I have provided references where proofs have been omitted. In the
case of Lemma 8.26, I know of no such reference. Even Gödel’s original paper
omits such intuitive but tedious details. Rather than a reference, I recommend to
the reader Exercise 8.19. (That is, do it yourself reader!) Whereas a formal proof
of Lemma 8.26 makes for horrible prose, it makes a good exercise for understand-
ing the subtle concepts of the present section in preparation for the next section.

8.5 Gödel’s Second Incompleteness theorem
Let T be a recursive VN -theory that contains ΓN . In the previous section, we
showed that there exists a VN -formula PrT (x) such that T � PrT (tϕ) if and
only if T � ϕ. This holds for any VN -sentence ϕ. Suppose now that ϕ is a

The incompleteness theorems 381

contradiction. For definiteness, let ϕ be the sentence ¬(1 = 1). The Gödel code
for this sentence is

25 · 31 · 527 · 715 · 1127 · 133 =

97805776756277266140466823153062702475001841306686401367187500000.

For our sanity, let c denote this number. In this section, we consider the sentence
¬PrT (tc). Gödel’s Second Incompleteness theorem states that this sentence
cannot be derived from T .

For any theory T , T � ¬(1 = 1) if and only if T is inconsistent. Since
we are assuming that T is a theory, it is not the case that T � ¬(1 = 1). By
Proposition 8.24, N |= ¬PrT (tc). And so, ¬PrT (tc) is a true sentence that
cannot be derived from T . In this sense, Gödel’s Second Incompleteness is a
special case of the First Incompleteness theorem. The Second Incompleteness
theorem says more than the First Incompleteness theorem since it asserts that
the sentence ¬PrT (tc) in particular cannot be derived from T .

To prove Gödel’s Second Incompleteness theorem, we use the following Fixed
Point lemma (often referred to as the Diagonalization lemma). The key to this
lemma and its proof is a certain VN -formula D(x, y) that we now define. For
any formula ϕ, let δϕ denote the formula ∃x(x = tϕ ∧ ϕ). If ϕ happens to
have x as its only free variable, then δϕ is equivalent to the sentence ϕ(tϕ)
asserting that ϕ holds of its own Gödel number. Given the Gödel number for
ϕ, we can compute the Gödel number for δϕ in a primitive recursive manner.
By Exercise 8.6, the relation between the Gödel number of ϕ and that of δϕ is
definable by a ∆0-formula. Let D(x, y) be a ∆0 formula that says x = [ϕ] and
y = [δϕ] for some VN -formula ϕ.

Lemma 8.30 (Fixed Point lemma) Let T be a recursive set of VN -sentences
such that ΓN ⊂ T . Let ϕ(x) be a VN -formula having one free variable. There
exists a VN -sentence ψ such that T � ψ ↔ ϕ(tψ).

Proof Let ψ be the sentence δθ where θ(x) is the formula ∃y(D(x, y) ∧ ϕ(y)).
That is, ψ is the formula ∃x(x = tθ ∧ θ(x)).
We see that ψ ≡ θ(tθ) ≡ ∃y(D(tθ, y) ∧ ϕ(y)).
By Completeness, we have (*) T � ψ ↔ ∃y(D(tθ, y) ∧ ϕ(y)).
Since D(x, y) is ∆0 and N |= D(tθ, tψ), we have T � D(tθ, tψ).
The primitive recursive function that takes [ϕ] to [δϕ] is one-to-one.
It follows that, for any model M of T ,
M |= ∀y(D(tθ, y) ↔ y = tψ), and so T � ∀y(D(tθ, y) ↔ y = tψ).
Substituting this into (*) yields:
T � ψ ↔ ∃y(y = tψ ∧ ϕ(y)), and so T � ψ ↔ ϕ(tψ) as we wanted
to show.

382 The incompleteness theorems

Corollary 8.31 Let T be a decidable VN -theory containing ΓN . There exists a
VN -sentence γ such that T � γ ↔ ¬PrT (tγ).

Proof Apply the Fixed Point lemma to the formula ¬PrT (x).

Proposition 8.32 If T and γ are as in the previous corollary, then TN � ¬PrT (tγ)
and T �� γ.
Proof The sentence γ asserts that it is not provable from T . If T � γ, then
T � ¬PrT (tγ). By Proposition 8.25, if T � γ, then T � PrT (γ). Since T is
consistent, it must be the case that T �� γ. Since γ cannot be derived from T ,
¬PrT (tγ) ∈ TN by Proposition 8.24.

The previous proposition provides an alternative proof for Gödel’s First
Incompleteness theorem. For any recursive subset T of TN , the sentence γ that
assert “I am not provable from T” must be both true and not provable from T .
This is the proof Gödel originally gave for the First Incompleteness theorem. The
Second Incompleteness theorem is deduced by showing that γ and ¬PrT (tc) are
T -equivalent.

Theorem 8.33 (Gödel’s Second Incompleteness theorem) If T is a decidable
VN -theory that contains ΓN , then T �� ¬PrT (tc).

Proof Let γ be as in Corollary 8.31. We show that γ and ¬PrT (tc) are
T -equivalent.

Since ¬(1 = 1) is contradictory, T � ¬(1 = 1) → γ.
Let b = [¬(1 = 1) → γ]. By Proposition 8.25, T � PrT (tb).
Corollary 8.29 states that T � (PrT (tc) ∧ PrT (tb)) → PrT (tγ).
Since T � PrT (tb), we have T � PrT (tc) → PrT (tγ).
By contraposition, T � ¬PrT (tγ) → ¬PrT (tc).
This establishes T � γ → ¬PrT (tc) by the definition of γ.

We now derive the converse from T .

Let θ be the sentence ¬γ ↔ PrT (tγ). Let p = [PrT (tγ)].
Since ¬γ can be derived from θ and PrT (tγ):
T � (PrT (tθ) ∧ PrT (tp)) → PrT (t¬γ) by Lemma 8.27.
Now since T � θ, we have T � PrT (tθ) by Proposition 8.25.
We also have, by Proposition 8.26, T � PrT (tγ) → PrT (tp).
By the previous three lines, T � PrT (tγ) → PrT (t¬γ)
Since ¬(1 = 1) can be derived from γ and ¬γ:
T � (PrT (tγ) ∧ PrT (t¬γ)) → PrT (tc) by Lemma 8.27.
Since we have shown T � PrT (tγ) → PrT (t¬γ) it follows that
T � PrT (tγ) → PrT (tc) and so T � ¬PrT (tc) → ¬PrT (tγ).
Finally, by the definition of γ, we have T � ¬PrT (tc) → γ.

The incompleteness theorems 383

We have successfully shown that T � ¬PrT (tγ) ↔ γ. Gödel’s Second
Incompleteness theorem then follows from Proposition 8.32.

The sentence ¬PrT (tc) is commonly denoted Con(T). This notation reflects
the fact that N |= Con(T) if and only if T is consistent. Now, suppose that we
have a recursive set of V-sentences Γ and we want to determine whether or
not T = Γ ∪ ΓN is consistent. Attempting to derive Con(T) from T would be
an extremely naive approach. The reason is that, if T happens to be incon-
sistent, then any VN -sentence can be derived from T . So if we are successful
in deriving Con(T) from T , then it is possible that T is inconsistent. By the
Second Incompleteness theorem, it is not only possible, but necessary that T be
inconsistent:

T � Con(T) if and only if T is inconsistent.

Whereas Con(T) defines consistency semantically in N, it means precisely the
opposite from the syntactic perspective of T .

8.6 Goodstein sequences
In this section, we describe a true statement regarding the natural numbers that
can be formulated as a V-sentence but cannot be derived from ΓN . Gödel’s First
Incompleteness theorem guarantees the existence of such sentences, but does not
provide an explicit example. Inexplicit examples are provided by the sentences γ
from the previous section and β from the proof of Theorem 8.18. Since they are
VN -sentences in TN , both γ and β are statements regarding the natural numbers.
However, we do not know what these sentences express. The Fixed Point lemma
implies the existence of γ such that ΓN � γ ↔ ¬PrΓN

(tγ). This is all we know
about of the sentence γ. Likewise, we know that the V-sentence β exists, but we
do not know what it says about the natural numbers.

We consider sequences of non-negative integers known as Goodstein
sequences. Given any natural number n, there is a unique Goodstein sequence
that begins with n as its first term. Let us denote this sequence sn. The best
way to describe these sequences is to provide an example. Suppose n = 14. Let
a1, a2, a3, . . . denote the terms of the sequence s14. Then a1 = 14.

To find a2, first express the number 14 totally in base 2. That is, write 14 as
a sum of powers of 2: 14 = 23 + 22 + 2. Moreover, write the exponents as sums
of powers of two. Repeat this until every number occuring in the expression is a
power of 2. In this case, write 14 as 2(2+1) + 22 + 2. To find a2, change each 2 in
this expression to a 3 and then subtract 1:

a2 = (3(3+1) + 33 + 3) − 1 = (81 + 9 + 3) − 1 = 93 − 1 = 92.

384 The incompleteness theorems

To find a3, first express the number a2 totally in base 3: 92 = 3(3+1)+33+2.
The number 2 (which is not a power of 3) represents the sum 30 +30. In general,
when writing a number totally in base n, we allow numbers less than n as
coefficients.

Now change each 3 to a 4 and subtract 1:

a3 = (4(4+1) + 44 + 2) − 1 = (1024 + 256 + 2) − 1 = 1282 − 1 = 1281,

and so forth. To find am, first express am−1 totally in base m, then change
each m to m+ 1, and then subtract 1 from the result. This rule generates each
Goodstein sequence. If am equals 0 for some m, then the Goodstein sequence
terminates.

Continuing with the sequence s14, we have

a4 = (5(5+1) + 55 + 1) − 1 = (15625 + 3125 + 1) − 1 = 18751 − 1 = 18750,
a5 = (6(6+1) + 66) − 1 = (279936 + 46656) − 1 = 326592 − 1 = 326591.
Now 326591 = 5 · 6(6) + 5 · 65 + 5 · 64 + 5 · 63 + 5 · 62 + 5 · 6 + 5.
So a6 = (5 · 7(7) + 5 · 75 + 5 · 74 + 5 · 73 + 5 · 72 + 5 · 7 + 5) − 1 = 4215754.

So the sequence s14 begins 14, 92, 1281, 18750, 326591, 4215754, Clearly,
the next few terms of this sequence get larger and larger. In this respect, there
is nothing special about the number 14. The sequence sn gets quite large for
most choices of n. This is not true for n = 1, 2, or 3 but it is true for n = 4 (try
it). For some values of n, sn grows very rapidly. For example, let n = 18. Then,
written in base 2, 18 = 25 + 2. Written totally in base 2, we have

a1 = 18 = 2(22+1) + 2, and so

a2 = (3(33+1) + 3) − 1 = 328 + 2 = 22876792454963.

Computing a Goodstein sequence without a computer would be unpleas-
ant. Even with a computer, this computation may not be feasible. Each step
of the computation consists of two parts: we must increase the base and sub-
tract 1. Whereas the first part may increase our number greatly, the second part
decreases the result slightly.

Although they may appear cumbersome, Goodstein sequences possess the
following charming property.

Theorem 8.34 (Goodstein) Every Goodstein sequence converges to zero.

Proof Let sn = (a1, a2, a3, . . .) be an arbitrary Goodstein sequence.
We define a sequence b1, b2, b3, . . . of ordinals as follows. For each m ∈ N,

let bm be the ordinal obtained by replacing each occurrence of (m + 1) with ω

The incompleteness theorems 385

in the total base (m+ 1) representation of am. For example, if sn is s14, then:

a1 = 2(2+1) + 22 + 2 implies b1 = ω(ω+1) + ωω + ω
a2 = 3(3+1) + 33 + 2 implies b2 = ω(ω+1) + ωω + 2
a3 = 4(4+1) + 44 + 1 implies b3 = ω(ω+1) + ωω + 1
a4 = 5(5+1) + 55 implies b4 = ω(ω+1) + ωω.

Note that the sequence of bis is decreasing. Continuing, we see that

b5 = 5 · ω(ω) + 5 · ω5 + 5 · ω4 + 5 · ω3 + 5 · ω2 + 5 · ω + 5,

b6 = 5 · ω(ω) + 5 · ω5 + 5 · ω4 + 5 · ω3 + 5 · ω2 + 5 · ω + 4, and so forth.

Increasing the base in the sequence of ais has no effect on the sequence of bis.
Because we subtract 1 at each stage, bi+1 is necessarily smaller than bi. This
observation proves the theorem.

For any Goodstein sequence a1, a2, a3 · · · , the corresponding sequence of
ordinals b1 > b2 > b3 · · · is decreasing. By Exercise 4.22, this latter sequence
must be finite. This is easily proved by induction on the ordinals. We conclude
that the sequence a1, a2, a3, . . . must be finite. This only happens if am = 0 for
some m.

Although each sequence eventually reaches zero, it may take a very long time
for this to happen. For example, we know that the mth term of the sequence
s18 is zero for some m. Since each step the sequence decreases by at most 1, the
number m must be at least 22876792454963 (since this is the value of a2 for this
sequence).

Note that the statement of Goodstein’s theorem can be formulated as a
VN -sentence. Using the techniques of Section 8.2 we can define a VN -formula
Good(l,m, k) that holds if and only if [l,m, k] codes the initial l nonzero terms
of a Goodstein sequence. We can express that every Goodstein sequence is finite
by saying that every such initial segment is contained in an initial segment having
1 as its final term. Clearly am = 1 if and only if am+1 = 0 and the sequence
terminates. (So the fact that 0 is not in our vocabulary is not a problem.) Let
ΦGood denote this sentence. In 1982, Kirby and Paris proved the following.

Theorem 8.35 ΓN �� ΦGood.

Clearly, our proof of Goodstein’s theorem, since it refers to the infinite ordinal
ω, cannot be carried out in ΓN . Kirby and Paris’s theorem shows that no formal
proof in ΓN can prove this theorem. Kirby and Paris show that Goodstein’s
theorem is equivalent to an induction axiom that allows us to prove the con-
sistency of ΓN . In this way, Theorem 8.35 can be deduced from Gödel’s Second
Incompleteness theorem. We refer the reader to [23] for the details of this proof.

386 The incompleteness theorems

Exercises
8.1. Explain why Gödel’s Incompleteness theorems do not contradict the

Completeness theorem (also proved by Kurt Gödel).

8.2. Encode the following finite sequences as a triple [l,m, k] using the method
described in Section 8.2: (a) (1, 1, 1); (b) (3, 3, 3, 3, 3); (c) (1, 2, 3).

8.3. What finite sequence is coded by the triple [4, 5, 373777]?

8.4. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, . . . (each number in the sequence
is the sum of the previous two.) A number is called a Fibonacci number if
it is one of the numbers in this sequence. Write a VN -formula φ(x) such
that N |= φ(a) if and only if a is a Fibonacci number.

8.5. (a) Express the formula 1 + 2 + · · · + x = x(x+1)
2 as a VN -formula ϕ(x).

(b) Show that ΓN � ∀xϕ(x) where ΓN is the set of axioms from
Section 8.1.

8.6. Prove that a definable subset D of N is definable by a ∆0 VN -formula if
and only if D is primitive recursive.

8.7. Show that the following sets of natural numbers are primitive recursive by
describing a ∆0 formula that defines the set:
(a) T = {n|n is the Gödel code for a VN -term }
(b) F = {n|n is the Gödel code for a VN -formula }
(c) S = {n|n is the Gödel code for a VN -sentence }.

8.8. Let T be recursive VN -theory containing ΓN . Show that the set {n|N |=
PrT (n)} is not primitive recursive.

8.9. Show that the decision problems corresponding to each of the four sets
defined in the previous two problems are in NP. If P �= NP, then which
these problems are in P?

8.10. Consider the structure R = {R|+, ·, 0, 1}. The theory of R is decidable.
For each n ∈ N the set {1, 2, 3, . . . ,n} is a definable subset of R. Let Re

be an expansion of R in which the natural numbers is a definable subset.
Show that the theory of Re is undecidable.

8.11. Let V be a finite vocabulary and let T be a V-theory. Let D =
{t1, t2, t3, . . .} be a set of V-terms. A subset B of D2 is recursive if
B = {(ti, tj)|(i, j) ∈ I} for some recursive subset I of N

2. Suppose that
• for someM |= T , each recursive subset of D2 is a definable subset ofM .

• for each m ∈ N there exists a term tn ∈ D such that n is more than m
times the length of tn. (i.e., there exist terms tn ∈ D that are arbitrarily
short relative to n.) Prove that T is undecidable.

The incompleteness theorems 387

8.12. (Löb) Let T be a recursive subset of TN . Show that there exists a
VN -sentence ϕ so that T � ϕ ↔ PrT (tϕ). Show that, unlike the sentence
γ that asserts its own unprovability, ϕ can be derived from T .

8.13. (Tarski) Let V = {[ϕ]|N |= ϕ}. Use the Fixed Point lemma to show that
V is not a definable subset of N.

8.14. Show that for any two VN -formulas ϕ1(x) and ϕ2(x) in one free variable
there exist VN -sentences ψ1 and ψ2 such that

T � ψ1 ↔ ϕ1(tψ2) and T � ψ2 ↔ ϕ2(tψ1).

8.15. Let T be a recursive set of V-sentences.
Let T0 = {(ϕ) ∧ (ϕ) ∧ . . . ∧ (ϕ︸ ︷︷ ︸)

nϕ times

|T � ϕ} and let C0 = {[ϕ]|ϕ ∈ T0}.

Recall the primitive recursive function bin(e,x,n, 1) from the proof of
Theorem 7.33. Show that there exists a T++ program Pe such that
bin(e,x,x, 1) is the characteristic function of C0.

8.16. Let T be a deductively closed VN -theory and let CT ⊂ N be the set of
Gödel codes of sentences in T . Show that the following are equivalent.
(i) T is decidable.

(ii) CT is recursively enumerable.

(ii) T is axiomatized by a primitive recursive set of sentences.

8.17. Let T be a recursive set of VN -sentences that contains ΓN . Show that if
T � PrT (tϕ) then T � ϕ.

8.18. Let T be a recursive set of VN -sentences such that ΓN ⊂ T . Let f(x̄)
be a primitive recursive function on N and let ϕf (x̄, y) be a VN -formula
expressing that f(x̄) = y. Show that T � ϕf (x̄, y) → PrT (td), where d
is the Gödel code for ϕf (x̄, y). (Proceed by induction on the primitive
recursive function f .)

8.19. Sketch a proof for Lemma 8.26.

8.20. Let Tn be the set of Σn sentences in TN . Let Sn = {[ϕ]|ϕ ∈ Tn}. Show
that Sn is a Σn set that is not Πn (see Exercise 7.29).

8.21. Let Tn be the set of Σn sentences in TN . Show that, for any n ∈ N, Tn is
incomplete.

8.22. (Rosser) Let T be a recursive VN -theory that contains ΓN .
Let Y = {[ϕ]|T � ϕ} and N = {[ϕ]|T � ¬ϕ}. Show that Y and N are

recursively inseparable (as defined in Exercise 7.24).

9 Beyond first-order logic

We consider various extensions of first-order logic. Informally, a logic L is an
extension of first-order logic if every sentence of first-order logic is also a sentence
of L. We also require that L is closed under conjunction and negation and
has other basic properties of a logic. In Section 9.4, we list the properties that
formally define the notion of an extension of first-order logic. Prior to Section 9.4,
we provide various natural examples of such extensions. In Sections 9.1–9.3,
we consider, respectively, second-order logic, infinitary logics, and logics with
fixed-point operators.

We do not provide a thorough treatment of any one of these logics. Indeed,
we could easily devote an entire chapter to each. Rather, we define each logic
and provide examples that demonstrate the expressive power of the logics. In
particular, we show that none of these logics has compactness.

In the final Section 9.4, we prove that if a proper extension of first-order
logic has compactness, then the Downward Löwenheim–Skolem theorem must
fail for that logic. This is Lindström’s theorem. The Compactness theorem and
Downward Löwenheim–Skolem theorem are two crucial results for model theory.
Every property of first-order logic from Chapter 4 is a consequence of these two
theorems. Lindström’s theorem implies that the only extension of first-order logic
possessing these properties is first-order logic itself.

9.1 Second-order logic
Second-order logic is the extension of first-order logic that allows quantification
of relations. The symbols of second-order logic are the same symbols used in first-
order logic. The syntax of second-order logic is defined by adding one rule to the
syntax of first-order logic. The additional rule makes second-order logic far more
expressive than first-order logic. Specifically, the syntax of second-order logic is
defined as follows. Any atomic first-order formula is a formula of second-order
logic. Moreover, we have the following four rules:

(R1) If ϕ is a formula then so is ¬ϕ.
(R2) If ϕ and ψ are formulas then so is ϕ ∧ ψ.
(R3) If ϕ is a formula, then so is ∃xϕ for any variable x.
(R4) If ϕ is a formula, then so is ∃Rnϕ for any n and n-ary relation R.

Beyond first-order logic 389

Definition 9.1 A string of symbols is a second-order formula if and only if it can
be built up from atomic formulas using these four rules.

Recall that rules (R1), (R2), and (R3) define the syntax for first order logic.
These rules regard the primitive symbols ¬, ∧, and ∃. We allow the same abbre-
viations ∀, ∨, →, and ↔ from first-order logic. For any formula ϕ, we naturally
define ∀Rnϕ to be the formula ¬∃Rnϕ. We define a second-order sentence in the
same manner that we defined the notion of a first-order sentence.

Definition 9.2 A second-order sentence is a formula having no free variables.

This definition does not refer to relations. In second-order logic, relations like
variables may have free or bound occurences within a formula. A second-order
sentence may have free relations but not free variables.

Let V be a vocabulary. A second-order sentence ϕ is a V-sentence if each
constant and function occurring in ϕ is in V and each relation having free occur-
rence in ϕ is in V. A second-order V-sentence may contain relations that are not
in V provided that they are bound by a quantifier.

Example 9.3 Let V = {P ,Q} be the vocabulary consisting of unary relations P
and Q. Consider the following sentence:

∀x∀y(R(x, y) → (P (x) ∧Q(y)))∧
∀x(P (x) → ∃yR(x, y))∧

∀x∀y∀z(R(x, y) ∧R(x, z) → y = z).

Call this sentence ϕ0. This is a first-order sentence, but it is not a V-sentence
since the relation R is not in V. Now let ϕ be the second-order sentence ∃R2ϕ0.
This is a V-sentence since the free relations are in ϕ.

We now define the semantics of second-order logic. Let M be a V-structure
and let ϕ be a second-order V-sentence. We must say what it means for M to
be a model of ϕ. We use the notation M |= ϕ to express that M is a model
of ϕ. We define this concept by induction on the complexity of ϕ. If ϕ is first-
order, then M |= ϕ is as defined in Section 2.3. Now, suppose M |= ϕ0 has been
defined and let ϕ have the form ∃Rnϕ0. Then M |= ϕ if and only if there exists
an interpretation of R on the universe of M which makes ϕ0 true. Put another
way, M |= ϕ if and only if there exists an expansion M ′ of M to the vocabulary
V ∪ {R} such that M ′ |= ϕ0.

Example 9.4 Let V = {P ,Q} and let M be a V-structure. Let ϕ0 and ϕ be
as in Example 9.3. It makes no sense to ask whether M models ϕ0 since M is
an V-structure and ϕ0 contains the relation R which is not in V. Whether a
structure models ϕ0 depends on how R is interpreted. The sentence ϕ asserts

390 Beyond first-order logic

that ϕ0 holds for some interpretation of R. As was pointed out in Example 9.3,
the second-order sentence ϕ is a V-sentence. So for every V-structure M , either
M |= ϕ or M |= ¬ϕ. To determine which is the case, let us consider what ϕ0

and ϕ say.
Let P (M) = {a ∈ U |M |= P (a)} and let Q(M) = {a ∈ U |M |= Q(a)}.
The sentence ϕ0 says that for each x in P (M) there exists a unique y in

Q(M) such that R(x, y) holds. Note that if this is true, then there must be
at least as many elements in Q(M) as in P (M). The sentence ϕ says that ϕ0

holds for some interpretation of R. This sentence is true in M if and only if
|P (M)| ≤ |Q(M)|.

Recall Examples 4.73 and 4.74 from Section 4.7. In Example 4.73 it was
shown that no set of first-order sentences can express |P (M)| = |Q(M)|. This
is a consequence of the Downward Löwenheim–Skolem theorem. Clearly, we
can modify ϕ in the previous example to obtain a second-order sentence that
holds in a structure M if and only if P (M) and Q(M) have the same size. In
Example 4.74, it was shown that the graph-theoretic property of connectedness
cannot be expressed in first-order logic. We now show that this, too, can be
expressed in second-order logic.

Example 9.5 Let VR = {R} be the vocabulary of graphs. We write a second-
order VR-sentence ϕcon that holds in a graph G if and only if G is connected.
This sentence asserts that there exists a linear order with certain properties.
Recall that a binary relation L(x, y) is a linear order if and only if the following
three sentences hold:

∀x∀y(L(x, y) ∨ L(y,x) ∨ y = x)

∀x∀y(L(x, y) → ¬L(y,x))

∀x∀y∀z((L(x, y) ∧ L(y, z)) → L(x, z)).

Let ϕlo(L) be the conjunction of these sentences.
To define the sentence ϕcon we make the following observation: G is con-

nected if and only if the vertices of G can be linearly ordered so that for each
vertex v, if v is not the first vertex, then there exists a previous vertex in the
order adjacent to v. We express this as follows:

∃L2(ϕlo(L) ∧ ∀x(∃yL(y,x) → ∃y(L(y,x) ∧R(y,x)))).

Let ϕcon be this sentence.

Example 9.4 implies that the Downward Löwenheim–Skolem theorem fails
in second-order logic. The previous example implies the failure of compactness.
The next two examples demonstrate these failures in a direct way. We show that

Beyond first-order logic 391

there exist second-order sentences expressing that “the universe is infinite” and
“the universe is uncountable.”

Example 9.6 We demonstrate a second-order sentence ϕinf that holds in a struc-
ture if and only if the structure is infinite. Let ϕ0 be the conjunction of the
following first-order sentences:

1. ∀x∃yR(x, y).

2. ∀x∀y∀z(R(x, y) ∧R(x, z) → y = z).

3. ∀x∀y∀z(R(x, y) ∧R(z, y) → x = z).

4. ∃y∀x¬R(x, y).

Let M |= ϕ0. By sentences 1 and 2, we can view R(x, y) as a function on the
universe of M . Given any x in the universe, this function outputs the unique y
for which R(x, y) holds. Sentence 3 asserts that this function is one-to-one. By
sentence 4, this function is not onto. This is only possible if M is infinite (any
one to one function from a finite set to itself must be onto). So, if M |= ϕ0, then
M must be infinite. Let ϕinf be the sentence ∃R2ϕ0. Infinite structures and only
infinite structures model this sentence.

Example 9.7 We demonstrate a second-order sentence ϕuncount that holds in
a structure if and only if the structure is uncountable. Let Q(x) be a unary
relation. In the manner demonstrated in the previous example, we can write a
second-order sentence ϕ(Q) that holds if and only if Q(x) defines a finite set.
Let ϕlo(L) be the sentence from Example 9.5 asserting that the binary relation
L defines a linear order. Now let ϕcount be the sentence:

∃L2(ϕlo(L)) ∧ ∀x∀Q1∀y((Q(y) → L(y,x)) → ϕ(Q)).

SupposeM |= ϕcount. The sentence ϕcount says that we can linearly order the ele-
ments of the universe ofM in such a way that each element has only finitely many
predecessors. This is possible if and only if the universe is at most countable. So
M |= ϕcount if and only if M is countable. Let ϕuncount be ¬ϕcount.

We see that second-order logic does not share the properties of first-
order logic discussed in Chapter 4. The previous examples show that the
two main results of Chapter 4, the Compactness theorem and the Downward
Löwenheim–Skolem theorem, are not true in second-order logic. From the fail-
ure of compactness, we can deduce the failure of completeness (this was also
shown in Section 8.1). There is no algorithmic way to determine whether or not
a given second-order sentence is a consequence of a given set of second-order sen-
tences. Likewise, there is no method for determining whether or not a structure
models a certain second-order sentence, or whether or not two given structures

392 Beyond first-order logic

model the same second-order sentences, and so forth. In short, second-order logic
is too expressive to admit a useful model theory.

Because second-order logic is too powerful, it is natural to consider various
fragments of second-order logics. Monadic second-order logic is the fragment
that only allows second-order quantification over unary relations. So in monadic
second-order logic, one can consider subsets of the universe U of a structure,
but not subsets of Un for n > 1. In weak monadic second-order logic, one can
consider only finite subsets of U . We now turn our attention to other extensions
of first-order logic.

9.2 Infinitary logics
The logic Lω1ω is the extension of first-order logic which allows countable con-
junctions. That is, we have the following rule for forming formulas. (R2) If
{ϕ1,ϕ2,ϕ3, . . .} is a countable set of formulas, then

∧
i ϕi is also a formula.

This is in addition to the rules of first-order logic which state that any
atomic formula is a formula and

(R1) If ϕ is a formula then so is ¬ϕ, and
(R3) If ϕ is a formula, then so is ∃vϕ for any variable v.

Note that countable disjunctions are also allowed since ¬∧ϕi ≡
∨¬ϕi.

Let M be a first-order structure. If the vocabulary of M is countable, then
there is a single sentence of Lω1ω that describes M up to first-order element-
ary equivalence. Namely, the conjunction of the sentences in Th(M) is a Lω1ω

sentence. Moreover, Lω1ω sentences can state precisely which types are realized
in M . For each k-type p ∈ S(Th(M)), there exists a Lω1ω sentence of the form
∃x1 · · · ∃xkp(x1, . . . ,xk). It follows immediately from Proposition 6.27 that the
logic Lω1ω describes countable homogeneous structures up to isomorphism. As
we shall show, Lω1ω describes any countable structure, whether homogeneous or
not, up to isomorphism.

Definition 9.8 StructuresM and N are said to be Lω1ω-elementarily equivalent,
denoted M ≡Lω1ω N , if M and N model the same Lω1ω sentences.

We show that countable structures are Lω1ω-elementarily equivalent if and
only if they are isomorphic. To show this, we consider pebble games. Pebble
games provide a method for determining whether or not two given structures
in the same relational vocabulary are equivalent with respect to various logics
including first-order logic and Lω1ω. Pebble games also serve as a useful tool for
the finite-variable logics of Section 10.2.

Beyond first-order logic 393

LetM and N be structures in the relational vocabulary V. There are various
pebbles games that can be played on M and N . Each pebble game is played by
two players named Spoiler and Duplicator. The disjoint union of the underlying
sets of M and N serves as the game board for the pebble games. Let A and B
denote the underlying sets of M and N , respectively. Since we may change the
names of elements (using subscripts, for example) there is no loss of generality
in assuming that A and B are disjoint. In each game, Spoiler and Duplicator
alternately place pebbles on elements of A and B. Spoiler’s goal is to show that
the two structures are somehow different. In contrast, Duplicator’s objective is
to show that M and N are partially isomorphic.

Definition 9.9 Let M and N be structures in the same relational vocabulary V.
Let f :M → N be a function that has as its domain a subset of UM (the under-
lying set of M). This function is called a partial isomorphism if it preserves
literals. That is, M |= ϕ(a1, . . . , ak) if and only if M |= ϕ(f(a1), . . . , f(ak)) for
all k-tuples from the domain of f and all atomic V-formulas. (If the domain
of f happens to be all of UM , then f is an isomorphism.)

Each pebble game is played with a specified number of pairs of pebbles. Each
pair has a distinct color. A specified number of rounds comprises each game. In
each round, Spoiler first chooses a color; mauve, say. Spoiler places a mauve
pebble on an element of one of the structures. Duplicator completes the round
by taking the other mauve pebble and placing it on an element of the oppos-
ite structure. The color of the pebbles determines a one-to-one correspondence
between those elements of A and those of B which have pebbles on them. After
any round, if this one-to-one correspondence is not a partial isomorphism, then
Spoiler wins the game. Duplicator’s goal is defensive; to prevent Spoiler from
winning.

The Ehrenfeucht–Fraisse game of length m played on structures M and N
is denoted EFm(M ,N). It is played with m pairs of pebbles and comprises m
rounds. Spoiler places different colored pebbles in each round. After m rounds,
all of the pebbles have been placed and the game is over.

Proposition 9.10 Let V be a relational vocabulary and let M and N be
V-structures. The following are equivalent:

(i) Duplicator can always prevent Spoiler from winning EFm(M ,N).

(ii) For any V-sentence ϕ in prenex normal form having at most m variables,
M |= ϕ if and only if N |= ϕ.

Proof idea Suppose that M |= ∃xϕ(x) and N |= ∀x¬ϕ(x). If ϕ is quantifier-
free, then Spoiler can win EF1(M ,N) by placing her pebble on an element of M
such that M |= ϕ(a). Since N |= ∀x¬ϕ(x) Duplicator cannot match this move.

394 Beyond first-order logic

The proposition can be proved by induction on m by extending this idea. We
leave the details as Exercise 9.10.

Corollary 9.11 Let V be a relational vocabulary and let M and N be V-
structures. Then M ≡ N if and only if, for each m ∈ N, Duplicator prevents
Spoiler from winning EFm(M ,N).

Proof This follows immediately from the previous proposition and the fact that
every sentence of first-order logic is equivalent to a sentence in prenex normal
form.

In the definition of EFm(M ,N), we allow the possibility that m = ω, in
which case play continues indefinitely. If at any point during the game the corres-
pondence given by the color of the pebbles is not a partial isomorphism, Spoiler
wins. This game provides the following characterization of Lω1ω-equivalence.

Proposition 9.12 Let V be a countable relational vocabulary and let M and N
be V-structures. Then M ≡Lω1ω N if and only if Duplicator can always prevent
Spoiler from winning EFω(M ,N).

We do not prove this proposition. Intuitively, the proof of Proposition 9.12
is similar to the proof of Proposition 9.10. We use Proposition 9.12 to show that
two countable structures are Lω1ω-equivalent if and only if they are isomorphic.

Proposition 9.13 Let V be a relational vocabulary and letM andN be countable
V-structures. Then M ≡Lω1ω N if and only if M ∼= N .

Proof Suppose thatM ≡Lω1ω N . We prove thatM ∼= N using a back-and-forth
argument. Let UM and UN denote the underlying sets of M and N , respectively.
Enumerate these sets as

UM = {a1, a2, a3, . . .} and UN = {b1, b2, b3, . . .}.

We construct an isomorphism f :M → N step-by-step. We use the fact that
Duplicator can match Spoiler’s moves to prevent her from winning EFω(M ,N)
(Proposition 9.12). In odd numbered rounds of the game (including the first
round of play) Spoiler finds the least i such that ai does not have a pebble on
it, and then places a pebble on that element (so she chooses a1 in round 1).
Duplicator matches Spoiler’s move by placing a pebble on some element of UM .
Likewise, in even numbered rounds, Spoiler finds the least i such that bi does
not have a pebble on it, and then places a pebble on that element. In choosing
elements in this way, Spoiler guarantees that every element of UN and UM will
eventually have a pebble. The color of the pebbles determine a function f :M →
N . Since Duplicator matches Spoiler, this function is a partial isomorphism.
Since it is one-to-one and onto, it is an isomorphism.

Beyond first-order logic 395

Theorem 9.14 (Scott) Let V be a countable vocabulary and let M be a count-
able V-structure. There exists a single sentence of Lω1ω that describes M up to
isomorphism.

To prove Scott’s theorem, one describes a countable set of Lω1ω-sentences
TEF that allow Duplicator to prevent Spoiler from winning EFω(M ,N) for any
model N of TEF . For a full proof, refer to [16].

Example 9.15 By Scott’s theorem, the first-order theory of the structure
N = (N|+, ·, 1) is a consequence of a single sentence of Lω1ω. We describe such
a sentence ΦScott. Recall the axioms ΓN from Section 8.1. Let ΦScott be the
conjunction of the sentences in ΓN together with the following sentence of Lω1ω:

∀x(x = 1 ∨ x = (1 + 1) ∨ x = ((1 + 1) + 1) ∨ x = (((1 + 1) + 1) + 1) ∨ · · ·).

Since the sentences ΓN define multiplication and addition on the natural
numbers, any model of ΦScott is isomorphic to N.

From this example and Gödel’s First Incompleteness theorem, it follows
that Lω1ω, like second-order logic, does not have completeness. That is, there
is no formal system of deduction that is both sound and complete for Lω1ω

(this also follows from the failure of compactness). Unlike second-order logic,
the Downward Löwenheim–Skolem theorem, the Tarski–Vaught criterion, and
preservation theorems are true for Lω1ω (see Exercise 9.7).

As the title of this section suggests, there are infinitary logics other thanLω1ω.
For any infinite ordinals α and β, the logic Lαβ is defined as follows. Any formula
of first-order logic is a formula of Lαβ . Moreover, we have the following rules:

(R1) If ϕ is a formula then so is ¬ϕ.
(R2) If {ϕi|i < β} is a set of formulas, then

∧
i<β ϕi is a formula.

(R3) If ϕ is a formula and (xi|i < α) is a (possibly infinite) tuple of elements,
then ∃(xi|i < α)ϕ is a formula.

So Lωω is another name for first-order logic.
The logic Lω1ω holds a unique place among infinitary logics since it shares

some of the properties of first-order logic (such as the Downward Löwenheim–
Skolem theorem). In particular, pebble games provide a useful characterization of
Lω1ω-equivalence. Other infinitary logics are not so nice. Since they can quantify
over infinite sets, the logics Lαβ for α > ω have an expressive power comparable
to second-order logic.

9.3 Fixed-point logics
We consider expansions of first-order logic that allow for inductive definitions.
Inductive definitions are common in mathematics and computer science. We have

396 Beyond first-order logic

used inductive definitions in this book to define primitive recursive functions,
formulas of propositional and first-order logic, and other notions.

Example 9.16 Consider the notion of a connected component of a graph. We
define this concept inductively as follows. Let v be a vertex of a graph G. Let
C0(v) = {v}. For each n ∈ N, Cn(v) = {x|G |= R(x, y) for some y ∈ Cn−1(v)}.
If G is a finite graph, then Cm(v) = Cm+1(v) for some m. If this is the case,
then Cm(v) is the connected component of v in G. In any case, the connected
component of v in G is defined as

⋃
n∈N

Cn(v).

Although first-order logic can define the sets Cm(x) for each m, it cannot
define the notion of a connected component (see Example 4.74). In this sense,
first-order logic is not closed under inductive definitions. Second-order logic and
infinitary logics are closed in this manner (see Exercise 9.15). We now consider
logics that include various fixed-point operators. Intuitively, these logics are min-
imal expansions of first-order logic that are closed under inductive definitions.
There is more than one way to make the notion of “inductive definition” precise.
Each corresponds to a different fixed-point operator.

Inflationary fixed-point logic (IFP)
An operator is similar to a function. A function from set A to set B outputs an
element f(a) ∈ B given an element a ∈ A as input. The definition of function
requires that A and B are sets. The notion of an operator extends this notion to
classes of objects other than sets. We consider certain operators defined on the
class of first-order structures.

Let ϕ(x1, . . . ,xk) be a first-order formula in the vocabulary V∪{P} contain-
ing the k-ary relation P . We define an operator Oϕ,P on (V ∪ {P})-structures.
Given a (V ∪ {P})-structure M as input, the operator Oϕ,P outputs the
(V ∪{P})-structure Oϕ,P (M) defined as follows. The underlying set of Oϕ,P (M)
is the same as M and Oϕ,P (M) interprets V the same way as M . So as V-
structures, Oϕ,P (M) is identical to M . The interpretation of P may not be
the same.

The structure Oϕ,P (M) interprets P as P (M) ∪ ϕ(M), where P (M) and
ϕ(M) denote the subsets of M defined by P (x̄) and ϕ(x̄), respectively.

Now let N be a V-structure. We may view N as a (V ∪ {P})-structure
that interprets P as the empty set. That is, let N0 be the expansion of N to
V ∪ {P} such that N0 |= ∀x̄¬P (x̄). Then N and N0 are essentially the same
structure. The operator Oϕ,P generates a sequence of structures. For each i ∈ N,
let Ni+1 = Oϕ,P (Ni). Consider the sequence N0, N1, N2, N3, If N is a
finite structure, then Nm+1 = Nm for some m ∈ N. This is because, if Nm+1

Beyond first-order logic 397

and Nm are not the same, then the set defined by P (x̄) in Nm+1 is larger
than the set defined in Nm. This can happen for only finitely many m if N
is finite. If N is infinite, then we continue the sequence. For each ordinal α,
let Nα interpret P as

⋃
β<α P (Nβ). Eventually, Nα+1 must equal Nα for some

α. We refer to such a structure as the fixed-point for the operator Oϕ,P on N .
We let Nf denote this fixed-point structure.

Example 9.17 Let G be a graph. Then G is a structure in the vocabulary VR =
{R}. Let P be a binary relation and let ϕ(x, y) be the (VR ∪ {P})-formula

x = y ∨ ∃z(R(x, z) ∧ P (z, y)).

Let G0, G1, G2, . . . be the sequence of (VR ∪ {P})-structures generated by the
operator Oϕ,P . Then

G0 interprets P (x, y) as the empty relation,
G1 interprets P (x, y) as the relation x = y,
G2 interprets P (x, y) as the relation x = y ∨R(x, y),

and so forth. For each i ∈ N, Gi |= P (a, b) if and only if there exists a path
from a to b in G of length at most i − 1. Let Gf denote the fixed-point of this
sequence. Then Gf |= P (a, b) if and only if a is in the connected component of
b in the graph G.

Whereas G is bi-definable with each Gi, it may not be bi-definable with Gf .
As was demonstrated in Example 4.74, first-order logic can express that there
exists a path between x and y of length i ∈ N, but it cannot express that there
exists a path. So the fixed-point structure may contain a definable subset that
is not definable in the original structure G.

We now define inf lationary fixed-point logic (denoted IFP). Let N be a first-
order V-structure. In the logic IFP, every subset of N that is definable in some
fixed-point structure Nf is definable in N . The logic IFP is the least extension
of first-order logic with this property.

More precisely, the syntax of IFP is defined by the following rule together
with the rules (R1), (R2), and (R3) from first-order logic:

(RIFP) For any k-ary relation P , any (V ∪ {P})-formula ϕ(x1, . . . ,xk) in k
free variables, and any V-terms t1,. . . ,tk,
[ifpϕ,P](t1, . . . , tk) is a V-formula of IFP.

For any V-structure N , N |= [ifpϕ,P](t1, . . . , tk) means the tuple (t1, . . . , tk)
is in the set defined by P (x1, . . . ,xk) in the fixed-point structure Nf of the
operator Oϕ,P on N . This defines the semantics of IFP.

398 Beyond first-order logic

Partial fixed-point logic (PFP)
We obtain variations of IFP by varying the operator Oϕ,P . By definition, the
structure Oϕ,P (M) interprets P as P (M)∪ϕ(M). It follows that the set defined
by P is increasing in the sequence N1,N2,N3, . . . defined above. That is, for
each i, P (Ni) ⊂ P (Ni+1). The word “inflationary” refers to this fact.

Now suppose we modify the operator Oϕ,P . Let Opfp
ϕ,P be such that Opfp

ϕ,P (M)
interprets P as ϕ(M) instead of P (M) ∪ ϕ(M). Again consider the chain of
structures N1, N2, N3,. . . generated by Opfp

ϕ,P (Ni) = Ni+1. Unlike the inflationary
operator, it is not necessarily true that P (Ni) ⊂ P (Ni+1). Because of this, there
is no guarantee that a fixed-point exists for this operator.

Example 9.18 Let V = {≤,S, 1} and let M be the structure (N| ≤,S, 1) that
interprets the binary relation S as the successor relation and interprets ≤ and 1
in the obvious way. Let N be any model of Th(M). Let P be a unary relation
and let ϕ(x) be the following (V ∪ {P})-sentence:

(x = 1) ∨ ∃y(P (y) ∧ S(y,x) ∧ ∀z(P (z) → (z ≤ y))).

This formula says that either x = 1 or x is the successor of the greatest element y
for which P (y) holds. Let N0 the expansion of N that interprets P as the empty
relation. Let Ni = Opfp

ϕ,P (Ni−1) for each i ∈ N.
Then P (N1) = {1}, P (N2) = {1, 2}, P (N3) = {1, 3}, P (N4) = {1, 4}, and so

forth. We see that there is no fixed-point structure for this sequence. In contrast,
if the sequence N1, N2, N3,. . . is instead generated by the inflationary operator,
then P (Nm) = {1, 2, 3, . . . ,m} for each m ∈ N. The inflationary fixed-point
structure interprets P (x) as “x is the nth successor of 1 for some n.”

Partial fixed-point logic, denoted PFP, is defined the same way as IFP using
Opfp

ϕ,P in place of Oϕ,P . The logic PFP can express that a term is in the fixed-
point Nf of this operatorprovided this fixed point exists. The syntax of PFP is
defined by the following rule together with the rules (R1), (R2), and (R3) from
first-order logic.

(RPFP) For any k-ary relation P , any (V ∪{P})-formula ϕ(x1, . . . ,xk) in k
free variables, and any V-terms t1,. . . ,tk,

[pfpϕ,P](t1, . . . , tk) is a V-formula of PFP.

For any V-structure N , N |= [pfpϕ,P](t1, . . . , tk) means that the fixed-point
structure Nf of the operator Oϕ,P on N exists and the tuple (t1, . . . , tk) is in
the set defined by P (x1, . . . ,xk) in Nf .

Beyond first-order logic 399

Example 9.19 We show that PFP, like IFP, can express that there exists a path
between vertices of a graph. Recall P and ϕ from Example 9.17. Since ϕ(x, y)
is the formula x = y ∨ ∃z(R(x, z) ∧ P (z, y)) we see that P (M) ⊂ ϕ(M) for any
{P ,R}-structure M . For this reason, the operators Oϕ,P and Opfp

ϕ,P are identical.

Least fixed-point logic (LFP)
Let ϕ be a formula in a vocabulary containing the relation P . The relation
P is said to have a negative occurrence in ϕ if ϕ is equivalent to a formula in
conjunctive prenex normal form in which the literal ¬P (t̄) occurs as a subformula
for some tuple of terms t̄. We say that ϕ is positive in P if P has no negative
occurences in ϕ.

Example 9.20 The formula (x = 1) ∨ ∃y(P (y) ∧ S(y,x) ∧ ∀z(P (z) → (z ≤ y)))
from Example 9.18 is not positive in P . The subformula P (z) → (z ≤ y) is
equivalent to ¬P (z) ∨ (z ≤ y).

Let N1, N2, N3,. . . be the sequence generated by Opfp
ϕ,P . If ϕ is positive in

P , then we have P (N1) ⊂ P (N2) ⊂ P (N3) ⊂ . . . and the fixed-point structure
exists. Least Fixed-Point Logic, denoted LFP, is the variation of PFP that allows
[pfpϕ,P](t1, . . . , tk) as a formula only if ϕ is positive in P . This formula is inter-
preted the same way in LFP as in PFP. Clearly, every formula of LFP is also a
formula of PFP. Whether or not the converse is true is an open question. The fol-
lowing theorem relates this open question to a question from complexity theory.

Theorem 9.21 (Abiteboul–Vianu) LFP is equivalent to PFP on finite struc-
tures if and only if PSPACE = P.

This theorem indicates a close relationship between fixed-point logics and com-
plexity classes. Indeed, the development of fixed-point logics over the last two
decades has been primarily motivated by complexity theory. A theorem of
Immerman and Vardi states that, in some sense, LFP is equivalent to the class
P. We shall state this theorem precisely in Section 10.3 where we discuss the
subject of descriptive complexity.

Note the phrase “on finite structures” in the previous theorem. This means
that for any sentence ϕ of LFP there exists a sentence ψ of PFP such that
M |= ϕ if and only if M |= ψ for any finite structure M . Likewise, Shelah and
Gurevich showed in 1986 that LFP and IFP are equivalent on finite structures.
This result was improved in 2003 by Stephan Kreutzer who proved the following
remarkable fact.

Theorem 9.22 (Kreutzer) LFP is equivalent to IFP.

400 Beyond first-order logic

9.4 Lindström’s theorem
In this section, we define the concept of an arbitraryextension of first-order logic.
Each of the logics defined in this chapter are examples of such extensions. The
semantics of each of these logics is defined in terms of the structures defined
in Chapter 2. Given any V-structure M and any V-sentence ϕ of one of these
logics, either M |= ϕ or M |= ¬ϕ. Two sentences in the same vocabulary, but
not necessarily in the same logic, are said to be equivalent if they hold in the
same structures.

A logic is a formal language. The logics we are considering are designed
to describe structures and only structures (as defined in Chapter 2). Moreover,
extensions of first-order logic behave like first-order logic in certain fundamental
ways that we shall describe. In defining “extensions of first-order logic,” we are by
no means providing a definition for the notion of a “logic.” There are important
logics (such as fuzzy logic, intuitionistic logic, and modal logic) that do not fall
under the scope of what we are about to describe.

For a logic L to be an extension of first-order logic, it must possess certain
basic properties. For any vocabulary V, we let L(V) denote the set of satisfiable
V-sentences of the logic L. We assume not only that the set L(V) exists, but also
that it behaves as expected. In particular, if a V-structure models some sentence
ϕ of L, then ϕ ∈ L(V). Furthermore, to be anextension of first-order logic, L
must possess each of the following properties:

• The Extension Property: Any satisfiable first-order V-sentence is equivalent
to a sentence in L(V). (That is, an extension of first-order logic must contain
first-order logic.)

• The Expansion Property: LetM be a V-structure and letM ′ be an expansion
of M . For any sentence ϕ in L(V), M |= ϕ if and only if M ′ |= ϕ. (In
particular, if V1 ⊂ V2, then L(V1) ⊂ L(V2).)

• The Relational property: Let M be a structure in a vocabulary V ∪ {f}
containing a k-ary function f . LetMR be the structure obtained by replacing
f with a (k + 1)-ary relation R. That is, MR |= R(x̄, y) if and only if
M |= f(x̄) = y. As V-structures, MR and M are identical.

For any ϕ ∈ L(V ∪ {f}) there exists ψ ∈ L(V ∪ {R}) such that, for any
structures M and MR as described above, M |= ϕ if and only if MR |= ψ.
(This allows us to assume that vocabularies are relational with no loss of
generality.)

• The Relativization Property: Let M be a V-structure. Let D ⊂ M be a
substructure of M such that the universe of D is defined by a first-order
V-formula ϕ(x) in one free variable. For any ψ ∈ L(V) there exists ψϕ ∈
L(V) such that M |= ψϕ if and only if D |= ϕ.

Beyond first-order logic 401

• The Small Vocabulary Property: If a sentence ϕ of L is satisfied in a model
of size κ, then it is satisfied in a structure having vocabulary of size κ.

• The Closure Property: if ϕ and ψ are sentences of L, then so are ϕ∧ψ, ¬ϕ,
and ∃xϕ.

• The Isomorphism Property: ifM ∼= N , then for any sentence ϕ of L, M |= ϕ
if and only if N |= ϕ.

Definition 9.23 An extension of first-order logic is any formal language that
satisfies each of the above properties.

Each of the logics we have considered is an extension of first-order logic. For
the fixed-point logics of the previous section, this is a nontrivial fact (it is far
from obvious that they are closed under negation). Whereas each extension of
first-order logic must possess each of the above properties, the following are the
properties of first-order logic that may or may not be shared by an extension of
first-order logic:

• The Compactness property: for any set Γ of sentences of L, if every finite
subset of Γ has a model, then Γ has a model.

• The Downward Löwenheim–Skolem property: for any sentence ϕ of L, if
M |= ϕ, then there exists N ⊂M such that N |= ϕ and |N | = ℵ0.

Let L1 and L2 be two extensions of first-order logic. We say that L2 is at
least as strong as L1, and write L1 ≤ L2 if every sentence of L1 is equivalent
to a sentence of L2. If both L1 ≤ L2 and L2 ≤ L1, then we say that L1 and
L2 have the same expressive power. Lindström’s theorem implies that first-order
logic is the strongest logic possessing both the Downward Löwenheim–Skolem
property and the Compactness property. The following proposition is somewhat
of a “warm-up” exercise for Lindström’s theorem.

Proposition 9.24 Let L be an extension of first-order logic that has the Down-
ward Löwenheim–Skolem property. Suppose that Lω1ω ≤ L. For any structures
M and N , if there exists an L sentence that holds in M but not N , then there
exists such a sentence in Lω1ω.

Proof Suppose that M ≡Lω1ω N . Suppose for a contradiction that M |= ϕ, and
N |= ¬ϕ for some L sentence ϕ. By the Downward Löwenheim–Skolem property,
ϕ has a model of size ℵ0. By the Small Vocabulary Property, we may assume that
ϕ ∈ L(V) for a countable vocabulary V. By the Expansion property (which may
just as well be called the “Reduct property”), we may assume that M and N are
V-structures. By the Relational property, we may assume that V is relational. By
the Downward Löwenheim–Skolem property, there exist countable M0 ⊂M and

402 Beyond first-order logic

N0 ⊂ N such that M0 ≡Lω1ω N0, M0 |= ϕ, and N0 |= ¬ϕ. By Proposition 9.13,
M0 ∼= N0. This contradicts the Isomorphism Property.

This proposition states that, in some sense, Lω1ω is the strongest exten-
sion of first-order logic possessing the Downward Löwenheim–Skolem property.
Toward Lindström’s theorem, let us strengthen this proposition. Lindström’s
Theorem regards first-order logic rather than Lω1ω. Prior to stating this the-
orem, we strengthen Proposition 9.24 in a different direction. We replace the
Downward Löwenheim–Skolem property with a weaker property.

Definition 9.25 Let κ be a cardinal. An extension of first-order logic is said to
have Löwenheim–Skolem number κ if for every set Γ of sentences of L, if Γ has
a model and |Γ| ≤ κ, then Γ has a model of size at most κ.

If L has the Downward Löwenheim–Skolem property, then L has
Löwenheim–Skolem number ℵ0. The converse is not necessarily true. If a sentence
ϕ has a countable model, then it is not necessarily true that every model of ϕ has
a countable substructure that models ϕ as the Downward Löwenheim–Skolem
property asserts.

Proposition 9.26 Let L be an extension of first-order logic that has Löwenheim–
Skolem number ℵ0. Suppose that Lω1ω ≤ L. For any structures M and N , if
there exists an L sentence that holds in M but not N , then there exists such a
sentence in Lω1ω.

Proof Suppose that M ≡Lω1ω N . Suppose for a contradiction that M |= ϕ,
and N |= ¬ϕ for some L sentence ϕ. Let U be the underlying set of M and let
V be the underlying set of N . By the Isomorphism property, we may assume
that U and V are disjoint. By the Relational property, we may assume that the
vocabulary V of M and N is relational. Since L has Löwenheim–Skolem number
ℵ0 and ϕ is satisfiable (M is a model), ϕ has a countable model. By the Small
Vocabulary property, we may assume V is countable.

We describe a structure M having U ∪ V as an underlying set. The vocab-
ulary for M is VEF = V ∪ {PU ,PV ,R1,R2, . . .}. The unary relation PU defines
the set U and the unary relation PV defines the set V in M. So M is iso-
morphic to the substructure PU (M) of M andN is isomorphic to the substructure
PV (M) of M. By the Relativization property, there exists a sentence ϕU of
L such that, for any VEF -structure S, S |= ϕU if and only if PU (S) |= ϕ.
Likewise, there is a sentence ¬ϕV of L such that S |= ¬ϕV if and only if
PV (S) |= ¬ϕ.

Each Rn in the vocabulary of M is a 2n-ary relation. We now list countably
many first-order sentences that describe the interpretation of these relations in

Beyond first-order logic 403

M. For each n ∈ N

M |= Rn(x1, . . . ,xn, y1, . . . , yn) →
n∧

i=1

PU (xi) ∧
n∧

i=1

PV (yi).

For each n ∈ N and each quantifier-free first-order V-formula θ in n free variables,

M |= Rn(x1, . . . ,xn, y1, . . . , yn) → (θ(x1, . . . ,xn) ↔ θ(y1, . . . , yn)).

That is if Rn(a1, . . . , an, b1, . . . , bn) holds then the function f(ai) = bi is a partial
isomorphism from PU (M) to PV (M). Moreover, for each n ∈ N,

M |= Rn(x1, . . . ,xn, y1, . . . , yn) → ∀x∃yRn+1(x1, . . . ,xn,x, y1, . . . , yn, y),

and

M |= Rn(x1, . . . ,xn, y1, . . . , yn) → ∀y∃xRn+1(x1, . . . ,xn,x, y1, . . . , yn, y).

Finally, M |= ∀x∃yR1(x, y) ∧ ∀y∃xR1(x, y).
We have listed countably many first-order sentences that hold in M. Let ΦEF

be the conjunction of these sentences. We claim that, for any VEF -structure
S, S |= ΦEF if and only if PU (S) ≡Lω1ω PV (S). That is, ΦEF expresses that
Duplicator wins EFω(PU (S),PV (S)). The final sentence in the above list states
that Duplicator can match Spoiler’s first move. The previous sentences express
that Duplicator can continue to match Spoiler indefinitely.

By the Closure property, ΦEF ∧ ϕU ∧ ¬ϕV is equivalent to a sentence
of L. This sentence is satisfiable since M is a model. Since L has Löwenheim–
Skolem number ℵ0, there exists a countable model C of this sentence. Since
C |= ΦEF , PU (C) ≡Lω1ω PV (C). By Proposition 9.13, PU (C) ∼= PV (C). Since
C |= ϕU ∧¬ϕV , PU (C) |= ϕ and PV (C) |= ¬ϕ. This contradicts the isomorphism
property.

To state Lindström’s theorem in its most general form, we consider a weak
version of the Compactness property.

Definition 9.27 Let κ be a cardinal. An extension of first-order logic is said to
have compactness number κ if for any set Γ of sentences of the logic, if |Γ| ≤ κ

and every finite subset of Γ has a model, then Γ has a model.

Theorem 9.28 (Lindström) If an extension L of first-order logic has Löwenheim–
Skolem number ℵ0 and compactness number ℵ0, then L has the same expressive
power as first-order logic.

Proof Let Lfo denote first-order logic. We must show that L ≤ Lfo. That is,
each sentence ϕ of L is equivalent to some first-order sentence ψϕ.

Claim 1 If M ≡ N , then M |= ϕ if and only if N |= ϕ.

404 Beyond first-order logic

Proof Suppose for a contradiction that M ≡ N , M |= ϕ, and N |= ¬ϕ. Recall
the sentence ΦEF ∧ ϕU ∧ ¬ϕV from the proof of Proposition 9.26. The sentence
ΦEF is the conjunction of countably many first-order sentences. Let us now
regard ΦEF as a countable set (since we can no longer take infinite conjunctions).
The Relativization property guarantees the existence of the L sentences ϕU and
¬ϕV . We claim that ΦEF ∪{ϕU ,¬ϕV } has a countable model M. Since M ≡ N ,
Duplicator wins EFk(M ,N) for each k ∈ N. It follows from the definition of
ΦEF that every finite subset of ΦEF ∪ {ϕU ,¬ϕV } is satisfiable. Since L has
compactness number ℵ0, this set has a model. Since L has Löwenheim–Skolem
number ℵ0, this countable set of sentences has a countable model. This leads to
the same contradiction as in the proof of Proposition 9.26. This contradiction
proves the claim.

It remains to be shown that Lindström’s theorem follows from the claim. We
must show that ϕ is equivalent to some first-order sentence. Let M |= ϕ. Since L
has Löwenheim–Skolem number ℵ0, we may assume that M is countable. Since
L has compactness number ℵ0, we can use the following compactness argument
that was used repeatedly in Chapter 4.

Let T be the first-order theory of M . Let C be the set of all ψ ∈ T such
that each model of ϕ also models ψ (C is the set of “consequences” of ϕ in T).

Claim 2 Every model of ∆ models ϕ for some finite subset ∆ of C.

Proof Suppose not. Then, by compactness, C∪{¬ϕ} has a model N1. Let T1 be
the first-order theory of N1. Consider the set T1 ∪ {ϕ}. If this set does not have
a model, then some finite subset does not have a model (again by compactness).
So, for some θ ∈ T1, ϕ ∪ {θ} has no model and ¬θ ∈ C. This contradicts the
facts that C ⊂ T1 and T1 is consistent. This contradiction proves that T1 ∪ {ϕ}
does have a model N2. But now N1 ≡ N2 (since T1 is complete), N2 |= ϕ and
N1 |= ¬ϕ. This directly contradicts Claim 1 and proves Claim 2.

So ∆ and ϕ have the same models and ϕ is equivalent to the conjunction of
the finitely many first-order sentences in ∆.

Exercises
9.1. Let G be a graph. AHamilton circuit in G is a path that begins and ends

at the same vertex and includes each of the other vertices once and only
once.
(a) Write a second-order sentence that holds in G if and only if G has a

Hamilton circuit.

(b) Write a Lω1ω sentence that holds in G if and only if G has a Hamilton
circuit.

Beyond first-order logic 405

9.2. Write a second-order sentence that holds in a structure M if and
only if M is finite and the universe of M contains an odd number of
elements.

9.3. Let Kn denote the n-clique. Show that for any k ∈ N, Duplicator can
prevent Spoiler from winning EFk(Kn,Km) for sufficiently large n and
m.

9.4. Let V< = {<}. Let L1 and L2 be finite V<-structures that interpret
the binary relation < as a linear order. Show that if both |L1| and |L2|
are larger than 2k, then Duplicator can prevent Spoiler from winning
EFk(L1,L2).

9.5. Let G be a finite graph. The degree of a vertex v in G is the number of
vertices adjacent to v. An Euler path is a path that includes each edge
once and only once. Leonhard Euler proved that a finite graph has an
Euler path if and only if there are at most two vertices of odd degree.
(a) Show that there is no first-order sentence ΦEuler such that G |=

ΦEuler if and only if G has an Euler path. (Use Exercise 9.3.)

(b) Write a second-order sentence that holds in G if and only if G has a
Euler circuit. (Use the formula from Exercise 9.2.)

(c) Write a Lω1ω sentence that holds in G if and only if G has a Euler
circuit.

9.6. A graph is said to be k-colorable if the vertices of the graph can be colored
with k colors in such a way that no two vertices of the same color share
an edge. Write a second-order existential sentence that holds in a graph
G if and only if G is k-colorable.

9.7. Each of the following are proved in Chapter 4 for first-order logic. Show
that each remains true when first-order logic is replaced with Lω1ω.
(a) Proposition 4.31 (the Tarski–Vaught criterion)

(b) Theorem 4.33 (the Downward Löwenheim–Skolem theorem)

(c) Theorem 4.47 (the Los–Tarski theorem)

9.8. Let V< = {<}. Describe a V<-sentence in the logic Lω1ω1 that says < is a
well-ordering of the underlying set.

9.9. Suppose that Duplicator prevents Spoiler from winning EFω(M ,N). Show
that M |= ϕ if and only if N |= ϕ for each V-formula ϕ of Lω1ω. (Use
induction on the complexity of ϕ.)

9.10. Prove Proposition 9.10.

9.11. Let S be the set of all finite strings of symbols from the set

{A,B,C, . . . ,X,Y ,Z,), (,∧,¬}.

406 Beyond first-order logic

We describe a structure M having S as an underlying set. The vocabulary
of M contains:
• a unary relation a(s) interpreted as s = A or s = B,. . . , or s = Z,

• a unary function n(x) interpreted as n(s) = ¬s,
• a unary function p(x) interpreted as p(s) = (s), and

• a binary function c(x, y) interpreted as p(s, t) = s ∧ t,
where s and t denote arbitrary elements of S. Let form(s) be a for-
mula that says the string s is a formula of propositional logic. Show that
form(s) is not a first-order formula. Show that form(s) can be expressed
in any of the fixed-point logics from Section 9.3.

9.12. Let LQ be the extension of first-order logic that contains a new quantifier
Q. The syntax of LQ is defined by adding the following rule to the rules
that define the syntax of first-order logic:

(RQ) If ϕ is a formula of LQ, then so is Qxϕ.

The formula Qxϕ(x) is to be interpreted as “there exist uncountably many
x such that ϕ(x) holds.” This describes the semantics of LQ. Show that LQ

is a logic that possesses compactness but not the Downward Löwenheim–
Skolem Property.

9.13. Show that every formula of second-order logic can be put into prenex
normal form. That is, show that each formula is equivalent to a formula
of the form Q1R

i1
1 Q2R

i2
2 . . . QkR

ik

k ϕ where each Qj is either ∀ or ∃ and ϕ
is a first-order formula.

9.14. Let MonSO denote monadic second-order logic as defined at the end of
Section 10.1. Using the fact thatMonSO has Löwenheim–Skolem number
ℵ0 and is compact, show that
(a) there is no sentence of MonSO that holds in connected graphs and

only connected graphs;

(b) there does exist a sentence of MonSO that holds in nonconnected
graphs and only nonconnected graphs;

(c) Why does MonSO not contradict Lindström’s theorem?

9.15. Show that LFP ≤ Lω1ω.

9.16. Show that Lω1ω ≤ SOL.

9.17. Show that LFP ≤ IFP .

9.18. Let T be a first-order ℵ0-categorical V-theory. Show that every V-formula
of IFP is T -equivalent to a first-order V-formula.

Beyond first-order logic 407

9.19. Let L be an extension of first-order logic. The Hanf number of L is the
least cardinal κ such that every sentence of L that has a model of size κ
has arbitrarily large models.
(a) Show that L is equivalent to first-order logic if and only if L has

Löwenheim–Skolem number ℵ0 and Hanf number ℵ0.

(b) Show that every extension of first-order logic has a Hanf number.

9.20. (Lindström) Let L be an extension of first-order logic. Show that L
is equivalent to first-order logic if and only if L has Löwenheim–Skolem
number ℵ0 and the set of sentences of L that hold in every model is a
recursively enumerable set.

10 Finite model theory

This final chapter unites ideas from both model theory and complexity theory.
Finite model theory is the part of model theory that disregards infinite struc-
tures. Examples of finite structures naturally arise in computer science in the
form of databases, models of computations, and graphs. Instead of satisfiability
and validity, finite model theory considers the following finite versions of these
properties.

• A first-order sentence is finitely satisfiable if it has a finite model.

• A first-order sentence is finitely valid if every finite structure is a model.

Finite model theory developed separately from the “classical” model theory
of previous chapters. Distinct methods and logics are used to analyze finite
structures. In Section 10.1, we consider various finite-variable logics that serve
as useful languages for finite model theory. We define variations of the pebble
games introduced in Section 9.2 to analyze the expressive power of these logics.

Pebble games are one of the few tools from classical model theory that is
useful for investigating finite structures. In Section 10.2, it is shown that many of
the theorems from Chapter 4 are no longer true when restricted to finite models.
There is no analog for the Completeness and Compactness theorems in finite
model theory. Moreover, we prove Trakhtenbrot’s theorem which states that the
set of finitely valid first-order sentences is not recursively enumerable.

Descriptive complexity is the subject of 10.3. This subject describes the
complexity classes discussed in Chapter 7 in terms of the logics introduced in
Chapter 9. We prove Fagin’s theorem relating the class NP to existentional
second-order logic. We prove the Cook–Levin theorem as a consequence of Fagin’s
Theorem. This theorem states that the Satisfiability Problem for Propositional
Logic is NP-complete. We conclude this chapter (and this book) with a section
describing the close connection between logic and the P = NP problem.

10.1 Finite-variable logics
In this section, we discuss appropriate logics for the study of finite models.
First-order logic, since it describes each finite model up to isomorphism, is too

Finite model theory 409

strong. For this reason, we must weaken the logic. It may seem counter-intuitive
that we should gain knowledge by weakening our language. Recall that, for
infinite structures, first-order logic is quite weak (compared to logics from the
previous chapter). This weakness is demonstrated in the Compactness theorem,
the Löwenheim–Skolem theorems, and the other theorems of Chapter 4. It is
precisely these properties that make first-order logic a productive logic for the
study of infinite structures. The weakness of first-order logic gives rise to model
theory. With this in mind, we consider the following logics.

Definition 10.1 For k ∈ N, let Lk be the fragment of first-order logic obtained
by restricting to the k variables x1,x2, . . . ,xk (or any other set of k variables).

There are two reasons that first-order logic is not appropriate for finite
model theory. One reason is that it is too strong. The other reason is that it is
too weak. This is the Fundamental Joke of Finite Model Theory. It is too strong
for the reasons we have mentioned. First-order logic is too weak because it is
incapable of defining basic properties of finite structures. For example, there is
no first-order sentence expressing that a finite structure is a connected graph.
Also, there is no first-order sentence expressing that a finite structure has an even
number of elements. For this reason, we consider various strengthenings of Lk.

Definition 10.2 Let Ck be k-variable logic with counting quantifiers. That is,
Ck contains all Lk formulas and is closed under negation, conjunction, and
quantification by the counting quantifiers ∃≤n for each n ∈ N.

Since ∃≤n is first-order expressible, we regard Ck as a fragment of first-order
logic. So although Ck is stronger than Lk, it cannot express properties such as
connectedness that cannot be expressed in first-order logic.

Definition 10.3 For k ∈ N, let Lk
ω1ω be the fragment of Lω1ω obtained by

restricting to the k variables x1, x2, . . . ,xk.

Finite model theory also considers finite-variable logics with a fixed-point
operator and other extensions of Lk. However, we restrict our attention to
the above logics. We demonstrate what can and cannot be expressed in
these logics by providing some examples and stating without proof some basic
facts.

Consider the logic L3. Since this logic only allows three variables, it is a
restrictive language. However, by using the variables in an economical way, we
can express more than may be apparent. We can repeatedly use (and re-use) each
of the three variables any number of times. For example, let VS be the vocabulary
consisting of a single binary relation S. Let ZS = (Z|S) be the VS-structure that
interprets S as the successor relation on the integers. That is, ZS |= S(a, b) if
and only if b = a + 1. The following VS-formula says that y is the (n + 1)th

410 Finite model theory

successor of x in ZS :

∃z1∃z2 · · · ∃zn
(
S(x, z1) ∧

n−1∧
i=1

S(zi, zi+1) ∧ S(zn, y)

)
.

If n is large, then this is not a formula of L3. However, we claim that it is
equivalent to a L3 formula. We inductively define formulas ψi(x, y), for i ∈ N,
that say y is the ith successor of x. We use the following convenient notation
that allows us to keep track of bound variables as well as free variables.

Notation 1 We let ϕ(x1, . . . ,xn | y1, . . . , ym) denote an arbitrary formula having
free variables x1, . . . ,xn and bound variables y1, . . . , ym. If a variable has both
free and bound occurences within ϕ, then this variable is listed only as a free
variable among the xis.

We now define the formulas ψi(x, y) for i ∈ N.

Let ψ1(x, y) be the formula S(x, y).

Let ψ2(x, y|z) be the formula ∃z(S(x, z) ∧ S(z, y)).

For i ≥ 2, let ψi+1(x, y) be ∃z(S(x, z) ∧ ψi(z, y|x)).

Note that x occurs in ψi(x, y|z) as both a free variable and a bound variable
for i > 2.

Notation 2 For any formula ϕ, let V (ϕ) denote the number of variables
occurring in ϕ.

Notation 3 Let qd(ϕ) denote the quantifier depth of ϕ defined inductively as
follows: qd(ϕ) = 0 for atomic ϕ; qd(¬ϕ) = qd(ϕ); qd(ϕ ∧ ψ) = qd(ϕ ∨ ψ) =
max{qd(ϕ), qd(ψ)}; and qd(∃xϕ(x)) = qd(∀xϕ(x)) = qd(ϕ(x)) + 1.

Example 10.4 For the formulas ψi(x, y|z) as defined above, V (ψi) = 3 and
qd(ϕi) = i− 1.

Notation 4 Let M and N be structures in the same vocabulary V.
For k ∈ N, M ≡k N means that M |= ϕ if and only if N |= ϕ for any

V-sentence ϕ with V (ϕ) ≤ k. That is M ≡k N means that M and N cannot be
distinguished by sentences of the logic Lk.

For k and m in N, M ≡k
m N means M |= ϕ if and only if N |= ϕ for any

V-sentence ϕ with V (ϕ) ≤ k and qd(ϕ) ≤ m.

We describe pebble games that determine whether or not two struc-
tures in the same relational vocabulary are equivalent with respect to various
finite–variable logics. Recall the Ehrenfeucht–Fraisse game of length m from
Section 9.2. This game is played withm pairs of pebbles and comprisesm rounds.

Finite model theory 411

Spoiler places different colored pebbles in each round. After m rounds, all of the
pebbles have been placed and the game is over.

Proposition 10.5 Let V be relational and let M and N be V-structures.
Duplicator prevents Spoiler from winning EFm(M ,N) if and only if M ≡m

m N .

This is a restatement of Proposition 9.10.
We now define the k -pebble game of length m > k. Let M and N be struc-

tures in the relational vocabulary V. The k-pebble game of length m is denoted
P k

m(M ,N). It is played just like EFk(M ,N) for the first k rounds. So after
the first k rounds, there are k pebbles on each structure which are in one-to-
one correspondence by color. But whereas EFk(M ,N) was finished at this point,
P k

m(M ,N) is not. Spoiler continues the game by choosing one of the pebbles that
has been placed and moving it to another element within the same structure.
Duplicator then takes the pebble of the same color in the other structure and
moves it. Play continues in this manner for m− k moves. We allow the possibil-
ity that m = ω, in which case play continues indefinitely. We omit the subscript
and write P k(M ,N) to denote this version of the game. If at any point during
the game the correspondence given by the color of the pebbles is not a partial
isomorphism, Spoiler wins.

Proposition 10.6 Let M and N be structures in the same relational vocabulary.
Duplicator prevents Spoiler from winning P k

m(M ,N) if and only if M ≡k
m N .

Proof This can be proved by extending the proof of Proposition 9.10.

Proposition 10.7 Let M and N be finite structures in the same relational
vocabulary.
The following are equivalent:

(i) M and N satisfy the same sentences of Lk
ω1ω.

(ii) M ≡k N .

(iii) Duplicator prevents Spoiler from winning P k
m(M ,N) for each m.

(iv) Duplicator prevents Spoiler from winning P k(M ,N).

Sketch of proof It is clear that (i) implies (ii). By the previous proposition,
(ii) implies (iii). That (iii) implies (iv) follows from the assumption that M and
N are finite. Finally, (iv) implies (i) can be proved in the same manner as the
previous proposition (using the idea of the proof of Proposition 9.10).

Example 10.8 Let M be a connected graph (not necessarily finite). Suppose
that N ≡3 M . We claim that N is also a connected graph. That N is a graph
follows from the fact that the axioms for the theory of graphs each use at most
three variables. By compactness, there is no sentence that expresses connectivity.
However, we claim that there does exist a set of sentences of L3 that expresses

412 Finite model theory

this. To see this, play the game P 3(M ,N). If N is not connected, then Spoiler
can place pebbles on two vertices a and b of N such that there is no path from
a to b in N . Duplicator must place his corresponding two pebbles on vertices
of M . No matter which vertices c and d Duplicator chooses, there exists a path
from c to d in M . Spoiler places her third pebble adjacent to c in M along the
path toward d. Spoiler then removes the pebble from c and places it adjacent
to the previous pebble. In this manner Spoiler “walks” the two pebbles toward
the pebble on d. Eventually, these pebble will reach d at which point Spoiler
wins the game. So if N is not connected, then Spoiler has a strategy for winning
P 3(M ,N).

We can modify the k-pebble game of length m > k to obtain a game
Ck

m(M ,N) which captures the notion of Ck-equivalence. This game is again
played by two players with k pairs of colored pebbles. But each round of
Ck

m(M ,N) consists of two steps. First, Spoiler selects a color, hazel say, and
a finite subset X1 of either M or N . Duplicator then selects a subset X2 of the
opposite structure so that |X2| = |X1|. Spoiler then places a hazel pebble onto
an element of Xi for i = 1 or 2. Duplicator then places the other hazel pebble in
X3−i. This is repeated k times after which all of the pebbles have been placed.
As with P k

m(M ,N), Ck
m(M ,N) continues for m − k rounds beyond the initial

placing of the pebbles. Again, we allow for the possibility that m = ω in which
case the game continues indefinitely. If at any time during the game, the color
correspondence of pebbles does not define a partial isomorphism betweenM and
N , Spoiler wins.

Proposition 10.9 Duplicator can always prevent Spoiler from winning
Ck

m(M ,N) if and only if M and N model the same sentences of Ck of quantifier
depth at most m.

The proof of this proposition is similar to the proof of Proposition 9.10 in
Section 9.2 (as are the proofs of Propositions 10.6 and 10.7). Detailed proofs of
these propositions can be found in [11].

10.2 Classical failures
Many of the theorems of classical model theory fail when restricted to finite
structures. We show that the Completeness and Compactness theorems become
false statements when “satisfiable” is replaced by “finitely satisfiable.” Moreover,
the set of finitely satisfiable sentences is not recursive. This is Trakhtenbrot’s the-
orem. We leave it as an exercise to show that certain preservation theorems and
Beth’s Definability theorem no longer hold in the finite setting (Exercises 10.6–
10.8). The Downward Löwenheim–Skolem theorem, as stated in Theorem 4.33,

Finite model theory 413

remains true but becomes trivial. The Upward Löwenheim–Skolem theorem can-
not be formulated for finite structures. In short, many of the essential methods
and tools of classical model theory cannot be applied in finite model theory.

A key result of Chapter 4 states that every model has a theory and every
theory has a model (Theorem 4.27). In finite model theory, this is only half true.
It is true that every finite model has a theory. In fact, every finite model has
a finitely axiomatizable theory (by Proposition 2.81). It is not true that every
theory has a finite model. Most theories discussed in Chapters 5 and 6 have no
finite model. We show that the consequences of Theorem 4.27 also do not hold
in the finite.

Proposition 10.10 (Failure of Compactness) There exists a set of first-order
sentences Γ such that every finite subset of Γ is finitely satisfiable, but Γ is not.

Proof Let Γ = {∃≥nx(x = x)|n ∈ N}.
In Chapter 4, we deduced the compactness of first-order logic from com-

pleteness. Following this same argument, we deduce the failure of completeness
from the failure of compactness. The argument from Chapter 4 goes as follows.
By the finite nature of proofs:

Γ � ϕ implies ∆ � ϕ

for some finite subset ∆ of Γ. By the definition of “|=,”

∆ |= ϕ implies Γ |= ϕ.

Completeness provides the vertical arrows in the diagram:

Γ |= ϕ ⇐ ∆ |= ϕ
' '

Γ � ϕ ⇒ ∆ � ϕ.

So Γ |= ϕ if and only if ∆ |= ϕ for some finite subset ∆ of Γ. If we take ϕ to be
a contradiction, then this is precisely compactness.

Proposition 10.11 (Failure of Completeness) There does not exist a formal
proof system for first-order logic that is both sound and complete with respect
to finite satisfiability.

Proof Replace |= with |=fin in the above argument and use Γ = {∃≥nx(x =
x)|n ∈ N} to derive a contradiction.

These are failures not only of first-order logic, but also the finite-variable
logics of the previous section. Since the set Γ used in the proofs of Proposi-
tions 10.10 and 10.11 is a set of sentences of C1, these propositions hold for the
logics Ck. To see that the same is true for the logics Lk, replace Γ with the

414 Finite model theory

following set of L1 sentences in a vocabulary containing unary function f :

{∀x¬(f(x) = x),∀x¬(f(f(x)) = x),∀x¬(f(f(f(x))) = x), . . .}.

We next prove a result that is stronger than Proposition 10.11. Consider
the following decision problems:

• The Finite Satisfiability Problem: Given a first-order sentence, determine
whether or not it is finitely satisfiable.

• The Finite Validity Problem: Given a first-order sentence, determine
whether or not it is finitely valid.

We show that the Finite Satisfiability Problem is not decidable. Equival-
ently, we show that the set of finitely satisfiable sentences is not recursive. As a
corollary to this, we show that the Finite Validity Problem is not semi-decidable.
In contrast, the validity problem for first-order logic is semi-decidable. By the
Completeness theorem, we can derive every valid sentence from the basic rules
for deduction in Chapter 3. In the finite setting, not only does the Completeness
theorem fail, but there is no way to recursively enumerate all of the finitely valid
sentences. This is Trakhtenbrot’s theorem.

Theorem 10.12 (Trakhtenbrot) The set of finitely satisfiable sentences is not
recursive.
Proof Given T++ program Pe, we write a first-order sentence ϕe such that ϕe

is finitely satisfiable if and only if Pe halts on input 0. This reduces the Finite
Satisfiability Problem to the Halting Problem. The Halting Problem is undecid-
able by Proposition 7.48. If we successfully define ϕe, then we can conclude that
the Finite Satisfiability Problem, too, is undecidable.

So it suffices to define the sentence ϕe. This sentence has the form

ϕ< ∧ ϕs ∧ ϕp ∧ ϕc ∧ θinit ∧ θhalt ∧ ψ1 ∧ ψ2 ∧ · · ·ψL,

where L is the number of lines in Pe. To describe the sentence ϕe we describe
each of the sentences in this conjunction one-by-one.

The sentence ϕ< is a sentence in the vocabulary {<} saying that < is a
discrete linear order of the underlying set and there exists a smallest element
and a largest element in this order. By a discrete linear order, we mean that
for each element x other than the maximal element, there exists a least element
greater than x. That is, every element other than the maximal element has
a successor. The sentence ϕs says that the unary function s is the successor
function. To make this a total function, we say that, if x is maximal, then
s(x) = x. Likewise, ϕp says that the unary function p is the predecessor function
and define p(x) = x for the smallest element. Since both s and p are definable
in terms of <, the inclusion of these functions is not necessary but convenient.

Finite model theory 415

So ϕ<, ϕs, and ϕp are sentences in the vocabulary {<, s, p}. We expand
this vocabulary by adding constants C = {0, 1, 2, 3, . . . ,L,L+ 1} where L is the
number of lines in Pe. The sentence ϕc describes these constants. It says 0 is the
smallest element of the order and that i+ 1 is the successor of i for i = 0, . . . ,L:

p(0) = 0 ∧ s(0) = 1 ∧ s(1) = 0 ∧ s(1) = 2 ∧ · · · ∧ s(L) = L+ 1.

To describe the sentences ψi, we expand the vocabulary again. Recall the
coding process from Section 7.4. In particular, note that if j > e, then the
program Pe cannot possibly mention bin Bj and its contents remain empty
throughout the computation. To see that this is correct, suppose that Add Bj

occurs as line (i) of Pe. Then p4j
i occurs as a factor of e and so e must be bigger

than j. The vocabulary of ψi includes unary functions l and bi for i = 1, . . . , e.
Let Ve denote this vocabulary: Ve = {<, s, p, l, b1, . . . , be, 0, 1, . . . ,L,L+ 1}.

The sentences ψi have an intended interpretation. Suppose we run the pro-
gram Pe on a T -machine beginning with all of the bins empty. The T -machine
will execute the commands of Pe one-by-one in the order dictated by Pe. Each
element of our underlying set is intended to represent a “step” of this computa-
tion. The function bi(x) represents the value of Bi after step x of the computation
and l(x) represents the line of the program to be read next. The sentence θinit

describes the initial configuration of the T -machine:

l(0) = 1 ∧
e∧

i=1

bi(0) = 0.

Each ψi for i > 0 corresponds to a line of the program. The lines of
the program are not to be confused with the steps of the computation. The
lines of the program are (1), (2), . . . , (L). The computation of the program
may take any number of steps. The computation begins with line (1), but
it then may jump to any other line (if the GOTO command occurs) and it
may execute the same line several times within a loop. The T -machine con-
tinues to execute until it is told to read a line of the program that does not
exist. If this happens, then the machine halts. The sentence θhalt expresses
this as

∀x((l(x) = 0 ∨ l(x) = L+ 1) → (s(x) = x ∨ (x < L+ 1 ∧ S(L+ 1) = L+ 1))).

This sentence says that if the next line to be read after step x is either line (0)
or line (L+ 1), then the computation is finite (either x or L+ 1 is the maximal
element in the order).

416 Finite model theory

The sentence ψi describes line (i) of Pe. We demonstrate this sentences with
a few examples.

• If “(9) Add 4” occurs as the ninth line of Pe, then ψ9 is

l(x) = 9 →


l(s(x)) = 10 ∧ b4(s(x)) = s(b4(x)) ∧

∧
i �=4

bi(s(x)) = bi(x)


 .

• If line (4) is GOTO 12, then there are two possibilities.
If there is no line (12) in the program, then ψ4 is

l(x) = 4 →
(
l(s(x)) = 0 ∧

e∧
i=1

bi(s(x)) = bi(x)

)
.

Note that l(s(x)) = 0 implies that Pe halts at step x+ 1 (by θhalt).
Otherwise, if line (12) does exist, then replace l(s(x)) = 0 in this sentence
with l(s(x)) = 12.

• If line (1) is RmvP B6, then ψ1 is the sentence

l(x) = 1 →


b6(x) = p(x) ∧

∧
i �=6

bi(s(x)) = bi(x)




∧ (b6(x) = 0 → l(s(x)) = s(l(x))) ∧ (b6(x) > 0 → l(s(x)) = p(l(x))).

In this manner, each line of the program can be expressed as a Ve-sentence.
This completes the description of the Ve-sentence ϕe. The computation of Pe on
input 0 can be viewed as a model of this sentence. Moreover, any finite model
describes such a computation. By design, ϕe has a finite model if and only if
Pe halts on input 0. Since the Halting Problem is undecidable, so is the Finite
Satisfiability Problem.

Corollary 10.13 (Trakhtenbrot) The set of finitely valid sentences is not
recursively enumerable.

Proof We claim that the set of finitely satisfiable sentences is recursively enu-
merable. Given a sentence ϕ, we can consider each of the finitely many structures
in the vocabulary of ϕ having size n for n = 1, 2, 3, If ϕ has a finite model,
then (theoretically if not practically) we can find such a model in a finite num-
ber of steps. Since the set of finitely satisfiable sentences is not recursive by
the previous theorem, the complement of this set cannot be recursively enumer-
able. The compliment is the set of sentences that are not satisfiable in a finite
structure. A sentence ϕ is not finitely satisfiable if and only if ¬ϕ is finitely
valid. It follows that the set of finitely valid sentences too is not recursively
enumerable.

Finite model theory 417

10.3 Descriptive complexity
This section provides an introduction to the branch of finite model theory known
as descriptive complexity. The goal of this subject is to describe complexity
classes in terms of various logics. The seminal result of this subject was proved
by Ronald Fagin in 1974. Fagin’s theorem states that, in some precise sense,
the class NP is equivalent to existential second-order logic. Grädel’s theorem
describes the class P in a similar manner. In this section, we prove both Fagin’s
theorem and Grädel’s theorem.

Descriptive complexity provides definitions for complexity classes that are
independent of our choice of computing machine or programming language. In
Section 7.7, we formally defined the class P in terms of the programming lan-
guage T �. In the same section, we defined NP in terms of T �

NP . Grädel’s theorem
and Fagin’s theorem allow us to avoid these contrived programming languages.
These and other results of descriptive complexity show that certain classes of
decision problems, defined in terms of natural constraints on space and time, are
robust notions that can be analyzed using the tools of logic.

In Chapter 7, we regarded a decision problem as a set of natural numbers.
Every subset A of N corresponds to the decision problem that asks whether or not
a given natural number is in A. Conversely, every decision problem corresponds
to a problem of this form. In descriptive complexity, we change this point of
view. Instead of viewing decision problems as sets of natural numbers, we view
each decision problem as a set of finite structures.

Let V be a finite vocabulary. Let S be a set of finite V-structures. We assume
that we have a fixed method for coding each structure in S as a tuple of nat-
ural numbers. For example, if V = {R} and S is the set of finite graphs, then
each V-structure has an associated adjacency matrix as described in Section 7.7.
Moreover, we assume that, given a finite V-structure M , we can determine
whether or not M is in S in polynomial time (as is the case for graphs).

Each V-sentence ϕ corresponds to a decision problem on S. Given a finite
V-structure M as input, the ϕ-S Problem asks whether or not M models the
sentence ϕ. The sentence ϕ is not necessarily first-order.

Notation 5 We let ∃SO denote the set of second-order sentences of the form

∃1R
i1
1 ∃2R

i2
2 · · · ∃kR

ik

k ψ,

where ψ is a first-order V-sentence.
We let ∃SO-Horn denote the set of sentences in ∃SO for which the first-

order part ψ is a Horn sentence as defined in Exercise 3.25.

Fagin’s theorem states that the ϕ-S problem is in NP if and only if ϕ
is equivalent to a sentence in ∃SO. If V contains a binary relation < that is

418 Finite model theory

interpreted by each structure in S(V) as a linear order, then the ϕ-S problem is
in P if and only if ϕ is equivalent to a sentence in ∃SO-Horn. This is Grädel’s
theorem.

The following proposition supplies one direction of Fagin’s theorem.

Proposition 10.14 If ϕ is equivalent to a sentence in ∃SO, then the ϕ-S problem
is in NP.

Proof Suppose that ϕ is equivalent to a sentence in ∃SO having k existential
second-order quantifiers. We proceed by induction on k. For the base step, we
take k = 0. In this case, ϕ is first-order and the proposition is a restatement of
Exercise 7.37. (This exercise is easily verified by induction on the complexity of
ϕ.) Now suppose ϕ has the form:

∃1R
i1
1 ∃2R

i2
2 · · · ∃k+1R

ik+1
k ψ,

where ψ is first-order. Given a structure M in S as input, choose an arbitrary
subset of U i1 where U is the underlying set of M . Let M1 be the expansion of M
to the vocabulary V∪{R1} that interprets the i1-ary relation R1 as the arbitrarily
chosen set. By induction, there is a nondeterministic algorithm that deter-
mines whether or not the second-order (V∪{R1})-sentence ∃2R

i2
2 · · · ∃k+1R

ik+1
k ψ

holds in M1. If M1 models this sentence, then M models ϕ. Thus, we have a
nondeterministic polynomial-time algorithm for the ϕ-S Problem.

The following proposition supplies one direction of Grädel’s theorem.

Proposition 10.15 If ϕ is equivalent to a sentence in ∃SO-Horn, then the ϕ-S
Problem is in P.

Proof The proof we shall give works regardless of the number of second-order
variables. For convenience, suppose that ϕ has the form ∃Rkψ0 for some Horn
sentence ψ0. So ψ0 has the form ∀x1 · · · ∀xtψ(x1, . . . ,xt), where ψ(x̄) is a dis-
junction of conjunction of literals in the vocabulary V∪{R}. Now suppose we are
given a finite V-structure M . We describe a procedure for determining whether
or not M |= ϕ.

There are |M |t t-tuples of elements in the underlying set of M . For each
t-tuple ā, we consider the sentence ψ(ā). For each V-literal in this sentence
we check to see whether or not the literal holds for ā in M . If it is false, we
delete that literal from the sentence ψ(ā), and if it is true, we delete each clause
containing that literal. In this way, we reduce the above sentence to a sentence θā
in the vocabulary {R, a1, . . . , at}. Let σ denote the conjunction of the sentences
θā taken over all t-tuples ā in M .

Finite model theory 419

The sentence σ is satisfiable if and only if there exists some interpretation
of R on M that makes ψ(ā) true for each ā in M . That is, σ is satisfiable if and
only if M |= ϕ. Since ψ is a Horn formula, σ is a Horn sentence (the conjunction
of Horn sentences is Horn). Since it is a quantifier-free sentence, we may regard
σ as a formula of propositional logic and use the Horn algorithm from Section
1.7. This is a polynomial-time algorithm.

Prior to proving the converses to these propositions, we prove a far weaker
statement. Suppose that a ϕ-S problem is decided by a polynomial-time T++

program. Since the programming language T++ is extremely inefficient, this is
a strong hypothesis. We show that, if this hypothesis holds, then ϕ is equivalent
to a sentence of ∃SO. We prove this by analyzing the proof of Trakhtenbrot’s
theorem. Grädel’s theorem and Fagin’s theorem are proved by extending this
analysis.

Proposition 10.16 Let S be a set of finite V-structures and let ϕ be a V-sentence
such that the ϕ-S problem can be decided by a T++ program that runs in
polynomial time. Then ϕ is equivalent to a sentence in ∃SO.

Proof For convenience, suppose that V = {R} and S is the set of finite graphs.
We describe a ∃SO sentence Ψ such that G |= Ψ if and only if G |= ϕ for any
finite graph G.

Let Pe be a T++ program that decides whether or not a given graph mod-
els ϕ. Recall the sentence ϕe from the proof of Trakhtenbrot’s theorem. This is
defined as the sentence ϕ< ∧ ϕs ∧ ϕp ∧ ϕc ∧ θinit ∧ θhalt ∧ ψ1 ∧ ψ2 ∧ · · ·ψL in
the vocabulary Ve = {<, s, p, l, b1, . . . , be, 0, 1, . . . ,L,L+ 1}. Let us simplify this
vocabulary. Note that the constants are not necessary since each of the elements
represented by 0, . . . ,L+ 1 is definable (they are the first L+ 2 elements of the
order). So we may replace each constant in ϕe with a subformula that defines
the same element. We may also replace each function in ϕe with a relation. That
is, replace the unary successor function s with the binary successor relation S,
the unary function l with a binary relation LINE , b1 with BIN 1 and so forth.
Let ϕE be the result of these changes. Consider the ∃SO sentence

∃ <2 ∃S2∃P 2∃LINE 2∃BIN 2
1 · · · ∃BIN 2

eϕE .

Let us abbreviate this sentence ∃RELATIONSϕE .
If a structure M models ∃RELATIONSϕE , then Pe must halt on input 0.

In particular, given a finite graph G, if G |= ∃RELATIONSϕE , then Pe halts on
input 0. We want a sentence that tells us whether or not Pe halts given input G.
For this, we must alter the subformula θinit of ϕe. Recall that θinit describes the

420 Finite model theory

initial configuration of the T -machine as

l(0) = 1 ∧
e∧

i=1

bi(0) = 0.

We change this initial configuration to encode G. Let n be the number of vertices
in G. We code G as a sequence of 0s and 1s of length n2 (the adjacency matrix
for G). The order < imposes an order on the set of ordered pairs of vertices. We
change θinit to the sentence

l(0) = 1 ∧
e∧

i=1

bi(0) = δi,

where δi = 1 if the ith ordered pair of vertices share an edge and otherwise
δi = 0. Again, we can replace 0 and 1 with formulas defining the first and second
elements of the order. Note that it is possible that |G| = n > e in which case not
all of G will be encoded. This is one of the major deficiencies of the programming
language T++.

Let Ψ0 be the sentence obtained by changing the subformula θinit in
∃RELATIONSϕE as we have described. Now if G |= Ψ0, then G can be viewed
as the computation of Pe given the code of G as input. That is, each step of the
computation is represented by a vertex of the graph. However, this computation
may take more than n = |G| steps. The key to the proof, and the key to Fagin’s
theorem as well, is the following elementary observation. The set of k-tuples in
G has size nk. Since Pe is polynomial-time, there exists k such that this pro-
gram halts in fewer than nk steps given input of size n. We modify Ψ0 so that
it refers to k-tuples of vertices. Let Ψ be the ∃SO sentence that is the result of
this modification.

Theorem 10.17 (Grädel) Let V be a relational vocabulary containing the binary
relation <. Let S be a set of finite V-structures each of which interpret < as a
linear order. A V-sentence ϕ is equivalent to a sentence of ∃SO-Horn if and only
if the ϕ-s problem is in P.

Proof One direction of this theorem is proved as Proposition 10.15. For the
other direction, suppose that the ϕ-S Problem is in P. Then there exists a T �

program Pe that decides this problem in polynomial time. We can code programs
of T � in the same manner that we coded T++ programs in Section 7.4. So we
can write a sentence ϕe as in the proof of Trakhtenbrot’s theorem. Following
the proof of the previous proposition, we find a sentence Ψ in ∃SO that works.
However, we want a sentence that is Horn. For this we make two observations
regarding the sentence ϕe from Trakhtenbrot’s theorem. Since the structures in S
are ordered, we may drop the subformula ϕ< ∧ϕs ∧ϕp ∧ϕc from ϕe. The second

Finite model theory 421

observation is that the sentence that remains, namely

θinit ∧ θhalt ∧ ψ1 ∧ ψ2 ∧ · · ·ψL

is equivalent to a conjunction of Horn sentences. For example, θhalt is the
sentence:

∀x((l(x) = 0 ∨ l(x) = L+ 1) → s(x) = x).

This is equivalent to the following conjunction of Horn sentences:

∀x(l(x) = 0 → s(x) = x) ∧ ∀x(l(x) = L+ 1 → s(x) = x).

Likewise, the sentences ψi are equivalent to conjunctions of Horn sentences. For
example, if “(9) Add 4” occurs as the ninth line of Pe, then ψ9 is

l(x) = 9 →


l(s(x)) = 10 ∧ b4(s(x)) = s(b4(x)) ∧

∧
i �=4

bi(s(x)) = bi(x)


 .

This sentence is equivalent to

(l(x) = 9 → l(s(x)) = 10) ∧ (l(x) = 9 → b4(s(x))

= s(b4(x))) ∧
∧
i �=4

(l(x) = 9 → bi(s(x)) = bi(x)).

The theorem then follows from the fact that a conjunction of Horn sentences is
equivalent to a Horn sentence.

Grädel’s theorem is can be paraphrased as ∃SO-Horn = P. We say that
∃SO-Horn captures the complexity class P on ordered structures. Least fixed-
point logic also captures P. This was proved independently by Immerman and
Vardi.

Theorem 10.18 (Immerman–Vardi) Let V be a relational vocabulary containing
the binary relation <. Let S be a set of finite V-structures each of which interpret
< as a linear order. A V-sentence ϕ is equivalent to a sentence of LFP if and
only if the ϕ-S problem is in P.

This theorem can be proved analogously to the proof of Grädel’s theorem.
We omit this proof (a proof is contained in [17]). Note that both of these theorems
are restricted to ordered structures. This is a common restriction in complexity
theory. Suppose we are given a graph having n vertices. There are n! ways to
arrange these vertices into a linear order. So there are n! ways to input the
same graph into a T -machine. Moreover, there is no known polynomial-time
algorithm to determine whether or not two given graphs are the same or not.
So if a program P is polynomial-time, it may produce different outputs when
given two different presentations of the same graph as input. If we restrict to

422 Finite model theory

ordered graphs, then we avoid this problem. Fagin’s theorem is one of the few
results in descriptive complexity that is not restricted to ordered structures. This
is because we can assert that there exists a linear order in ∃SO.

Theorem 10.19 (Fagin) Let V be a relational vocabulary and let S be a set
of finite V-structures. A V-sentence ϕ is equivalent to a sentence of ∃SO if and
only if the ϕ-S problem is in NP. Moreover, we may further require that the
first-order part of the ∃SO sentence is universal.

Proof One direction of this theorem is proved as Proposition 10.14. For the
other direction, suppose that the ϕ-S Problem is in NP. Then there exists a
T �

NP program Pe that decides this problem in polynomial time. We can code
programs of T �

N in the same manner that we coded T++ programs. Following
the proof of Proposition 10.16, we can find a ∃SO sentence Ψ as desired.

The moreover clause is verified by inspecting the sentence Ψ. It is interesting
to note that, in the nondeterministic case, the sentences ψi are not necessarily
∃SO-Horn. For example, suppose that line (9) of Pe is the T �

NP command
GOTO 2 or 3. Then ψ9 must express l(x) = 9 → (l(x + 1) = 2 ∨ l(x + 1) = 3)
which is not a Horn sentence.

Finally, we show that PSAT is NP-complete. This was first proved by
Stephen Cook in 1971.

Theorem 10.20 (Cook) PSAT is NP-complete.

Proof Suppose we have an algorithm that determines PSAT in polynomial-
time. We show that, using this algorithm, we can determine any decision problem
is in NP in polynomial-time. Suppose we are given a ϕ-S problem for some V-
sentence ϕ and some set of finite V-structures S. If this problem is in NP, then
by Fagin’s theorem, ϕ is equivalent to a formula of the form

∃Ri1
1 · · · ∃Rik

k ∀x1 · · · ∀xnψ(x1, . . . ,xn)

where ψ(x̄) is a quantifier-free first-order formula in conjunctive prenex normal
form. Suppose we are given a structure M in S an want to determine
whether or not M models the above ∃SO sentence. Consider the conjunction∧

ā∈M ψ(a1, . . . , an) taken over all n-tuples of M . As in the proof of Proposi-
tion 10.15, this sentence reduces to one in which every atomic subformula has
the form Rj(a1, . . . , aij) for some j = 1, . . . , k. Since this is a quantifier-free sen-
tence, we may view this as a formula of propositional logic. If we can determine
whether or not this formula is satisfiable, then we can determine whether or
not M models the above ∃SO sentence. In this way, the ϕ-S problem is redu-
cible to PSAT . Since this problem is an arbritrary problem in NP, PSAT is
NP-complete.

Finite model theory 423

The results of this section represent only a glimpse of descriptive complexity.
For more on this subject both [17] and [36] are recommended.

10.4 Logic and the P = NP problem
The question of whether or not P = NP is one of the most important unanswered
questions of mathematics. In this final section, we reformulate this and related
questions as questions of pure logic.

To show that P = NP, it suffices to find a polynomial-time algorithm for
determining whether or not a given formula of propositional logic is satisfiable.
This follows from Cook’s theorem. Of course, the same is true for any NP-
complete problem. Consider the 3-Color Problem. A graph is 3-colorable if and
only if it can be divided into three subsets such that no two vertices in the
same set shares an edge. This property can be expressed as a sentence of ∃SO.
By Fagin’s theorem, the 3-Color Problem is in NP. In fact, this problem can be
shown to be NP-complete. So if this problem is in P, then so is PSAT as is every
NP problem. So to show that P = NP, it suffices to define 3-Colorability on
ordered graphs using a sentence of ∃SO-Horn (by Grädel’s theorem). Likewise,
to prove that NP = coNP it suffices to write one clever sentence. If there
exists a sentence of ∃SO that says that a graph is not 3-Colorable, then the
3-Color Problem is in coNP as well as NP. By the NP-completeness of this
problem, this would imply that NP = coNP. Conversely, one can show that
NP �= coNP by playing pebble games. One must construct a 3-colorable graph
M with the property that, for any k ∈ N and any expansion M ′ of M to a
finite relational vocabulary V, there exists a V-structure N such that N is not 3-
colorable andM ≡k N . If one could achieve this, then one could further conclude
that P �= NP.

The question of NP = coNP is related to the question of whether or not
∃SO is an extension of first-order logic. Recall the definition of such an extension
from Section 9.4. The point of difficulty is the Closure Property. Is ∃SO closed
under negations? Clearly, the negation of an ∃SO sentence is equivalent to a
∀SO sentence (where ∀SO is defined analogously to ∃SO). By Fagin’s theorem
∃SO captures NP. As a corollary of this, we see that ∀SO captures coNP. It
follows that NP = coNP if and only if ∃SO ≡ ∀SO. Moreover, if ∃SO ≡ ∀SO,
then every second-order sentence is equivalent to a sentence of ∃SO. This can
be shown by induction on the complexity of the second-order quantifiers using
∃SO ≡ ∀SO as the base step. So the following are equivalent:

(i) NP = coNP,

(ii) ∃SO is an extension of first-order logic (as defined in Section 9.4), and

424 Finite model theory

(iii) ∃SO is equivalent to second-order logic.

Yet another characterization is given by Asser’s Problem which relates the
NP = coNP problem to the finite spectra of first-order sentences as defined in
Exercise 2.3. Recall that the finite spectrum of a sentence ϕ is the set of n ∈ N

such that ϕ has a model of size n. Asser’s Problem asks whether or not the set
of finite spectra is closed under complements. That is, if A ⊂ N is the spectrum
for a sentence ϕ, then is there a sentence for which the complement of A is the
spectrum? If not, then one can conclude that NP �= coNP.

We leave it to the reader to verify and expand upon the claims of this section
and to resolve the problems of whether or not P = NP = coNP.

Exercises
10.1. Let M4 be the structure in the vocabulary VE = {E} that interprets the

binary relation E as an equivalence relation having exactly four classes
each containing exactly four elements.
(a) Show that M4 ≡4 N for any VE structure N that interprets E as an

equivalence relation having more than four classes each containing
more than four elements.

(b) Show that M4 is not L3-equivalent to any VE-structure that does
not interpret E as an equivalence relation.

10.2. Let V< = {R}. Show that there exists a VR-sentence ϕ of L3
ω1ω such that

M |= ϕ if and only if M is a connected graph.

10.3. Let V< = {<}. Show that there exists a V<-sentence ϕ of L3
ω1ω such that

M |= ϕ if and only if M interprets < as a linear order and |M | is an odd
natural number.

10.4. Let V be a relational vocabulary. Let T be a complete V-theory that is
axiomatized by a set of Lk sentences. Show that V (ϕ) ≤ k for each atomic
V-formula ϕ.

10.5. Let V be a finite relational vocabulary that contains the binary relation S.
Let M be a V-structure that has underlying set N and interprets S as the
successor relation. Show that there exists k ∈ N such that M ≡Lk

ω1ω N

implies M ∼= N .

10.6. This exercise demonstrates that the Beth Definability theorem fails when
restricted to finite structures. Let V = {<,P} and let T be the incomplete
V< saying that < is a linear order and the unary relation P holds for the
odd elements in the order (the first element of the order, the third, the
fifth, and so forth).

Finite model theory 425

(a) Show that P is implicitly defined by T in terms of {<} on finite
structures. That is, show that any two expansions of a finite linear
order to a model of T are isomorphic.

(b) Show that P is not explicitly defined by T in terms of {<} on finite
structures. That is, there is no formula ϕ(x) in the vocabulary {<}
such that M |= ϕ(x) ↔ P (x) for any finite model M of T . (Use the
previous exercise.)

10.7. Show that Craig’s theorem does not hold for finite structures. That is,
demonstrate a V1-sentence ϕ1 and a V2-sentence ϕ2 so that ϕ1 |=fin ϕ2

but there is no sentence in the vocabulary V1∩V2 for which both ϕ1 |=fin θ

and θ |=fin ϕ2.

10.8. Demonstrate a first-order sentence that is not equivalent to a universal
sentence but is preserved under substructures of finite models.

10.9. Let V denote the set of first-order sentences that are valid. Let Vfin

denote those sentences that are finitely valid. Trakhtenbrot proved that
Vfin and the complement of V are recursively inseparable sets. To prove
this strengthened version of Theorem 10.12, let A and B be any recurs-
ively inseparable pair of sets (Exercise 7.24). Let S be any set of first-order
sentences such that V ⊂ S ⊂ Vfin. Show that if S is recursive, then A and
B are not recursively inseparable.

10.10. A graph G is called a tree if, for any vertices a and b of G there exists
a unique path from a to b. Let M and N be finite structures in the
vocabulary of graphs.
(a) Show that if Duplicator wins C3

w(M ,N), then M is a tree if and only
if N is a tree.

(b) Suppose that M is a tree. Show that Duplicator wins C3
w(M ,N) if

and only if M ∼= N .

(c) Suppose that M is a tree. Show that Duplicator wins C2
w(M ,N) if

and only if M ∼= N .

Bibliography

[1] J. T. Baldwin, Fundamentals of Stability Theory, Springer-Verlag (Perspectives in
Logic), 1989.

[2] J. T. Baldwin and A. H. Lachlan, On strongly minimal sets, Journal of Symbolic
Logic, vol. 36, pp. 79–96, 1971.

[3] J. Barwise, ed., Handbook of Mathematical Logic, North-Holland (Studies in Logic),
1977.

[4] G. Boolos and R. Jeffery, Computability and Logic, Cambridge University Press,
1989.

[5] G. Boolos, New proof of the Gödel Incompleteness Theorem, Notices of the
American Mathematical Society, vol. 36, pp. 388–390, 1989.

[6] S. Buechler, Essential Stability Theory, Springer-Verlag (Perspectives in Logic),
1996.

[7] C. C. Chang and H. J. Keisler, Model Theory, North-Holland (Studies in Logic),
1990.

[8] N. Cutland, Computability, Cambridge University Press, 1980.
[9] R. Diestel, Graph Theory, Springer-Verlag (Graduate Texts in Mathematics), 2000.

[10] L. van den Dries, Tame Topology and o-Minimal Structures, Cambridge University
Press (LMS Lecture Notes), 1998.

[11] H. D. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag (Perspectives
in Logic), 1995.

[12] H. D. Ebbinghaus, J. Flum, and W. Thomas, Mathematical Logic, Springer-Verlag
(Undergraduate Texts in Mathematics), 1989.

[13] K. Gödel, Collected Works, vol. 1 (S. Feferman et al., eds.), Oxford University
Press, 1986.

[14] J. van Heijenoort, From Frege to Gödel: A Source Book in Mathematical Logic,
1879–1931, Harvard University Press, 1967.

[15] I. N. Herstein, Topics in Algebra, John Wiley and Sons, 1975.
[16] W. A. Hodges, Model Theory, Cambridge University Press (Encyclopedia of

Mathematics), 1993.
[17] N. Immerman, Descriptive Complexity, Springer-Verlag (Texts and Monographs

in Computer Science), 1999.
[18] T. Jech, Set Theory, Academic Press, 1978.
[19] G. A. Jones and J. M. Jones, Elementary Number Theory, Springer-Verlag

(Springer Undergraduate Mathematics), 1998.
[20] J. A. Kalman, Automated Reasoning with Otter, Rinton Press, 2001.
[21] I. Kaplansky, Set Theory and Metric Spaces, Chelsea Publishing Co., 1977.
[22] R. Kaye, Minesweeper is NP-complete, Mathematical Intelligencer, vol. 22(2),

pp. 9–15, 2000.
[23] L. Kirby and J. Paris, Accessible independence results in Peano arithmetic,

Bulletin of the LMS, vol. 14, pp. 285–293, 1982.

Bibliography 427

[24] F. Kirwan, Complex Algebraic Curves, Cambridge University Press (LMS Student
Texts), 1992.

[25] K. Kunen, Set Theory: An Introduction to Independence Proofs, North-Holland
(Studies in Logic), 1995.

[26] D. Lascar, Stability in Model Theory, Longman, 1988.
[27] P. Lindström, On model-completeness, Theoria, vol. 30, pp. 183–196, 1964.
[28] P. Lindström, On extensions of elementary logic, Theoria, vol. 35, pp. 1–11, 1969.
[29] D. Marker, Model Theory: An Introduction, Springer-Verlag (Graduate Texts in

Mathematics), 2003.
[30] D. Marker, M. Messmer, and A. Pillay, Model Theory of Fields, Springer-Verlag

(Lecture Notes in Logic), 1996.
[31] Y. Matiyasevich, Hilbert’s 10th Problem, MIT Press, 1993.
[32] M. Morley, Categoricity in power, Transactions of the American Mathematical

Society, vol. 114, pp. 514–538, 1965.
[33] A. Nerode and R. A. Shore, Logic for Applications, Springer-Verlag (Texts and

Monographs in Computer Science), 1994.
[34] S. H. Nienhuys-Cheng and R. de Wolf, Foundations of Inductive Logic Program-

ming, Springer-Verlag (Lecture Notes in Artificial Intelligence), 1997.
[35] M. Otto, Bounded Variable Logics and Counting, Springer-Verlag (Lecture Notes

in Logic), 1997.
[36] C. H. Papadimitiou, Computational Complexity, Addison-Wesley, 1994.
[37] A. Pillay, An Introduction to Stability Theory, Oxford University Press (Logic

Guides), 1983.
[38] A. Pillay, Geometric Stability Theory, Oxford University Press (Logic Guides),

1996.
[39] B. Poizat, Cours de Theorie des Modeles, Nur Al-Mantiz Wal-Ma’rifah, 1985.
[40] A. Robinson, Selected Papers, vol. 1, (H. J. Keisler et al., eds.), Yale University

Press, 1979.
[41] J. A. Robinson, A machine oriented logic based on the resolution principle, Journal

of the ACM, vol. 12, pp. 23–41, 1965.
[42] K. A. Ross, Elementary Analysis: The Theory of Calculus, Springer-Verlag

(Undergraduate Texts), 1980.
[43] S. Shelah, Classification Theory and the Number of Non-isomorphic Models, North-

Holland (Studies in Logic), 1990.
[44] S. Shelah, Cardinal Arithmetic, Oxford University Press (Logic Guides), 1994.
[45] J. Shoenfield, Mathematical Logic, Addison-Wesley, 1967.
[46] J. Shoenfield, Recursion Theory, Springer-Verlag (Lecture Notes in Logic), 1993.
[47] M. Sipser, Introduction to the Theory of Computation, PWS Publishing Co., 1997.
[48] R. I. Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag (Perspect-

ives in Logic), 1987.
[49] R. Vaught, Denumerable models of complete theories, In Infinitistic Methods.

Proceedings of the Symposium on Foundations of Mathematics, pp. 303–321,
Pergamon, 1961.

[50] F. O. Wagner, Simple Theories, Kluwer Academic Press, 2000.

Index

0–1 laws 217, 221
∆0 formula 314
Πn set 337∑

n set 337∑
n-complete 359∑
n-universal 359

∃n formula 182
∀n formula 182
Lω1ω 392

Abiteboul–Vianu theorem 399
Ackermann function 307, 327
Ackermann, Wilhelm 307
algebraic closure 241
algebraic formula 241
algebraically closed fields 253
algorithm 347
amalgamation
property 238
theorem 171

Aristotle 1
arithmetic hierarchy 336
Asser’s problem 424
assignment 7
atomic formula
first-order logic 55
propositional logic 1

atomic structure 276
automorphism 297
Ax’s theorem 266
Axiom of Choice 156
axiomatization 200
finite 210
quasi-finite 210

back-and-forth argument 214
Baldwin–Lachlan theorem 289, 294
basic functions 302
basis 242
Beth Definability theorem 52, 191
bi-definable 227
Boolos, George 374
bound variable 57
bounded search 306
Buechler, Steven 294

cardinal number 152
categoricity 206
countably categorical 209
totally categorical 209
uncountably categorical 209

characteristic function 312
Chinese Remainder theorem 366
Church–Turing thesis 310, 316
clause 37
clique 68
CNF 28
CNF algorithm 30
Cohen, Paul 162
compactness 45
of first-order logic 167
of propositional logic 47

compactness number 403
complete theory 89
complete type 268
completeness 44
of propositional logic 47
of first-order logic 167

computable function xx, 79, 301
conjunction 2
conjunctive normal form 28
conjunctive prenex normal form 109
coNL 351
connected graph 67
coNP 341
coNP=NP 342, 354
consequence 9, 12
Consequence Problem 10, 36, 64, 99
consistent 90
Continuum hypothesis 162
contradiction 8, 63
Contradiction rule 16
contrapositive 17
Cook’s theorem 422
countable 76
counting quantifier 95
Craig Interpolation theorem 52, 189
Craig’s trick 377
Cut rule 37

Davis, Martin 331
decidable theory 203
decision problem 8, 300

Index 429

Dedikind, Richard 161
deductive closure 199
definable closure 265
definable subset 62, 93, 239
DeMorgan’s rules 11
dense linear order 71, 211
denumerable 76
diagram 86
dimension 244
Diophantine set 330
disjunction 5
disjunctive normal form 28
Distributivity rules 11
DNF 28
Duplicator 393

Easton’s theorem 163
elementary
diagram 86
extension 85
substructure 85
chain 181
class 90
embedding 80
equivalence 82

embedding 80
Engler, Erwin 215
Equivalence problem 36, 64
equivalent formulas 10
Erdös, Paul 216, 316
Euclid 16
Euler path 405
existential formula 81
existential quantifier 54
existentially closed 235
expansion 61
extensions 84
extension of first-order logic 401

Fagin’s theorem 422
Fagin, Ronald 417
feasible decision problem 338
Fibonacci number 386
field 249
Finite Satisfiability problem 414
finite spectrum 260
Finite Validity problem 414
finite-variable logics 409
finitely satisfiable 408
finitely valid 408
Fixed Point lemma 381
formal proof 15, 102
formula
first-order logic 55
propositional logic 2
second-order logic 389

Four Color theorem 197
free variable 56
function xviii

Fundamental Theorem
of algebra 253
of arithmetic 358, 316, 321

fuzzy logic 1

Gödel’s First Incompleteness
theorem 374

Gödel’s Second Incompleteness
theorem 382

Gödel, Kurt xx, 162, 333, 357, 358, 374,
382

General Continuum hypothesis 162
Goldbach’s conjecture 93, 141, 358
Goodstein sequences 383
Goodstein’s theorem 384
Grädel’s theorem 420
graph 66
group 201
Gurevich, Yuri 399

Halting Problem 334
Hamilton circuit 404
Hanf number 407
Henkin construction 148, 165, 271
Herbrand
structure 114
universe 115
vocabulary 115

Hilbert’s Nullstellensatz 257
Hilbert’s 10th problem 332
Hilbert, David 332
homogeneous structure 277, 285
Horn formula 32
Horn algorithm 33
Horn sentence 134
Hrushovski, Ehud 210, 256

IFP 397
Immerman, Neil 399
Immerman–Vardi theorem 421
inconsistent 51
independent set 242
index set 334
induction
mathematical 23
on complexity of formulas 25
on ordinals 156

infinitary logics 395
Inflationary Fixed-point Logic 397
isolated type 271
isomorphism 82
isomorphism property 231

Joint Embedding Lemma 172

k-Colorability problem 353
k-colorable graph 353, 405

430 Index

Kim, Byunghan 292, 294
Kirby–Paris theorem 385
Kleene Normal Form 325
Kleene’s Recursion theorem 326
Kleene, Stephen 333
Knight, Robin 294
Kreutzer’s theorem 400
Kreutzer, Stephan 399

L 348
Löb’s theorem 387
Löwenhiem–Skolem number 402
Löwenhiem–Skolem theorems
Downward 169, 405
Upward 167

Lachlan’s theorem 294
Least Fixed-Point Logic 399
length of input 337
LFP 399
limit ordinal 154
Lindström’s theorem
on extensions of first-order logic 403
on model-completeness 237

linear order 71
linear resolution 129
linearly ordered set 153, 202
literal 28
LN-resolution 133
locally modular 252
logarithmic-space 348
logic xiii
Los–Tarski Theorem 178, 405
Lyndon’s Interpolation theorem 199
Lyndon’s Preservation theorem 199

Matiyasevich’s theorem 331
Matiyasevich, Yuri 331, 333
Minesweeper 353
minimal structure 240
minimal unsatisfiable set 51, 131
model 89
model companion 264
model-complete 233
modular 252
Monadic second-order logic 392
monster model 286
Morley’s theorem 209, 210, 291, 299
Morley, Michael 210, 291
most general unifier 121

N -resolution 128
negation 2
NL 351
nondeterministic algorithm 339, 349
NP 341
complete 351
=coNP 423

o-minimal 246
one-to-one xix
Omitting Types theorem 272
operator 396
order property 291
ordinal number 153
Otter 137

P 35
P-resolution 146
P=NP 36, 342, 354, 423
Partial Fixed-point Logic 398
partial isomorphism 393
partial order 197
Peano Arithmetic 360
pebble games 392
Ehrenfeucht–Fraisse game 393
k-pebble game 410

PFP 398
PNF 109
polynomial
space 348
time xiv, 35, 338
time reduction 351

Post, Emile 333
power set 77
prenex normal form 109
prime model 279
primitive recursion 303
primitive recursive functions 304
primitive recursive set 312
primitive symbols 2
projective geometry 202
proof by contradiction 18
Prolog 137
provably equivalent 20
PSPACE 348
Putnam, Hilary 331

quantifier elimination 222
quantifier-free formula 81

random graph 220
realizable 268
recursive
functions 310
set 312

recursively enumerable set 328
recursively inseparable 358
recursively reducible 334
reduct 61
relation xvii
relational
database 69
vocabulary 221

resolvent 38, 124
Rice’s theorem 335
Robinson’s Joint Consistency 186
Robinson, Abraham 186

Index 431

Robinson, John Allen 120
Robinson, Julia 331
Rosser’s theorem 387
Russell, Bertrand 357
Ryll-Nardzewski, Czeslaw 215

Satisfiability Problem 63
for first-order logic 299
for propositional logic 8, 35, 344

satisfiable 8, 63
saturated structure 281, 285
Scott’s theorem 395
second-order logic 360, 388
semi-decidable 328
sentence 56
second-order logic 389

set xvi
Shelah, Saharon 163, 289, 292, 399
Silver’s theorem 163
simple theories 292
size of a structure 71
Skolem normal form 111
SLD-resolution 135
small theory 275
SNF 111
spectrum 289
finite 92
uncountable spectrum 289

Spoiler 393
stable theory 291
strict order property 292
strongly minimal 240
structure xvi, 59
subformula
first-order logic 56
propositional logic 3

substructure 83
successor ordinal 154
Svenonius, Lars 215

T-computable function 318
T-resolution 146

T++ Program 317
Tarski’s Undefinability of Truth 387
Tarski, Alfred 247, 332
Tarski–Vaught criterion 168, 405
tautology 8, 63
Tautology rule 16
theory 89
Trakhtenbrot’s theorem 414, 416
transfinite induction 157
Traveling Salesman problem 353
truth table 4
Turing, Alan 316, 333
type 268

unbounded search 310
uncountable 76
unification 121
Unification algorithm 122
universal formula 85
universal model 283, 285
universal quantifier 54

valid 8, 63
Validity Problem 8, 35, 63
van den Dries, Lou 247
Vardi, Moshe 399
Vaught’s conjecture 294
Vaught, Robert 290
vector space 250
vocabulary 59

weak Monadic second-order logic 392
well ordered set 153
Well Ordering Principle 156
Whitehead, Alfred North 357
wild theories 293
Wilkie, Alex 247

Zermeleo–Frankel set theory 162
ZFC 162
Zil’ber’s Theorem 210

